6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,faul...6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,fault detection is investigated in this paper.Considering the fast response and low timeand-computational consumption,it is the first time that the Online Broad Learning System(OBLS)is applied to identify outages in cellular networks.In addition,the Automatic-constructed Online Broad Learning System(AOBLS)is put forward to rationalize its structure and consequently avoid over-fitting and under-fitting.Furthermore,a multi-layer classification structure is proposed to further improve the classification performance.To face the challenges caused by imbalanced data in fault detection problems,a novel weighting strategy is derived to achieve the Multilayer Automatic-constructed Weighted Online Broad Learning System(MAWOBLS)and ensemble learning with retrained Support Vector Machine(SVM),denoted as EMAWOBLS,for superior treatment with this imbalance issue.Simulation results show that the proposed algorithm has excellent performance in detecting faults with satisfactory time usage.展开更多
With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathemati...With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathematics)education,AI demonstrates significant advantages through adaptive learning pathways,instant feedback,and individualized resource allocation.However,current research predominantly focuses on the technical architecture and application effectiveness of such systems,with insufficient exploration of how AI-enabled personalized learning systems influence university students’learning motivation and academic achievement through educational psychological mechanisms.This paper adopts an educational psychology perspective to construct a causal mechanism model linking“learning motivation-learning behavior-academic achievement.”Findings indicate that AI-powered personalized learning systems enhance learning autonomy,boost self-efficacy,and optimize feedback mechanisms.These effects collectively stimulate university students’learning motivation in STEM disciplines,thereby promoting academic achievement.Building upon empirical research,this paper proposes implications for educational practice and policy formulation,emphasizing the necessity of advancing higher education reform through the dual influence of technology and psychological mechanisms.展开更多
Against the background of the continuous reform in medical education,biochemistry,as a fundamental medical course,maintains a close connection with clinical practice.However,under the traditional teaching model,the ef...Against the background of the continuous reform in medical education,biochemistry,as a fundamental medical course,maintains a close connection with clinical practice.However,under the traditional teaching model,the effectiveness of the“basic-clinical”connection is relatively poor,which hinders the improvement of educational outcomes.In the practical teaching of higher vocational medical education,the integration of the AI Case-Guided Learning System can enhance students’enthusiasm for knowledge exploration and effectively improve teaching quality.Starting from the perspective of the“basic-clinical”connection teaching in the biochemistry course,this paper analyzes the application value of the AI Case-Guided Learning System and proposes specific application strategies,aiming to accumulate experience for the innovation of biochemistry teaching.展开更多
Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privac...Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privacy-preserving Web3 scenarios.However,DFL faces incentive and security challenges in the decentralized framework.To address these issues,this paper presents a Hierarchical Blockchain-enabled DFL(HBDFL)system,which provides a generic solution framework for the DFL-related applications.The proposed system consists of four major components,including a model contribution-based reward mechanism,a Proof of Elapsed Time and Accuracy(PoETA)consensus algorithm,a Distributed Reputation-based Verification Mechanism(DRTM)and an Accuracy-Dependent Throughput Management(ADTM)mechanism.The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets,while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput.The DRTM improves the system efficiency in consensus,and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy.The performance of the proposed HBDFL system is evaluated by numerical simulations,with the results showing that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.展开更多
Large-scale neural networks-based federated learning(FL)has gained public recognition for its effective capabilities in distributed training.Nonetheless,the open system architecture inherent to federated learning syst...Large-scale neural networks-based federated learning(FL)has gained public recognition for its effective capabilities in distributed training.Nonetheless,the open system architecture inherent to federated learning systems raises concerns regarding their vulnerability to potential attacks.Poisoning attacks turn into a major menace to federated learning on account of their concealed property and potent destructive force.By altering the local model during routine machine learning training,attackers can easily contaminate the global model.Traditional detection and aggregation solutions mitigate certain threats,but they are still insufficient to completely eliminate the influence generated by attackers.Therefore,federated unlearning that can remove unreliable models while maintaining the accuracy of the global model has become a solution.Unfortunately some existing federated unlearning approaches are rather difficult to be applied in large neural network models because of their high computational expenses.Hence,we propose SlideFU,an efficient anti-poisoning attack federated unlearning framework.The primary concept of SlideFU is to employ sliding window to construct the training process,where all operations are confined within the window.We design a malicious detection scheme based on principal component analysis(PCA),which calculates the trust factors between compressed models in a low-cost way to eliminate unreliable models.After confirming that the global model is under attack,the system activates the federated unlearning process,calibrates the gradients based on the updated direction of the calibration gradients.Experiments on two public datasets demonstrate that our scheme can recover a robust model with extremely high efficiency.展开更多
