期刊文献+
共找到5,264篇文章
< 1 2 250 >
每页显示 20 50 100
Rockburst Intensity Prediction based on Kernel Extreme Learning Machine(KELM)
1
作者 XIAO Yidong QI Shengwen +3 位作者 GUO Songfeng ZHANG Shishu WANG Zan GONG Fengqiang 《Acta Geologica Sinica(English Edition)》 2025年第1期284-295,共12页
As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst ... As one of the most serious geological disasters in deep underground engineering,rockburst has caused a large number of casualties.However,because of the complex relationship between the inducing factors and rockburst intensity,the problem of rockburst intensity prediction has not been well solved until now.In this study,we collect 292 sets of rockburst data including eight parameters,such as the maximum tangential stress of the surrounding rock σ_(θ),the uniaxial compressive strength of the rockσc,the uniaxial tensile strength of the rock σ_(t),and the strain energy storage index W_(et),etc.from more than 20 underground projects as training sets and establish two new rockburst prediction models based on the kernel extreme learning machine(KELM)combined with the genetic algorithm(KELM-GA)and cross-entropy method(KELM-CEM).To further verify the effect of the two models,ten sets of rockburst data from Shuangjiangkou Hydropower Station are selected for analysis and the results show that new models are more accurate compared with five traditional empirical criteria,especially the model based on KELM-CEM which has the accuracy rate of 90%.Meanwhile,the results of 10 consecutive runs of the model based on KELM-CEM are almost the same,meaning that the model has good stability and reliability for engineering applications. 展开更多
关键词 rockburst intensity prediction kernel extreme learning machine genetic algorithm cross-entropy method
在线阅读 下载PDF
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
2
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion Process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
Novel State of Health Estimation for Lithium-Ion Battery Based on Differential Evolution Algorithm-Extreme Learning Machine
3
作者 LI Qingwei FU Can +2 位作者 XUE Wenli WEI Yongqiang SHEN Zhiwen 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期252-261,共10页
To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating t... To ensure a long-term safety and reliability of electric vehicle and energy storage system,an accurate estimation of the state of health(SOH)for lithium-ion battery is important.In this study,a method for estimating the lithium-ion battery SOH was proposed based on an improved extreme learning machine(ELM).Input weights and hidden layer biases were generated randomly in traditional ELM.To improve the estimation accuracy of ELM,the differential evolution algorithm was used to optimize these parameters in feasible solution spaces.First,incremental capacity curves were obtained by incremental capacity analysis and smoothed by Gaussian filter to extract health interests.Then,the ELM based on differential evolution algorithm(DE-ELM model)was used for a lithium-ion battery SOH estimation.At last,four battery historical aging data sets and one random walk data set were employed to validate the prediction performance of DE-ELM model.Results show that the DE-ELM has a better performance than other studied algorithms in terms of generalization ability. 展开更多
关键词 lithium-ion battery state of health(SOH) extreme learning machine(ELM) differential evolution(DE)algorithm
原文传递
Predicting Academic Performance Levels in Higher Education:A Data-Driven Enhanced Fruit Fly Optimizer Kernel Extreme Learning Machine Model
4
作者 Zhengfei Ye Yongli Yang +1 位作者 Yi Chen Huiling Chen 《Journal of Bionic Engineering》 2025年第4期1940-1962,共23页
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T... Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process. 展开更多
关键词 Academic achievement machine learning Teacher-student relationships Swarm intelligence algorithms Fruit fly optimization algorithm
在线阅读 下载PDF
Improved PSO-Extreme Learning Machine Algorithm for Indoor Localization 被引量:1
5
作者 Qiu Wanqing Zhang Qingmiao +1 位作者 Zhao Junhui Yang Lihua 《China Communications》 SCIE CSCD 2024年第5期113-122,共10页
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece... Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms. 展开更多
关键词 extreme learning machine fingerprinting localization indoor localization machine learning particle swarm optimization
在线阅读 下载PDF
Prediction of lime utilization ratio of dephosphorization in BOF steelmaking based on online sequential extreme learning machine with forgetting mechanism
6
作者 Runhao Zhang Jian Yang +1 位作者 Han Sun Wenkui Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期508-517,共10页
The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me... The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction. 展开更多
