期刊文献+
共找到83篇文章
< 1 2 5 >
每页显示 20 50 100
The Acoustic Attenuation Prediction for Seafloor Sediment Based on in-situ Data and Machine Learning Methods
1
作者 WANG Jingqiang HOU Zhengyu +6 位作者 CHEN Yinglin LI Guanbao KAN Guangming XIAO Peng LI Zhenglin MO Dinghao HUANG Jingyi 《Journal of Ocean University of China》 2025年第1期95-102,共8页
Accurate acquisition and prediction of acoustic parameters of seabed sediments are crucial in marine sound propagation research.While the relationship between sound velocity and physical properties of sediment has bee... Accurate acquisition and prediction of acoustic parameters of seabed sediments are crucial in marine sound propagation research.While the relationship between sound velocity and physical properties of sediment has been extensively studied,there is still no consensus on the correlation between acoustic attenuation coefficient and sediment physical properties.Predicting the acoustic attenuation coefficient remains a challenging issue in sedimentary acoustic research.In this study,we propose a prediction method for the acoustic attenuation coefficient using machine learning algorithms,specifically the random forest(RF),support vector machine(SVR),and convolutional neural network(CNN)algorithms.We utilized the acoustic attenuation coefficient and sediment particle size data from 52 stations as training parameters,with the particle size parameters as the input feature matrix,and measured acoustic attenuation as the training label to validate the attenuation prediction model.Our results indicate that the error of the attenuation prediction model is small.Among the three models,the RF model exhibited the lowest prediction error,with a mean squared error of 0.8232,mean absolute error of 0.6613,and root mean squared error of 0.9073.Additionally,when we applied the models to predict the data collected at different times in the same region,we found that the models developed in this study also demonstrated a certain level of reliability in real prediction scenarios.Our approach demonstrates that constructing a sediment acoustic characteristics model based on machine learning is feasible to a certain extent and offers a novel perspective for studying sediment acoustic properties. 展开更多
关键词 in-situ measurement ATTENUATION seafloor sediment machine learning methods
在线阅读 下载PDF
Design of N-11-Azaartemisinins Potentially Active against Plasmodium falciparum by Combined Molecular Electrostatic Potential, Ligand-Receptor Interaction and Models Built with Supervised Machine Learning Methods
2
作者 Jeferson Stiver Oliveira de Castro José Ciríaco Pinheiro +5 位作者 Sílvia Simone dos Santos de Morais Heriberto Rodrigues Bitencourt Antonio Florêncio de Figueiredo Marcos Antonio Barros dos Santos Fábio dos Santos Gil Ana Cecília Barbosa Pinheiro 《Journal of Biophysical Chemistry》 CAS 2023年第1期1-29,共29页
N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning m... N-11-azaartemisinins potentially active against Plasmodium falciparum are designed by combining molecular electrostatic potential (MEP), ligand-receptor interaction, and models built with supervised machine learning methods (PCA, HCA, KNN, SIMCA, and SDA). The optimization of molecular structures was performed using the B3LYP/6-31G* approach. MEP maps and ligand-receptor interactions were used to investigate key structural features required for biological activities and likely interactions between N-11-azaartemisinins and heme, respectively. The supervised machine learning methods allowed the separation of the investigated compounds into two classes: cha and cla, with the properties ε<sub>LUMO+1</sub> (one level above lowest unoccupied molecular orbital energy), d(C<sub>6</sub>-C<sub>5</sub>) (distance between C<sub>6</sub> and C<sub>5</sub> atoms in ligands), and TSA (total surface area) responsible for the classification. The insights extracted from the investigation developed and the chemical intuition enabled the design of sixteen new N-11-azaartemisinins (prediction set), moreover, models built with supervised machine learning methods were applied to this prediction set. The result of this application showed twelve new promising N-11-azaartemisinins for synthesis and biological evaluation. 展开更多
关键词 Antimalarial Design MEP Ligand-Receptor Interaction Supervised Machine learning methods Models Built with Supervised Machine learning methods
在线阅读 下载PDF
The State-of-the-Art Review on Applications of Intrusive Sensing,Image Processing Techniques,and Machine Learning Methods in Pavement Monitoring and Analysis 被引量:23
3
作者 Yue Hou Qiuhan Li +5 位作者 Chen Zhang Guoyang Lu Zhoujing Ye Yihan Chen Linbing Wang Dandan Cao 《Engineering》 SCIE EI 2021年第6期845-856,共12页