Multi-label classification is a challenging problem that has attracted significant attention from researchers, particularly in the domain of image and text attribute annotation. However, multi-label datasets are prone...Multi-label classification is a challenging problem that has attracted significant attention from researchers, particularly in the domain of image and text attribute annotation. However, multi-label datasets are prone to serious intra-class and inter-class imbalance problems, which can significantly degrade the classification performance. To address the above issues, we propose the multi-label weighted broad learning system(MLW-BLS) from the perspective of label imbalance weighting and label correlation mining. Further, we propose the multi-label adaptive weighted broad learning system(MLAW-BLS) to adaptively adjust the specific weights and values of labels of MLW-BLS and construct an efficient imbalanced classifier set. Extensive experiments are conducted on various datasets to evaluate the effectiveness of the proposed model, and the results demonstrate its superiority over other advanced approaches.展开更多
With the exponential rise in global air traffic,ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation security.Although X-ray baggage monitoring is...With the exponential rise in global air traffic,ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation security.Although X-ray baggage monitoring is now standard,manual screening has several limitations,including the propensity for errors,and raises concerns about passenger privacy.To address these drawbacks,researchers have leveraged recent advances in deep learning to design threatsegmentation frameworks.However,these models require extensive training data and labour-intensive dense pixelwise annotations and are finetuned separately for each dataset to account for inter-dataset discrepancies.Hence,this study proposes a semi-supervised contour-driven broad learning system(BLS)for X-ray baggage security threat instance segmentation referred to as C-BLX.The research methodology involved enhancing representation learning and achieving faster training capability to tackle severe occlusion and class imbalance using a single training routine with limited baggage scans.The proposed framework was trained with minimal supervision using resource-efficient image-level labels to localize illegal items in multi-vendor baggage scans.More specifically,the framework generated candidate region segments from the input X-ray scans based on local intensity transition cues,effectively identifying concealed prohibited items without entire baggage scans.The multi-convolutional BLS exploits the rich complementary features extracted from these region segments to predict object categories,including threat and benign classes.The contours corresponding to the region segments predicted as threats were then utilized to yield the segmentation results.The proposed C-BLX system was thoroughly evaluated on three highly imbalanced public datasets and surpassed other competitive approaches in baggage-threat segmentation,yielding 90.04%,78.92%,and 59.44%in terms of mIoU on GDXray,SIXray,and Compass-XP,respectively.Furthermore,the limitations of the proposed system in extracting precise region segments in intricate noisy settings and potential strategies for overcoming them through post-processing techniques were explored(source code will be available at https://github.com/Divs1159/CNN_BLS.)展开更多
Scalability and information personal privacy are vital for training and deploying large-scale deep learning models.Federated learning trains models on exclusive information by aggregating weights from various devices ...Scalability and information personal privacy are vital for training and deploying large-scale deep learning models.Federated learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web browsers.Nevertheless,relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client numbers.Additionally,information relating to the training dataset can possibly be extracted from the distributed weights,potentially reducing the privacy of the local data used for training.In this research paper,we aim to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training models.As a result,we propose a web-federated learning exchange(WebFLex)framework,which intends to improve the decentralization of the federated learning process.WebFLex is additionally developed to secure distributed and scalable federated learning systems that operate in web browsers across heterogeneous devices.Furthermore,WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-time communication(WebRTC),efficiently preventing the need for a main central server.WebFLex has actually been measured in various setups using the MNIST dataset.Experimental results show WebFLex’s ability to improve the scalability of federated learning systems,allowing a smooth increase in the number of participating devices without central data aggregation.In addition,WebFLex can maintain a durable federated learning procedure even when faced with device disconnections and network variability.Additionally,it improves data privacy by utilizing artificial noise,which accomplishes an appropriate balance between accuracy and privacy preservation.展开更多
Numerous healthcare procedures can be viewed as medical sector decisions.In the modern era,computers have become indispensable in the realm of medical decision‐making.How-ever,the common view of computers in the medi...Numerous healthcare procedures can be viewed as medical sector decisions.In the modern era,computers have become indispensable in the realm of medical decision‐making.How-ever,the common view of computers in the medical field typically extends only to applications that support doctors in diagnosing diseases.To more tightly intertwine computers with the biomedical sciences,professionals are now more frequently utilising knowledge‐driven deep learning systems(KDLS)and their foundational technologies,especially in the domain of neuroimaging(NI).展开更多
AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes o...AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study.The severity of DR patients was graded as mild,moderate and severe non-proliferative diabetic retinopathy(NPDR)according to the international clinical diabetic retinopathy(ICDR)disease severity scale classification,and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods.The presence of DME was determined by optical coherence tomography(OCT),and differences in vascular morphological characteristics were compared between patients with and without DME.RESULTS:Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99%and a Dice metric of 0.76.Compared with the healthy group,the DR group had smaller vessel angles(33.68±3.01 vs 37.78±1.60),smaller fractal dimension(Df)values(1.33±0.05 vs 1.41±0.03),less vessel density(1.12±0.44 vs 2.09±0.36)and fewer vascular branches(206.1±88.8 vs 396.5±91.3),all P<0.001.As the severity of DR increased,Df values decreased,P=0.031.No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics.CONCLUSION:In this study,an artificial intelligence retinal vessel segmentation system is used with 99%accuracy,thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology.DR patients have a tendency of vascular occlusion and dropout.The presence of DME does not compromise the integral retinal vascular pattern.展开更多