关键词 basic oxygen furnace steelmaking machine learning lime utilization ratio DEPHOSPHORIZATION online sequential extreme learning machine forgetting mechanism
在线阅读 下载PDF
A Hybrid Approach for Predicting the Remaining Useful Life of Bearings Based on the RReliefF Algorithm and Extreme Learning Machine
7
作者 Sen-Hui Wang Xi Kang +3 位作者 Cheng Wang Tian-Bing Ma Xiang He Ke Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1405-1427,共23页
Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propo... Accurately predicting the remaining useful life(RUL)of bearings in mining rotating equipment is vital for mining enterprises.This research aims to distinguish the features associated with the RUL of bearings and propose a prediction model based on these selected features.This study proposes a hybrid predictive model to assess the RUL of rolling element bearings.The proposed model begins with the pre-processing of bearing vibration signals to reconstruct sixty time-domain features.The hybrid model selects relevant features from the sixty time-domain features of the vibration signal by adopting the RReliefF feature selection algorithm.Subsequently,the extreme learning machine(ELM)approach is applied to develop a predictive model of RUL based on the optimal features.The model is trained by optimizing its parameters via the grid search approach.The training datasets are adjusted to make them most suitable for the regression model using the cross-validation method.The proposed hybrid model is analyzed and validated using the vibration data taken from the public XJTU-SY rolling element-bearing database.The comparison is constructed with other traditional models.The experimental test results demonstrated that the proposed approach can predict the RUL of bearings with a reliable degree of accuracy. 展开更多
关键词 Bearing degradation remaining useful life estimation RReliefF feature selection extreme learning machine
在线阅读 下载PDF
Prediction of length-of-day using extreme learning machine 被引量:6
8
作者 Lei Yu Zhao Danning Cai Hongbing 《Geodesy and Geodynamics》 2015年第2期151-159,共9页
Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time ... Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple. 展开更多
关键词 Length-of-day (LOD) PredictionExtreme learning machine (ELM) Artificial neural networks (ANN) Extreme learning machine (ELM) Earth orientation parameters (EOP)EOP prediction comparison campaign (EOP PCC)Least squares
原文传递
Project Assessment in Offshore Software Maintenance Outsourcing Using Deep Extreme Learning Machines
9
作者 Atif Ikram Masita Abdul Jalil +6 位作者 Amir Bin Ngah Saqib Raza Ahmad Salman Khan Yasir Mahmood Nazri Kama Azri Azmi Assad Alzayed 《Computers, Materials & Continua》 SCIE EI 2023年第1期1871-1886,共16页
Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different w... Software maintenance is the process of fixing,modifying,and improving software deliverables after they are delivered to the client.Clients can benefit from offshore software maintenance outsourcing(OSMO)in different ways,including time savings,cost savings,and improving the software quality and value.One of the hardest challenges for the OSMO vendor is to choose a suitable project among several clients’projects.The goal of the current study is to recommend a machine learning-based decision support system that OSMO vendors can utilize to forecast or assess the project of OSMO clients.The projects belong to OSMO vendors,having offices in developing countries while providing services to developed countries.In the current study,Extreme Learning Machine’s(ELM’s)variant called Deep Extreme Learning Machines(DELMs)is used.A novel dataset consisting of 195 projects data is proposed to train the model and to evaluate the overall efficiency of the proposed model.The proposed DELM’s based model evaluations achieved 90.017%training accuracy having a value with 1.412×10^(-3) Root Mean Square Error(RMSE)and 85.772%testing accuracy with 1.569×10^(-3) RMSE with five DELMs hidden layers.The results express that the suggested model has gained a notable recognition rate in comparison to any previous studies.The current study also concludes DELMs as the most applicable and useful technique for OSMO client’s project assessment. 展开更多
关键词 Software outsourcing deep extreme learning machine(DELM) machine learning(ML) extreme learning machine ASSESSMENT
在线阅读 下载PDF
Rock burst prediction based on genetic algorithms and extreme learning machine 被引量:25
10
作者 李天正 李永鑫 杨小礼 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2105-2113,共9页
Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic... Rock burst is a kind of geological disaster in rock excavation of high stress areas.To evaluate intensity of rock burst,the maximum shear stress,uniaxial compressive strength,uniaxial tensile strength and rock elastic energy index were selected as input factors,and burst pit depth as output factor.The rock burst prediction model was proposed according to the genetic algorithms and extreme learning machine.The effect of structural surface was taken into consideration.Based on the engineering examples of tunnels,the observed and collected data were divided into the training set,validation set and prediction set.The training set and validation set were used to train and optimize the model.Parameter optimization results are presented.The hidden layer node was450,and the fitness of the predictions was 0.0197 under the optimal combination of the input weight and offset vector.Then,the optimized model is tested with the prediction set.Results show that the proposed model is effective.The maximum relative error is4.71%,and the average relative error is 3.20%,which proves that the model has practical value in the relative engineering. 展开更多
关键词 extreme learning machine feed forward neural network rock burst prediction rock excavation
在线阅读 下载PDF
Extreme Learning Machine-Based Thermal Model for Lithium-Ion Batteries of Electric Vehicles under External Short Circuit 被引量:19
11
作者 Ruixin Yang Rui Xiong +1 位作者 Weixiang Shen Xinfan Lin 《Engineering》 SCIE EI 2021年第3期395-405,共11页
External short circuit(ESC)of lithium-ion batteries is one of the common and severe electrical failures in electric vehicles.In this study,a novel thermal modelis developed to capture the temperature behavior of batte... External short circuit(ESC)of lithium-ion batteries is one of the common and severe electrical failures in electric vehicles.In this study,a novel thermal modelis developed to capture the temperature behavior of batteries under ESC conditions.Experiments were systematically performed under different battery initial state of charge and ambient temperatures.Based on the experimental results,we employed an extreme learming machine(ELM)-based thermal(ELMT)model to depict battery temperature behavior under ESC,where a lumped-state thermal model was used to replace the activation function of conventional ELMs.To demonstrate the effectiveness of the proposed model,wecompared the ELMT model with a multi-lumped-state thermal(MLT)model parameterized by thegenetic algorithm using the experimental data from various sets of battery cells.It is shown that the ELMT model can achieve higher computa-tional efficiency than the MLT model and better fitting and prediction accuracy,where the average root mean squared error(RMSE)of the fitting is 0.65℃ for the ELMT model and 3.95℃ for the MLT model,and the RMES of the prediction under new data set is 3.97℃ for the ELMT model and 6.11℃ for the MLT model. 展开更多
关键词 Electric vehicles Battery safety External short circuit Temperature prediction Extreme learning machine
在线阅读 下载PDF
Fast cross validation for regularized extreme learning machine 被引量:9
12
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine (ELM) regularization theory cross validation neural networks.
在线阅读 下载PDF
Selective Ensemble Extreme Learning Machine Modeling of Effluent Quality in Wastewater Treatment Plants 被引量:9
13
作者 Li-Jie Zhao 1,2 Tian-You Chai 2 De-Cheng Yuan 1 1 College of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110042,China 2 State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110189,China 《International Journal of Automation and computing》 EI 2012年第6期627-633,共7页
Real-time and reliable measurements of the effluent quality are essential to improve operating efficiency and reduce energy consumption for the wastewater treatment process.Due to the low accuracy and unstable perform... Real-time and reliable measurements of the effluent quality are essential to improve operating efficiency and reduce energy consumption for the wastewater treatment process.Due to the low accuracy and unstable performance of the traditional effluent quality measurements,we propose a selective ensemble extreme learning machine modeling method to enhance the effluent quality predictions.Extreme learning machine algorithm is inserted into a selective ensemble frame as the component model since it runs much faster and provides better generalization performance than other popular learning algorithms.Ensemble extreme learning machine models overcome variations in different trials of simulations for single model.Selective ensemble based on genetic algorithm is used to further exclude some bad components from all the available ensembles in order to reduce the computation complexity and improve the generalization performance.The proposed method is verified with the data from an industrial wastewater treatment plant,located in Shenyang,China.Experimental results show that the proposed method has relatively stronger generalization and higher accuracy than partial least square,neural network partial least square,single extreme learning machine and ensemble extreme learning machine model. 展开更多
关键词 Wastewater treatment process effluent quality prediction extreme learning machine selective ensemble model genetic algorithm.