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a... In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches. 展开更多
关键词 Pavement monitoring and analysis The state-of-the-art review Intrusive sensing Image processing techniques Machine learning methods
在线阅读 下载PDF
Vibration properties of Paulownia wood for Ruan sound quality using machine learning methods
4
作者 Yang Yang 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第5期216-222,共7页
As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan ba... As an important material for manufacturing resonant components of musical instruments,Paulownia has an important influence on the sound quality of Ruan.In this paper,a model for evaluating the sound quality of Ruan based on the vibration characteristics of wood is developed using machine learning methods.Generally,the selection of materials for Ruan manufacturing relies primarily on manually weighing,observing,striking,and listening by the instrument technician.Deficiencies in scientific theory have hindered the quality of the finished Ruan.In this study,nine Ruans were manufactured,and a prediction model of Ruan sound quality was proposed based on the raw material information of Ruans.Out of a total of 180 data sets,145 and 45 sets were chosen for training and validation,respec-tively.In this paper,typical correlation analysis was used to determine the correlation between two single indicators in two adjacent pairwise combinations of the measured objects in each stage of the production process in Ruan.The vibra-tion characteristics of the wood were tested,and a model for predicting the evaluation of Ruan’s acoustic qualities was developed by measuring the vibration characteristics of the resonating plate material.The acoustic quality of the Ruan sound board wood was evaluated and predicted using machine learning model generalized regression neural net-work.The results show that the prediction of Ruan sound quality can be achieved using Matlab simulation based on the vibration characteristics of the soundboard wood.When the model-predicted values were compared with the tradi-tional predicted results,it was found that the generalized regression neural network had good performance,achieving an accuracy of 93.8%which was highly consistent with the experimental results.It was concluded that the model can accurately predict the acoustic quality of the Ruan based on the vibration performance of the soundboards. 展开更多
关键词 Sound quality Wood vibration performance Paulownia wood Machine learning methods
在线阅读 下载PDF
Case Study of a Chinese Girl's English Learning Methods in the American Elementary School
5
作者 杨丽 《海外英语》 2017年第6期239-240,共2页
The goal of this research is to explore a more successful method for Mainland Chinese students to learn English.This newmethod will be illustrated by using the experiences of my daughter while a student in an elementa... The goal of this research is to explore a more successful method for Mainland Chinese students to learn English.This newmethod will be illustrated by using the experiences of my daughter while a student in an elementary school in the United States for oneyear.From the analysis of her learning experiences,the following conclusions were drawn:1) Immerse language learning is important tolanguage input.2) Phonics is an effective tool to improve reading for Chinese English 展开更多
关键词 language input learning methods PHONICS case study
在线阅读 下载PDF
Learning Methods of Practical English
6
作者 LI Jinyang 《外文科技期刊数据库(文摘版)教育科学》 2021年第7期001-002,共3页
Under the background of increasingly fierce social competition, English is playing an increasingly important role as an important skill. Therefore, in the process of English practical learning, apart from a correct un... Under the background of increasingly fierce social competition, English is playing an increasingly important role as an important skill. Therefore, in the process of English practical learning, apart from a correct understanding of the value of English practical learning and a correct learning attitude, a good learning concept is established and certain learning methods are mastered. Practical English is an important learning course, which attracts more and more attention. How to study practical English well has become the first task. Learning methods are the main factors affecting learning quality. Only by correctly mastering the learning methods can we better master the practical knowledge and skills of English and conduct comprehensive exercises. This paper mainly analyses and discusses practical English learning methods. 展开更多
关键词 practical English learning method pre-class preview
在线阅读 下载PDF
A Fast Forward Prediction Framework for Energy Materials Design Based on Machine Learning Methods
7