In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,...In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,which has led to the exploration of blockchain technology.Blockchain leverages its transparency and immutability to record the provenance and reliability of training data.However,storing massive datasets or implementing model evaluation processes on smart contracts incurs high computational costs.Additionally,current research on preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited by workers who contribute incorrect or misleading data.However,less attention has been paid to the scenario where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage.This paper proposes a transparent and accountable training data sharing method that securely shares data among potentially malicious system participants.First,we introduce a blockchain-based DML system architecture that supports secure training data sharing through the IPFS network.Second,we design a blockchain smart contract to transparently split training datasets into training and test datasets,respectively,without involving system participants.Under the system,transparent and accountable training data sharing can be achieved with attribute-based proxy re-encryption.We demonstrate the security analysis for the system,and conduct experiments on the Ethereum and IPFS platforms to show the feasibility and practicality of the system.展开更多
Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system management.However, due to the model's inherent uncertainty...Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system management.However, due to the model's inherent uncertainty, rigorous validation is requisite for its application in real-world tasks. Specific tests may reveal inadequacies in the performance of pre-trained DRL models, while the “black-box” nature of DRL poses a challenge for testing model behavior. We propose a novel performance improvement framework based on probabilistic automata,which aims to proactively identify and correct critical vulnerabilities of DRL systems, so that the performance of DRL models in real tasks can be improved with minimal model modifications.First, a probabilistic automaton is constructed from the historical trajectory of the DRL system by abstracting the state to generate probabilistic decision-making units(PDMUs), and a reverse breadth-first search(BFS) method is used to identify the key PDMU-action pairs that have the greatest impact on adverse outcomes. This process relies only on the state-action sequence and final result of each trajectory. Then, under the key PDMU, we search for the new action that has the greatest impact on favorable results. Finally, the key PDMU, undesirable action and new action are encapsulated as monitors to guide the DRL system to obtain more favorable results through real-time monitoring and correction mechanisms. Evaluations in two standard reinforcement learning environments and three actual job scheduling scenarios confirmed the effectiveness of the method, providing certain guarantees for the deployment of DRL models in real-world applications.展开更多
Deep learning has recently become a viable approach for classifying Alzheimer's disease(AD)in medical imaging.However,existing models struggle to efficiently extract features from medical images and may squander a...Deep learning has recently become a viable approach for classifying Alzheimer's disease(AD)in medical imaging.However,existing models struggle to efficiently extract features from medical images and may squander additional information resources for illness classification.To address these issues,a deep three‐dimensional convolutional neural network incorporating multi‐task learning and attention mechanisms is proposed.An upgraded primary C3D network is utilised to create rougher low‐level feature maps.It introduces a new convolution block that focuses on the structural aspects of the magnetORCID:ic resonance imaging image and another block that extracts attention weights unique to certain pixel positions in the feature map and multiplies them with the feature map output.Then,several fully connected layers are used to achieve multi‐task learning,generating three outputs,including the primary classification task.The other two outputs employ backpropagation during training to improve the primary classification job.Experimental findings show that the authors’proposed method outperforms current approaches for classifying AD,achieving enhanced classification accuracy and other in-dicators on the Alzheimer's disease Neuroimaging Initiative dataset.The authors demonstrate promise for future disease classification studies.展开更多
In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averagi...In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averaging during global update and model training, where data is unevenly distributed among devices and there are variations in the number of data samples. Using a well-defined structure and updating the vector positions by local searching, vector combining, and updating rules, the EINFO algorithm maximizes the shared model parameters. In order to increase the exploration and exploitation capabilities, the model convergence rate is improved and new vectors are generated through the use of a weighted mean vector based on the inverse square law. To choose validators, miners, and to propagate new blocks, a delegated proof of stake based on the reliability of blockchain nodes is suggested. Federated learning is included into the blockchain to protect nodes from both external and internal threats. To determine how well the suggested system performs in relation to current models in the literature, extensive simulations are run. The simulation results show that the proposed system outperforms existing schemes in terms of accuracy, sensitivity and specificity.展开更多
In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the d...In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics.展开更多
Commodity markets,such as crude oil and precious metals,play a strategic role in the economic development of nations,with crude oil prices influencing geopolitical relations and the global economy.Moreover,gold and si...Commodity markets,such as crude oil and precious metals,play a strategic role in the economic development of nations,with crude oil prices influencing geopolitical relations and the global economy.Moreover,gold and silver are argued to hedge the stock and cryptocurrency markets during market downsides.Therefore,accurate forecasting of crude oil and precious metals prices is critical.Nevertheless,due to the nonlinear nature,substantial fluctuations,and irregular cycles of crude oil and precious metals,predicting their prices is a challenging task.Our study contributes to the commodity market price forecasting literature by implementing and comparing advanced deep-learning models.We address this gap by including silver alongside gold in our analysis,offering a more comprehensive understanding of the precious metal markets.This research expands existing knowledge