原文传递
Application of an extreme learning machine network with particle swarm optimization in syndrome classification of primary liver cancer 被引量:6
14
作者 Liang Ding Xin-you Zhang +1 位作者 Di-yao Wu Meng-ling Liua 《Journal of Integrative Medicine》 SCIE CAS CSCD 2021年第5期395-407,共13页
Objective: By optimizing the extreme learning machine network with particle swarm optimization, we established a syndrome classification and prediction model for primary liver cancer(PLC), classified and predicted the... Objective: By optimizing the extreme learning machine network with particle swarm optimization, we established a syndrome classification and prediction model for primary liver cancer(PLC), classified and predicted the syndrome diagnosis of medical record data for PLC and compared and analyzed the prediction results with different algorithms and the clinical diagnosis results. This paper provides modern technical support for clinical diagnosis and treatment, and improves the objectivity, accuracy and rigor of the classification of traditional Chinese medicine(TCM) syndromes.Methods: From three top-level TCM hospitals in Nanchang, 10,602 electronic medical records from patients with PLC were collected, dating from January 2009 to May 2020. We removed the electronic medical records of 542 cases of syndromes and adopted the cross-validation method in the remaining10,060 electronic medical records, which were randomly divided into a training set and a test set.Based on fuzzy mathematics theory, we quantified the syndrome-related factors of TCM symptoms and signs, and information from the TCM four diagnostic methods. Next, using an extreme learning machine network with particle swarm optimization, we constructed a neural network syndrome classification and prediction model that used "TCM symptoms + signs + tongue diagnosis information + pulse diagnosis information" as input, and PLC syndrome as output. This approach was used to mine the nonlinear relationship between clinical data in electronic medical records and different syndrome types. The accuracy rate of classification was used to compare this model to other machine learning classification models.Results: The classification accuracy rate of the model developed here was 86.26%. The classification accuracy rates of models using support vector machine and Bayesian networks were 82.79% and 85.84%,respectively. The classification accuracy rates of the models for all syndromes in this paper were between82.15% and 93.82%.Conclusion: Compared with the case of data processed using traditional binary inputs, the experiment shows that the medical record data processed by fuzzy mathematics was more accurate, and closer to clinical findings. In addition, the model developed here was more refined, more accurate, and quicker than other classification models. This model provides reliable diagnosis for clinical treatment of PLC and a method to study of the rules of syndrome differentiation and treatment in TCM. 展开更多
关键词 Primary liver cancer Syndrome type Particle swarm Extreme learning machine Fuzzy mathematics
原文传递
Online Sequential Extreme Multilayer Perception with Time Series Learning Machine Based Output Self Feedback for Prediction 被引量:5
15
作者 PAN Feng ZHAO Hai-bo 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第3期366-375,共10页
This study presents a time series prediction model with output self feedback which is implemented based on online sequential extreme learning machine. The output variables derived from multilayer perception can feedba... This study presents a time series prediction model with output self feedback which is implemented based on online sequential extreme learning machine. The output variables derived from multilayer perception can feedback to the network input layer to create a temporal relation between the current node inputs and the lagged node outputs while overcoming the limitation of memory which is a vital port for any time-series prediction application. The model can overcome the static prediction problem with most time series prediction models and can effectively cope with the dynamic properties of time series data. A linear and a nonlinear forecasting algorithms based on online extreme learning machine are proposed to implement the output feedback forecasting model. They are both recursive estimator and have two distinct phases: Predict and Update. The proposed model was tested against different kinds of time series data and the results indicate that the model outperforms the original static model without feedback. 展开更多