作者 Xinhua Liu Kaiyi Yang +6 位作者 Lisheng Zhang Wentao Wang Sida Zhou Billy Wu Mengyu Xiong Shichun Yang Rui Tan 《Energy Material Advances》 CSCD 2024年第1期59-77,共19页
Energy materials play an important role in renewable and green energy technologies.The exploration of new materials,including nanomaterials,is important for breaking through the current bottlenecks of energy density a... Energy materials play an important role in renewable and green energy technologies.The exploration of new materials,including nanomaterials,is important for breaking through the current bottlenecks of energy density and charging rates.However,traditional theoretical computational methods face the dilemma of long research cycles.Machine learning methods have in recent years shown considerable potential for accelerating research efforts.However,most approaches are limited to specific properties of particular devices.In this paper,we propose a forward prediction and screening framework for functional materials,which includes database selection,attributes,descriptors,machine learning models,and prediction and screening.Based on the Materials Project database,auto-encoding methods are employed to generate Coulomb matrices as the input to train the convolutional neural networks,which finally screen 12 lithium-ion,6 zinc-ion,and 8 aluminum-ion battery cathode materials satisfying the criteria from 4,300 materials.The results show that the proposed framework can predict material performance well toward rapid initial screening.The proposed framework can provide a specific and complete working process reference for energy materials design work,contributing to the theoretical foundation for the design of core industrial software for materials engineering. 展开更多
关键词 learning methods machine learning energy materials theoretical computational methods breaking current bottlenecks fast forward prediction materials project energy materials design
原文传递
Evaluating Factors Affecting Flood Susceptibility in the Yangtze River Delta Using Machine Learning Methods
8
作者 Kaili Zhu Zhaoli Wang +3 位作者 Chengguang Lai Shanshan Li Zhaoyang Zeng Xiaohong Chen 《International Journal of Disaster Risk Science》 CSCD 2024年第5期738-753,共16页
Floods are widespread and dangerous natural hazards worldwide.It is essential to grasp the causes of floods to mitigate their severe effects on people and society.The key drivers of flood susceptibility in rapidly urb... Floods are widespread and dangerous natural hazards worldwide.It is essential to grasp the causes of floods to mitigate their severe effects on people and society.The key drivers of flood susceptibility in rapidly urbanizing areas can vary depending on the specific context and require further investigation.This research developed an index system comprising 10 indicators associated with factors and environments that lead to disasters,and used machine learning methods to assess flood susceptibility.The core urban area of the Yangtze River Delta served as a case study.Four scenarios depicting separate and combined effects of climate change and human activity were evaluated using data from various periods,to measure the spatial variability in flood susceptibility.The findings demonstrate that the extreme gradient boosting model outperformed the decision tree,support vector machine,and stacked models in evaluating flood susceptibility.Both climate change and human activity were found to act as catalysts for flooding in the region.Areas with increasing susceptibility were mainly distributed to the northwest and southeast of Taihu Lake.Areas with increased flood susceptibility caused by climate change were significantly larger than those caused by human activity,indicating that climate change was the dominant factor influencing flood susceptibility in the region.By comparing the relationship between the indicators and flood susceptibility,the rising intensity and frequency of extreme precipitation as well as an increase in impervious surface areas were identified as important reasons of heightened flood susceptibility in the Yangtze River Delta region.This study emphasized the significance of formulating adaptive strategies to enhance flood control capabilities to cope with the changing environment. 展开更多
关键词 Climate change Flood susceptibility Human activity Machine learning methods Yangtze River Delta core urban agglomeration
原文传递
Using deep learning to reduce nonlinearity effects in nearinfrared spectroscopy for accurate quantification of tobacco leaf pectin concentrations
9
作者 Wenhui Yang Limin Shao 《中国科学技术大学学报》 北大核心 2025年第6期57-66,56,I0002,共12页