and provides valuable insights into predicting commodity prices.In this study,we implemented 16 deep-and machine-learning models to forecast the daily price of the West Texas Intermediate(WTI),Brent,gold,and silver markets.The employed deep-learning models are long short-term memory(LSTM),BiLSTM,gated recurrent unit(GRU),bidirectional gated recurrent units(BiGRU),T2V-BiLSTM,T2V-BiGRU,convolutional neural networks(CNN),CNN-BiLSTM,CNN-BiGRU,temporal convolutional network(TCN),TCN-BiLSTM,and TCN-BiGRU.We compared the forecasting performance of deep-learning models with the baseline random forest,LightGBM,support vector regression,and k-nearest neighborhood models using mean absolute error(MAE),mean absolute percentage error,and root mean squared error as evaluation criteria.By considering different sliding window lengths,we examine the forecasting performance of our models.Our results reveal that the TCN model outperforms the others for WTI,Brent,and silver,achieving the lowest MAE values of 1.444,1.295,and 0.346,respectively.The BiGRU model performs best for gold,with an MAE of 15.188 using a 30-day input sequence.Furthermore,LightGBM exhibits comparable performance to TCN and is the best-performing machine-learning model overall.These findings are critical for investors,policymakers,mining companies,and governmental agencies to effectively anticipate market trends,mitigate risk,manage uncertainty,and make timely decisions and strategies regarding crude oil,gold,and silver markets.展开更多
E-learning produces the data on the learners’utilization of the software,which helps the teacher to perceive the learners’mental status and learning efficiency,so it is of great value to make full use of the data.Wi...E-learning produces the data on the learners’utilization of the software,which helps the teacher to perceive the learners’mental status and learning efficiency,so it is of great value to make full use of the data.With Speexx foreign language learning system being the case,this thesis introduces the function of such data and the modes of how to use them to facilitate the blendedteaching and learning.展开更多
This paper described a distance learning system, which allows Internet users to conduct a lesson in real time from any kinds attached computers. Participants can jointly view and edit relevant multimedia informatio...This paper described a distance learning system, which allows Internet users to conduct a lesson in real time from any kinds attached computers. Participants can jointly view and edit relevant multimedia information distributed through Internet. Teachers and students can also simultaneously communicate by voice and text to discuss the problems. Teacher can broadcast streaming PowerPoint presentation in real time to network users. In addition to sliders, presenters can broadcast video and audio simultaneously to deliver a live multimedia show online, and store their presentations for on demand playback. Teachers distributed in different places can also use cooperative editing tool to edit and encode existing digital content. We discussed some important design principles of the system. Then, the system configuration and the results of evaluation are also presented. The system has proved to be applicable to the distance learning based on CSCW (Computer Support Cooperative Work) in Internet.展开更多
As one important type of post-translational modifications(PTMs),protein lysine succinylation regulates many important biological processes.It is also closely involved with some major diseases in the aspects of Cardiom...As one important type of post-translational modifications(PTMs),protein lysine succinylation regulates many important biological processes.It is also closely involved with some major diseases in the aspects of Cardiometabolic,liver metabolic,nervous system and so on.Therefore,it is imperative to predict the succinylation sites in proteins for both basic research and drug development.In this paper,a novel predictor called i Succ Lys-BLS was proposed by not only introducing a new machine learning algorithm—Broad Learning System,but also optimizing the imbalanced data by randomly labeling samples.Rigorous cross-validation and independent test indicate that the success rate of i Succ Lys-BLS for positive samples is overwhelmingly higher than its counterparts.展开更多
Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occ...Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios.展开更多
基金supported in part by the National Key Research and Development Project under Grant 2020YFB1806805partially funded through a grant from Qualcomm。
文摘6G is desired to support more intelligence networks and this trend attaches importance to the self-healing capability if degradation emerges in the cellular networks.As a primary component of selfhealing networks,fault detection is investigated in this paper.Considering the fast response and low timeand-computational consumption,it is the first time that the Online Broad Learning System(OBLS)is applied to identify outages in cellular networks.In addition,the Automatic-constructed Online Broad Learning System(AOBLS)is put forward to rationalize its structure and consequently avoid over-fitting and under-fitting.Furthermore,a multi-layer classification structure is proposed to further improve the classification performance.To face the challenges caused by imbalanced data in fault detection problems,a novel weighting strategy is derived to achieve the Multilayer Automatic-constructed Weighted Online Broad Learning System(MAWOBLS)and ensemble learning with retrained Support Vector Machine(SVM),denoted as EMAWOBLS,for superior treatment with this imbalance issue.Simulation results show that the proposed algorithm has excellent performance in detecting faults with satisfactory time usage.
文摘With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathematics)education,AI demonstrates significant advantages through adaptive learning pathways,instant feedback,and individualized resource allocation.However,current research predominantly focuses on the technical architecture and application effectiveness of such systems,with insufficient exploration of how AI-enabled personalized learning systems influence university students’learning motivation and academic achievement through educational psychological mechanisms.This paper adopts an educational psychology perspective to construct a causal mechanism model linking“learning motivation-learning behavior-academic achievement.”Findings indicate that AI-powered personalized learning systems enhance learning autonomy,boost self-efficacy,and optimize feedback mechanisms.These effects collectively stimulate university students’learning motivation in STEM disciplines,thereby promoting academic achievement.Building upon empirical research,this paper proposes implications for educational practice and policy formulation,emphasizing the necessity of advancing higher education reform through the dual influence of technology and psychological mechanisms.