In the near-infrared(NIR)spectroscopic data of complex sample systems,such as tobacco leaves,nonlinearity is fairly significant between the absorbance and concentration.This nonlinearity severely degrades the quantita... In the near-infrared(NIR)spectroscopic data of complex sample systems,such as tobacco leaves,nonlinearity is fairly significant between the absorbance and concentration.This nonlinearity severely degrades the quantitative results of traditional methods,such as partial least squares regression(PLS),which can be used to construct linear models.The problem was addressed in this study by using deep learning(DL).We employed three different DL models:a one-dimensional convolutional neural network(1D CNN),a deep neural network(DNN),and a stacked autoencoder with feedforward neural networks(SAE-FNNs).By carefully selecting and tuning the architectures and parameters of these models,we were able to find the most suitable model for dealing with such nonlinear relationships.Our experimental findings reveal that both the DNN and the SAE-FNN models excel in addressing the nonlinear issues of pectin concentration in tobacco,surpassing the performance of the classic linear model(PLS).Specifically,the DNN model stands out for its low average root mean squared error of prediction(RMSEP)value and small standard deviation(SD)of RMSEPs,leading to a tighter and more centered distribution of residuals in the prediction set.These DL models not only proficiently identify complex patterns within NIR data but also boast high prediction accuracy and fast implementation,demonstrating their effectiveness in analytical applications. 展开更多
关键词 quantitative regression NONLINEARITY deep learning methods near-infrared spectroscopy
在线阅读 下载PDF
Feedback on a shared big dataset for intelligent TBM PartⅠ:Feature extraction and machine learning methods 被引量:16
10
作者 Jian-Bin Li Zu-Yu Chen +10 位作者 Xu Li Liu-Jie Jing Yun-Pei Zhangf Hao-Han Xiao Shuang-Jing Wang Wen-Kun Yang Lei-Jie Wu Peng-Yu Li Hai-Bo Li Min Yao Li-Tao Fan 《Underground Space》 SCIE EI CSCD 2023年第4期1-25,共25页
This review summarizes the research outcomes and findings documented in 45 journal papers using a shared tunnel boring machine(TBM)dataset for performance prediction and boring efficiency optimization using machine le... This review summarizes the research outcomes and findings documented in 45 journal papers using a shared tunnel boring machine(TBM)dataset for performance prediction and boring efficiency optimization using machine learning methods.The big dataset was col-lected during the Yinsong water diversion project construction in China,covering the tunnel excavation of a 20 km-section with 199 items of monitoring metrics taken with an interval of one second.The research papers were the result of a call for contributions during a TBM machine learning contest in 2019 and covered a variety of topics related to the intelligent construction of TBM.This review com-prises two parts.Part I is concerned with the data processing,feature extraction,and machine learning methods applied by the contrib-utors.The review finds that the data-driven and knowledge-driven approaches in extracting important features applied by various authors are diversified,requiring further studies to achieve commonly accepted criteria.The techniques for cleaning and amending the raw data adopted by the contributors were summarized,indicating some highlights such as the importance of sufficiently high fre-quency of data acquisition(higher than 1 second),classification and standardization for the data preprocessing process,and the appro-priate selections of features in a boring cycle.The review finds that both supervised and unsupervised machine learning methods have been utilized by various researchers.The ensemble and deep learning methods have found wide applications.Part I highlights the impor-tant features of the individual methods applied by the contributors,including the structures of the algorithm,selection of hyperparam-eters,and model validation approaches. 展开更多
关键词 Big data Machine learning method TBM construction Data extraction Machine learning contest
在线阅读 下载PDF
Prediction of groundwater level in Indonesian tropical peatland forest plantations using machine learning
11
作者 Kazuo Yonekura Sota Miyazaki +3 位作者 Masaatsu Aichi Takafumi Nishizu Masao Hasegawa Katsuyuki Suzuki 《Artificial Intelligence in Geosciences》 2025年第2期177-183,共7页
Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neur... Maintaining high groundwater level(GWL)is important for preventing fires in peatlands.This study proposes GWL prediction using machine learning methods for forest plantations in Indonesian tropical peatlands.Deep neural networks(DNN)have been used for prediction;however,they have not been applied to groundwater prediction in Indonesian peatlands.Tropical peatland is characterized by high permeability and forest plantations are surrounded by several canals.By predicting daily differences in GWL,the GWL can be predicted with high accuracy.DNNs,random forests,support vector regression,and XGBoost were compared,all of which indicated similar errors.The SHAP value revealed that the precipitation falling on the hill rapidly seeps into the soil and flows into the canals,which agrees with the fact that the soil has high permeability.These findings can potentially be used to alleviate and manage future fires in peatlands. 展开更多
关键词 predicting daily differences gwlthe machine learning maintaining high groundwater groundwater prediction machine learning methods groundwater level prediction deep neural networks neural networks dnn
在线阅读 下载PDF
Predictive Modeling of Comorbid Anxiety in Young Hypertensive Patients Based on a Machine Learning Approach
12
作者 Haiyan Xiao Aide Fan +1 位作者 Zhiyong Liu Keping Yang 《Journal of Clinical and Nursing Research》 2025年第4期130-136,共7页
Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content... Objective:To analyze the risk factors of anxiety in young hypertensive patients and build a prediction model to provide a scientific basis for clinical diagnosis and treatment.Methods:According to the research content,young hypertensive patients admitted to the hospital from January 2022 to December 2024 were selected as the research object and at least 950 patients were included according to the sample size calculation.According to the existence of anxiety,950 patients were divided into control group(n=650)and observation group(n=300),and the clinical data of all patients were collected for univariate analysis and multivariate Logistic regression analysis to get the risk factors of hypertension patients complicated with anxiety in.All patients were randomly divided into a training set(n=665)and a test set(n=285)according to the ratio of 7:3,and the evaluation efficiency of different prediction models was obtained by using machine learning algorithm.To evaluate the clinical application effect of the prediction model.Results:(1)Univariate analysis showed that age,BMI,education background,marital status,smoking,drinking,sleep disorder,family history of hypertension,history of diabetes,history of hyperlipidemia,history of cerebral infarction,and TC were important risk factors for young hypertensive patients complicated with anxiety.(2)Multivariate Logistic regression analysis showed that hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors for young hypertensive patients complicated with anxiety.(3)Extra Trees has the highest predictive power for young people with hypertension complicated with anxiety,while Decision-Tree has the lowest predictive power.Conclusion:Hypertension history,drinking history,coronary heart disease history,diabetes history,BMI,TC,and TG are important independent risk factors that affect the anxiety of young hypertensive patients.Extra Trees model has the best prediction efficiency among different groups of models. 展开更多
关键词 Machine learning method Youth hypertension ANXIETY Prediction model
暂未订购
English Learning under the Context of Globalization
13
作者 杨柳枫 熊伟 《海外英语》 2021年第2期275-276,共2页
In contemporary,globalization is advancing at an unprecedented rate in multitude arenas.Globalization has brought us to contact with the culture,customs and thinking of countries around the world.English learning unde... In contemporary,globalization is advancing at an unprecedented rate in multitude arenas.Globalization has brought us to contact with the culture,customs and thinking of countries around the world.English learning under the context of globalization has been changed to some extent.Globalization is exuberant,specific learning instead of systematic learning is what is necessitated. 展开更多
关键词 GLOBALIZATION English learning learning methods
在线阅读 下载PDF
Survey on Deep Learning Approaches for Detection of Email Security Threat
14
作者 Mozamel M.Saeed Zaher Al Aghbari 《Computers, Materials & Continua》 SCIE EI 2023年第10期325-348,共24页
Emailing is among the cheapest and most easily accessible platforms,and covers every idea of the present century like banking,personal login database,academic information,invitation,marketing,advertisement,social engi... Emailing is among the cheapest and most easily accessible platforms,and covers every idea of the present century like banking,personal login database,academic information,invitation,marketing,advertisement,social engineering,model creation on cyber-based technologies,etc.The uncontrolled development and easy access to the internet are the reasons for the increased insecurity in email communication.Therefore,this review paper aims to investigate deep learning approaches for detecting the threats associated with e-mail