文摘Against the background of the continuous reform in medical education,biochemistry,as a fundamental medical course,maintains a close connection with clinical practice.However,under the traditional teaching model,the effectiveness of the“basic-clinical”connection is relatively poor,which hinders the improvement of educational outcomes.In the practical teaching of higher vocational medical education,the integration of the AI Case-Guided Learning System can enhance students’enthusiasm for knowledge exploration and effectively improve teaching quality.Starting from the perspective of the“basic-clinical”connection teaching in the biochemistry course,this paper analyzes the application value of the AI Case-Guided Learning System and proposes specific application strategies,aiming to accumulate experience for the innovation of biochemistry teaching.
文摘Distributed Federated Learning(DFL)technology enables participants to cooperatively train a shared model while preserving the privacy of their local datasets,making it a desirable solution for decentralized and privacy-preserving Web3 scenarios.However,DFL faces incentive and security challenges in the decentralized framework.To address these issues,this paper presents a Hierarchical Blockchain-enabled DFL(HBDFL)system,which provides a generic solution framework for the DFL-related applications.The proposed system consists of four major components,including a model contribution-based reward mechanism,a Proof of Elapsed Time and Accuracy(PoETA)consensus algorithm,a Distributed Reputation-based Verification Mechanism(DRTM)and an Accuracy-Dependent Throughput Management(ADTM)mechanism.The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets,while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput.The DRTM improves the system efficiency in consensus,and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy.The performance of the proposed HBDFL system is evaluated by numerical simulations,with the results showing that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.
基金supported in part by the National Social Science Foundation of China under Grant 20BTQ058in part by the Natural Science Foundation of Hunan Province under Grant 2023JJ50033.
文摘Large-scale neural networks-based federated learning(FL)has gained public recognition for its effective capabilities in distributed training.Nonetheless,the open system architecture inherent to federated learning systems raises concerns regarding their vulnerability to potential attacks.Poisoning attacks turn into a major menace to federated learning on account of their concealed property and potent destructive force.By altering the local model during routine machine learning training,attackers can easily contaminate the global model.Traditional detection and aggregation solutions mitigate certain threats,but they are still insufficient to completely eliminate the influence generated by attackers.Therefore,federated unlearning that can remove unreliable models while maintaining the accuracy of the global model has become a solution.Unfortunately some existing federated unlearning approaches are rather difficult to be applied in large neural network models because of their high computational expenses.Hence,we propose SlideFU,an efficient anti-poisoning attack federated unlearning framework.The primary concept of SlideFU is to employ sliding window to construct the training process,where all operations are confined within the window.We design a malicious detection scheme based on principal component analysis(PCA),which calculates the trust factors between compressed models in a low-cost way to eliminate unreliable models.After confirming that the global model is under attack,the system activates the federated unlearning process,calibrates the gradients based on the updated direction of the calibration gradients.Experiments on two public datasets demonstrate that our scheme can recover a robust model with extremely high efficiency.
基金supported in part by the National Key R&D Program of China (2023YFA1011601)the Major Key Project of PCL, China (PCL2023AS7-1)+3 种基金in part by the National Natural Science Foundation of China (U21A20478, 62106224, 92267203)in part by the Science and Technology Major Project of Guangzhou (202007030006)in part by the Major Key Project of PCL (PCL2021A09)in part by the Guangzhou Science and Technology Plan Project (2024A04J3749)。
文摘Multi-label classification is a challenging problem that has attracted significant attention from researchers, particularly in the domain of image and text attribute annotation. However, multi-label datasets are prone to serious intra-class and inter-class imbalance problems, which can significantly degrade the classification performance. To address the above issues, we propose the multi-label weighted broad learning system(MLW-BLS) from the perspective of label imbalance weighting and label correlation mining. Further, we propose the multi-label adaptive weighted broad learning system(MLAW-BLS) to adaptively adjust the specific weights and values of labels of MLW-BLS and construct an efficient imbalanced classifier set. Extensive experiments are conducted on various datasets to evaluate the effectiveness of the proposed model, and the results demonstrate its superiority over other advanced approaches.
基金supported by research funds from Khalifa University,No.CIRA-2021-052the Advanced Technology Research Center Program(ASPIRE),No.AARE20-279.
文摘With the exponential rise in global air traffic,ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation security.Although X-ray baggage monitoring is now standard,manual screening has several limitations,including the propensity for errors,and raises concerns about passenger privacy.To address these drawbacks,researchers have leveraged recent advances in deep learning to design threatsegmentation frameworks.However,these models require extensive training data and labour-intensive dense pixelwise annotations and are finetuned separately for each dataset to account for inter-dataset discrepancies.Hence,this study proposes a semi-supervised contour-driven broad learning system(BLS)for X-ray baggage security threat instance segmentation referred to as C-BLX.The research methodology involved enhancing representation learning and achieving faster training capability to tackle severe occlusion and class imbalance using a single training routine with limited baggage scans.The proposed framework was trained with minimal supervision using resource-efficient image-level labels to localize illegal items in multi-vendor baggage scans.More specifically,the framework generated candidate region segments from the input X-ray scans based on local intensity transition cues,effectively identifying concealed prohibited items without entire baggage scans.The multi-convolutional BLS exploits the rich complementary features extracted from these region segments to predict object categories,including threat and benign classes.The contours corresponding to the region segments predicted as threats were then utilized to yield the segmentation results.The proposed C-BLX system was thoroughly evaluated on three highly imbalanced public datasets and surpassed other competitive approaches in baggage-threat segmentation,yielding 90.04%,78.92%,and 59.44%in terms of mIoU on GDXray,SIXray,and Compass-XP,respectively.Furthermore,the limitations of the proposed system in extracting precise region segments in intricate noisy settings and potential strategies for overcoming them through post-processing techniques were explored(source code will be available at https://github.com/Divs1159/CNN_BLS.)
基金This work has been funded by King Saud University,Riyadh,Saudi Arabia,through Researchers Supporting Project Number(RSPD2024R857).
文摘Scalability and information personal privacy are vital for training and deploying large-scale deep learning models.Federated learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web browsers.Nevertheless,relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client numbers.Additionally,information relating to the training dataset can possibly be extracted from the distributed weights,potentially reducing the privacy of the local data used for training.In this research paper,we aim to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training models.As a result,we propose a web-federated learning exchange(WebFLex)framework,which intends to improve the decentralization of the federated learning process.WebFLex is additionally developed to secure distributed and scalable federated learning systems that operate in web browsers across heterogeneous devices.Furthermore,WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-time communication(WebRTC),efficiently preventing the need for a main central server.WebFLex has actually been measured in various setups using the MNIST dataset.Experimental results show WebFLex’s ability to improve the scalability of federated learning systems,allowing a smooth increase in the number of participating devices without central data aggregation.In addition,WebFLex can maintain a durable federated learning procedure even when faced with device disconnections and network variability.Additionally,it improves data privacy by utilizing artificial noise,which accomplishes an appropriate balance between accuracy and privacy preservation.
文摘Numerous healthcare procedures can be viewed as medical sector decisions.In the modern era,computers have become indispensable in the realm of medical decision‐making.How-ever,the common view of computers in the medical field typically extends only to applications that support doctors in diagnosing diseases.To more tightly intertwine computers with the biomedical sciences,professionals are now more frequently utilising knowledge‐driven deep learning systems(KDLS)and their foundational technologies,especially in the domain of neuroimaging(NI).
基金Supported by Zhejiang Medical Health Science and Technology Project(No.2023KY490).
文摘AIM:To investigate the morphological characteristics of retinal vessels in patients with different severity of diabetic retinopathy(DR)and in patients with or without diabetic macular edema(DME).METHODS:The 239 eyes of DR patients and 100 eyes of healthy individuals were recruited for the study.The severity of DR patients was graded as mild,moderate and severe non-proliferative diabetic retinopathy(NPDR)according to the international clinical diabetic retinopathy(ICDR)disease severity scale classification,and retinal vascular morphology was quantitatively analyzed in ultra-wide field images using RU-net and transfer learning methods.The presence of DME was determined by optical coherence tomography(OCT),and differences in vascular morphological characteristics were compared between patients with and without DME.RESULTS:Retinal vessel segmentation using RU-net and transfer learning system had an accuracy of 99%and a Dice metric of 0.76.Compared with the healthy group,the DR group had smaller vessel angles(33.68±3.01 vs 37.78±1.60),smaller fractal dimension(Df)values(1.33±0.05 vs 1.41±0.03),less vessel density(1.12±0.44 vs 2.09±0.36)and fewer vascular branches(206.1±88.8 vs 396.5±91.3),all P<0.001.As the severity of DR increased,Df values decreased,P=0.031.No significant difference between the DME and non-DME groups were observed in vascular morphological characteristics.CONCLUSION:In this study,an artificial intelligence retinal vessel segmentation system is used with 99%accuracy,thus providing with relatively satisfactory performance in the evaluation of quantitative vascular morphology.DR patients have a tendency of vascular occlusion and dropout.The presence of DME does not compromise the integral retinal vascular pattern.
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the Special R&D Zone Development Project(R&D)—Development of R&D Innovation Valley support program(2023-DD-RD-0152)supervised by the Innovation Foundation.It was also partially supported by the Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2024-2020-0-01797)supervised by the Institute for Information&Communications Technology Planning&Evaluation(IITP).
文摘In Decentralized Machine Learning(DML)systems,system participants contribute their resources to assist others in developing machine learning solutions.Identifying malicious contributions in DML systems is challenging,which has led to the exploration of blockchain technology.Blockchain leverages its transparency and immutability to record the provenance and reliability of training data.However,storing massive datasets or implementing model evaluation processes on smart contracts incurs high computational costs.Additionally,current research on preventing malicious contributions in DML systems primarily focuses on protecting models from being exploited by workers who contribute incorrect or misleading data.However,less attention has been paid to the scenario where malicious requesters intentionally manipulate test data during evaluation to gain an unfair advantage.This paper proposes a transparent and accountable training data sharing method that securely shares data among potentially malicious system participants.First,we introduce a blockchain-based DML system architecture that supports secure training data sharing through the IPFS network.Second,we design a blockchain smart contract to transparently split training datasets into training and test datasets,respectively,without involving system participants.Under the system,transparent and accountable training data sharing can be achieved with attribute-based proxy re-encryption.We demonstrate the security analysis for the system,and conduct experiments on the Ethereum and IPFS platforms to show the feasibility and practicality of the system.