security.This study compiles the literature related to the deep learning methodologies,which are applicable for providing safety in the field of cyber security of email in different organizations.Relevant data were extracted from different research depositories.The paper discusses various solutions for handling these threats.Different challenges and issues are also investigated for e-mail security threats including social engineering,malware,spam,and phishing in the existing solutions to identify the core current problem and set the road for future studies.The review analysis showed that communication media is the common platform for attackers to conduct fraudulent activities via spoofed e-mails and fake websites and this research has combined the merit and demerits of the deep learning approaches adaption in email security threat by the usage of models and technologies.The study highlighted the contrasts of deep learning approaches in detecting email security threats.This review study has set criteria to include studies that deal with at least one of the six machine models in cyber security. 展开更多
关键词 Attackers deep learning methods e-mail security threats machine learning PHISHING
在线阅读 下载PDF
A Study on the Effect of Creative Chinese Characters Learning on the Ability to Learn Chinese Old Sayings and Idioms Using K-Pop Music Video
15
作者 Eun-min Lee 《Cultural and Religious Studies》 2018年第3期192-203,共12页
Music is an extraordinary bridge between people all over the world so much as to be called a universal language. Idols and B-boys stages are fun, touching, and fantastic. Today, South Korean students are excited and e... Music is an extraordinary bridge between people all over the world so much as to be called a universal language. Idols and B-boys stages are fun, touching, and fantastic. Today, South Korean students are excited and enthusiastic about their colorful dance moves. The study is about creative educational methods that use K-pop music videos to learn the proverbs and old words that our ancestors learned to keep in mind and teach. K-pop lyrics are a rich reflection of the experiences of life and the world in which people are living today. Accordingly, this study can present new teaching and learning method examples that are used in class related to the old language associated with K-pop lyrics and can also introduce interesting class materials. 展开更多
关键词 K-pop music video Chinese characters creativity high school learning methods Chinese old sayings Chinese idioms modernization of Chinese characters
在线阅读 下载PDF
The Impact of Online Courses towards Students in Autonomous Learning Based on New Media Technologies
16
作者 Jinrong Mao 《Review of Educational Theory》 2020年第3期27-30,共4页
In the 21st century,the rapid development of online technology has dramatically transformed people’s way of lives.The emergence of high-tech products has also boosted modern education to embrace informationization an... In the 21st century,the rapid development of online technology has dramatically transformed people’s way of lives.The emergence of high-tech products has also boosted modern education to embrace informationization and virtualization.With the promotion and development of online courses,autonomous learning is now emerging among students in colleges and universities.If they want to learn relevant professional knowledge,they could use networking and information technology with relevant devices.This learning method could not only impact traditional education but also facilitate students to explore new ways to learn autonomously.This paper is to discuss the impact of online courses towards students in autonomous learning by analyzing its current learning situation,the feature of this new form and its effects towards students. 展开更多
关键词 New media technologies Online courses Autonomous learning learning methods
在线阅读 下载PDF
Soliton, breather, and rogue wave solutions for solving the nonlinear Schrodinger equation using a deep learning method with physical constraints 被引量:6
17
作者 Jun-Cai Pu Jun Li Yong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期77-87,共11页