基金supported by the Shanghai Science and Technology Committee (22511105500)the National Nature Science Foundation of China (62172299, 62032019)+2 种基金the Space Optoelectronic Measurement and Perception LaboratoryBeijing Institute of Control Engineering(LabSOMP-2023-03)the Central Universities of China (2023-4-YB-05)。
文摘Deep reinforcement learning(DRL) has demonstrated significant potential in industrial manufacturing domains such as workshop scheduling and energy system management.However, due to the model's inherent uncertainty, rigorous validation is requisite for its application in real-world tasks. Specific tests may reveal inadequacies in the performance of pre-trained DRL models, while the “black-box” nature of DRL poses a challenge for testing model behavior. We propose a novel performance improvement framework based on probabilistic automata,which aims to proactively identify and correct critical vulnerabilities of DRL systems, so that the performance of DRL models in real tasks can be improved with minimal model modifications.First, a probabilistic automaton is constructed from the historical trajectory of the DRL system by abstracting the state to generate probabilistic decision-making units(PDMUs), and a reverse breadth-first search(BFS) method is used to identify the key PDMU-action pairs that have the greatest impact on adverse outcomes. This process relies only on the state-action sequence and final result of each trajectory. Then, under the key PDMU, we search for the new action that has the greatest impact on favorable results. Finally, the key PDMU, undesirable action and new action are encapsulated as monitors to guide the DRL system to obtain more favorable results through real-time monitoring and correction mechanisms. Evaluations in two standard reinforcement learning environments and three actual job scheduling scenarios confirmed the effectiveness of the method, providing certain guarantees for the deployment of DRL models in real-world applications.
基金the Deanship of Scientific Research at King Khalid University for funding this work through General Research Project under grant number(GRP/75/44).
文摘Deep learning has recently become a viable approach for classifying Alzheimer's disease(AD)in medical imaging.However,existing models struggle to efficiently extract features from medical images and may squander additional information resources for illness classification.To address these issues,a deep three‐dimensional convolutional neural network incorporating multi‐task learning and attention mechanisms is proposed.An upgraded primary C3D network is utilised to create rougher low‐level feature maps.It introduces a new convolution block that focuses on the structural aspects of the magnetORCID:ic resonance imaging image and another block that extracts attention weights unique to certain pixel positions in the feature map and multiplies them with the feature map output.Then,several fully connected layers are used to achieve multi‐task learning,generating three outputs,including the primary classification task.The other two outputs employ backpropagation during training to improve the primary classification job.Experimental findings show that the authors’proposed method outperforms current approaches for classifying AD,achieving enhanced classification accuracy and other in-dicators on the Alzheimer's disease Neuroimaging Initiative dataset.The authors demonstrate promise for future disease classification studies.
文摘In this study, a blockchain based federated learning system using an enhanced weighted mean vector optimization algorithm, known as EINFO, is proposed. The proposed EINFO addresses the limitations of federated averaging during global update and model training, where data is unevenly distributed among devices and there are variations in the number of data samples. Using a well-defined structure and updating the vector positions by local searching, vector combining, and updating rules, the EINFO algorithm maximizes the shared model parameters. In order to increase the exploration and exploitation capabilities, the model convergence rate is improved and new vectors are generated through the use of a weighted mean vector based on the inverse square law. To choose validators, miners, and to propagate new blocks, a delegated proof of stake based on the reliability of blockchain nodes is suggested. Federated learning is included into the blockchain to protect nodes from both external and internal threats. To determine how well the suggested system performs in relation to current models in the literature, extensive simulations are run. The simulation results show that the proposed system outperforms existing schemes in terms of accuracy, sensitivity and specificity.
文摘In order to break through the limitations of traditional teaching,realize the integration of online and offline teaching,and optimize the intelligent learning experience of university physics,this paper proposes the design of an intelligent learning system for university physics based on cloud computing platforms,and applies this system to teaching environment of university physics.It successfully integrates emerging technologies such as cloud computing,machine learning,and situational awareness,integrates learning context awareness,intelligent recording and broadcasting,resource sharing,learning performance prediction,and content planning and recommendation,and comprehensively improves the quality of university physics teaching.It can optimize the teaching process and deepen intelligent teaching reform,aiming at providing references for the teaching practice of university physics.