The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particu... The nonlinear Schrodinger equation is a classical integrable equation which contains plenty of significant properties and occurs in many physical areas.However,due to the difficulty of solving this equation,in particular in high dimensions,lots of methods are proposed to effectively obtain different kinds of solutions,such as neural networks among others.Recently,a method where some underlying physical laws are embeded into a conventional neural network is proposed to uncover the equation’s dynamical behaviors from spatiotemporal data directly.Compared with traditional neural networks,this method can obtain remarkably accurate solution with extraordinarily less data.Meanwhile,this method also provides a better physical explanation and generalization.In this paper,based on the above method,we present an improved deep learning method to recover the soliton solutions,breather solution,and rogue wave solutions of the nonlinear Schrodinger equation.In particular,the dynamical behaviors and error analysis about the one-order and two-order rogue waves of nonlinear integrable equations are revealed by the deep neural network with physical constraints for the first time.Moreover,the effects of different numbers of initial points sampled,collocation points sampled,network layers,neurons per hidden layer on the one-order rogue wave dynamics of this equation have been considered with the help of the control variable way under the same initial and boundary conditions.Numerical experiments show that the dynamical behaviors of soliton solutions,breather solution,and rogue wave solutions of the integrable nonlinear Schrodinger equation can be well reconstructed by utilizing this physically-constrained deep learning method. 展开更多
关键词 deep learning method neural network soliton solutions breather solution rogue wave solutions
原文传递
Real-time determination of sandy soil stiffness during vibratory compaction incorporating machine learning method for intelligent compaction 被引量:3
18
作者 Zhengheng Xu Hadi Khabbaz +1 位作者 Behzad Fatahi Di Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第5期1609-1625,共17页
An emerging real-time ground compaction and quality control, known as intelligent compaction(IC), has been applied for efficiently optimising the full-area compaction. Although IC technology can provide real-time asse... An emerging real-time ground compaction and quality control, known as intelligent compaction(IC), has been applied for efficiently optimising the full-area compaction. Although IC technology can provide real-time assessment of uniformity of the compacted area, accurate determination of the soil stiffness required for quality control and design remains challenging. In this paper, a novel and advanced numerical model simulating the interaction of vibratory drum and soil beneath is developed. The model is capable of evaluating the nonlinear behaviour of underlying soil subjected to dynamic loading by capturing the variations of damping with the cyclic shear strains and degradation of soil modulus. The interaction of the drum and the soil is simulated via the finite element method to develop a comprehensive dataset capturing the dynamic responses of the drum and the soil. Indeed, more than a thousand three-dimensional(3D) numerical models covering various soil characteristics, roller weights, vibration amplitudes and frequencies were adopted. The developed dataset is then used to train the inverse solver using an innovative machine learning approach, i.e. the extended support vector regression, to simulate the stiffness of the compacted soil by adopting drum acceleration records. Furthermore, the impacts of the amplitude and frequency of the vibration on the level of underlying soil compaction are discussed.The proposed machine learning approach is promising for real-time extraction of actual soil stiffness during compaction. Results of the study can be employed by practising engineers to interpret roller drum acceleration data to estimate the level of compaction and ground stiffness during compaction. 展开更多
关键词 Intelligent compaction Machine learning method Finite element modelling Acceleration response
在线阅读 下载PDF
A deep learning method for solving high-order nonlinear soliton equations 被引量:1
19
作者 Shikun Cui Zhen Wang +2 位作者 Jiaqi Han Xinyu Cui Qicheng Meng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第7期57-69,共13页
We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equa... We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons. 展开更多
关键词 deep learning method physics-informed neural networks high-order nonlinear soliton equations interaction between solitons the numerical driven solution
原文传递
Exploring the Application Effect of Flipped Classroom Combined with Problem-Based Learning Teaching Method in Clinical Skills Teaching of Standardized Training for Resident Doctors of Traditional Chinese Medicine 被引量:2
20
作者 Jingjing Tang 《Journal of Biosciences and Medicines》 CAS 2023年第2期169-176,共8页
Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese M... Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn. 展开更多
关键词 Standardized Training for Resident Doctors of Traditional Chinese Medicine Clinical Skills Teaching Flipped Classroom Problem-Based learning Teaching Method
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部