文摘Commodity markets,such as crude oil and precious metals,play a strategic role in the economic development of nations,with crude oil prices influencing geopolitical relations and the global economy.Moreover,gold and silver are argued to hedge the stock and cryptocurrency markets during market downsides.Therefore,accurate forecasting of crude oil and precious metals prices is critical.Nevertheless,due to the nonlinear nature,substantial fluctuations,and irregular cycles of crude oil and precious metals,predicting their prices is a challenging task.Our study contributes to the commodity market price forecasting literature by implementing and comparing advanced deep-learning models.We address this gap by including silver alongside gold in our analysis,offering a more comprehensive understanding of the precious metal markets.This research expands existing knowledge and provides valuable insights into predicting commodity prices.In this study,we implemented 16 deep-and machine-learning models to forecast the daily price of the West Texas Intermediate(WTI),Brent,gold,and silver markets.The employed deep-learning models are long short-term memory(LSTM),BiLSTM,gated recurrent unit(GRU),bidirectional gated recurrent units(BiGRU),T2V-BiLSTM,T2V-BiGRU,convolutional neural networks(CNN),CNN-BiLSTM,CNN-BiGRU,temporal convolutional network(TCN),TCN-BiLSTM,and TCN-BiGRU.We compared the forecasting performance of deep-learning models with the baseline random forest,LightGBM,support vector regression,and k-nearest neighborhood models using mean absolute error(MAE),mean absolute percentage error,and root mean squared error as evaluation criteria.By considering different sliding window lengths,we examine the forecasting performance of our models.Our results reveal that the TCN model outperforms the others for WTI,Brent,and silver,achieving the lowest MAE values of 1.444,1.295,and 0.346,respectively.The BiGRU model performs best for gold,with an MAE of 15.188 using a 30-day input sequence.Furthermore,LightGBM exhibits comparable performance to TCN and is the best-performing machine-learning model overall.These findings are critical for investors,policymakers,mining companies,and governmental agencies to effectively anticipate market trends,mitigate risk,manage uncertainty,and make timely decisions and strategies regarding crude oil,gold,and silver markets.
文摘E-learning produces the data on the learners’utilization of the software,which helps the teacher to perceive the learners’mental status and learning efficiency,so it is of great value to make full use of the data.With Speexx foreign language learning system being the case,this thesis introduces the function of such data and the modes of how to use them to facilitate the blendedteaching and learning.
基金Supported by Innovation Fund of China(0 0 C2 6 2 2 42 10 6 41)
文摘This paper described a distance learning system, which allows Internet users to conduct a lesson in real time from any kinds attached computers. Participants can jointly view and edit relevant multimedia information distributed through Internet. Teachers and students can also simultaneously communicate by voice and text to discuss the problems. Teacher can broadcast streaming PowerPoint presentation in real time to network users. In addition to sliders, presenters can broadcast video and audio simultaneously to deliver a live multimedia show online, and store their presentations for on demand playback. Teachers distributed in different places can also use cooperative editing tool to edit and encode existing digital content. We discussed some important design principles of the system. Then, the system configuration and the results of evaluation are also presented. The system has proved to be applicable to the distance learning based on CSCW (Computer Support Cooperative Work) in Internet.
基金the National Natural Science Foundation of China(61761023,31760315)the Natural Science Foundation of Jiangxi Province,China(20202BABL202004,20202BAB202007)the Scientific Research Plan of the Department of Education of Jiangxi Province(GJJ190695)。
文摘As one important type of post-translational modifications(PTMs),protein lysine succinylation regulates many important biological processes.It is also closely involved with some major diseases in the aspects of Cardiometabolic,liver metabolic,nervous system and so on.Therefore,it is imperative to predict the succinylation sites in proteins for both basic research and drug development.In this paper,a novel predictor called i Succ Lys-BLS was proposed by not only introducing a new machine learning algorithm—Broad Learning System,but also optimizing the imbalanced data by randomly labeling samples.Rigorous cross-validation and independent test indicate that the success rate of i Succ Lys-BLS for positive samples is overwhelmingly higher than its counterparts.
基金supported in part by the National Natural Science Foundation of China(under Grant Nos.51939001,61976033,U1813203,61803064,and 61751202)Natural Foundation Guidance Plan Project of Liaoning(2019‐ZD‐0151)+2 种基金Science&Technology Innovation Funds of Dalian(under Grant No.2018J11CY022)Fundamental Research Funds for the Central Universities(under Grant No.3132019345)Dalian High‐level Talents Innovation Support Program(Young Sci-ence and Technology Star Project)(under Grant No.2021RQ067).
文摘Target tracking has a wide range of applications in intelligent transportation,real‐time monitoring,human‐computer interaction and other aspects.However,in the tracking process,the target is prone to deformation,occlusion,loss,scale variation,background clutter,illumination variation,etc.,which bring great challenges to realize accurate and real‐time tracking.Tracking based on Siamese networks promotes the application of deep learning in the field of target tracking,ensuring both accuracy and real‐time performance.However,due to its offline training,it is difficult to deal with the fast motion,serious occlusion,loss and deformation of the target during tracking.Therefore,it is very helpful to improve the performance of the Siamese networks by learning new features of the target quickly and updating the target position in time online.The broad learning system(BLS)has a simple network structure,high learning efficiency,and strong feature learning ability.Aiming at the problems of Siamese networks and the characteristics of BLS,a target tracking method based on BLS is proposed.The method combines offline training with fast online learning of new features,which not only adopts the powerful feature representation ability of deep learning,but also skillfully uses the BLS for re‐learning and re‐detection.The broad re‐learning information is used for re‐detection when the target tracking appears serious occlusion and so on,so as to change the selection of the Siamese networks search area,solve the problem that the search range cannot meet the fast motion of the target,and improve the adaptability.Experimental results show that the proposed method achieves good results on three challenging datasets and improves the performance of the basic algorithm in difficult scenarios.