关键词 time series prediction extreme learning machine (ELM) autoregression (AR) online sequential learning ELM (OS-ELM) recurrent neural network (RNN)
原文传递
Constrained voting extreme learning machine and its application 被引量:5
16
作者 MIN Mengcan CHEN Xiaofang XIE Yongfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit... Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods. 展开更多
关键词 extreme learning machine(ELM) majority voting ensemble method sample based learning superheat degree(SD)
在线阅读 下载PDF
Remote Sensing Image Classification Algorithm Based on Texture Feature and Extreme Learning Machine 被引量:6
17
作者 Xiangchun Liu Jing Yu +3 位作者 Wei Song Xinping Zhang Lizhi Zhao Antai Wang 《Computers, Materials & Continua》 SCIE EI 2020年第11期1385-1395,共11页
With the development of satellite technology,the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high effi... With the development of satellite technology,the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high efficiency and low consumption.As an important tool for satellite remote sensing image processing,remote sensing image classification has become a hot topic.According to the natural texture characteristics of remote sensing images,this paper combines different texture features with the Extreme Learning Machine,and proposes a new remote sensing image classification algorithm.The experimental tests are carried out through the standard test dataset SAT-4 and SAT-6.Our results show that the proposed method is a simpler and more efficient remote sensing image classification algorithm.It also achieves 99.434%recognition accuracy on SAT-4,which is 1.5%higher than the 97.95%accuracy achieved by DeepSat.At the same time,the recognition accuracy of SAT-6 reaches 99.5728%,which is 5.6%higher than DeepSat’s 93.9%. 展开更多
关键词 Image classification gray level co-occurrence matrix extreme learning machine
在线阅读 下载PDF
Prediction of flyrock induced by mine blasting using a novel kernel-based extreme learning machine 被引量:4
18
作者 Mehdi Jamei Mahdi Hasanipanah +2 位作者 Masoud Karbasi Iman Ahmadianfar Somaye Taherifar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1438-1451,共14页
Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evalu... Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets. 展开更多
关键词 BLASTING Flyrock distance Kernel extreme learning machine(KELM) Local weighted linear regression(LWLR) Response surface methodology(RSM)
在线阅读 下载PDF
NO_x emission model for coal-fired boilers using partial least squares and extreme learning machine 被引量:4
19
作者 Dong Ze Ma Ning Li Changqing 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期179-184,共6页
To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the ... To implement a real-time reduction in NOx,a rapid and accurate model is required.A PLS-ELM model based on the combination of partial least squares(PLS)and the extreme learning machine(ELM)for the establishment of the NOx emission model of utility boilers is proposed.First,the initial input variables of the NOx emission model are determined according to the mechanism analysis.Then,the initial input data is extracted by PLS.Finally,the extracted information is used as the input of the ELM model.A large amount of real data was obtained from the distributed control system(DCS)historical database of a 1 000 MW power plant boiler to train and validate the PLS-ELM model.The modeling performance of the PLS-ELM was compared with that of the back propagation(BP)neural network,support vector machine(SVM)and ELM models.The mean relative errors(MRE)of the PLS-ELM model were 1.58%for the training dataset and 1.69%for the testing dataset.The prediction precision of the PLS-ELM model is higher than those of the BP,SVM and ELM models.The consumption time of the PLS-ELM model is also shorter than that of the BP,SVM and ELM models. 展开更多
关键词 NOx emission partial least squares extreme learning machine coal-fired boiler
在线阅读 下载PDF
Internet of things intrusion detection model and algorithm based on cloud computing and multi-feature extraction extreme learning machine 被引量:3
20
作者 Haifeng Lin Qilin Xue +1 位作者 Jiayin Feng Di Bai 《Digital Communications and Networks》 SCIE CSCD 2023年第1期111-124,共14页
With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems... With the rapid development of the Internet of Things(IoT),there are several challenges pertaining to security in IoT applications.Compared with the characteristics of the traditional Internet,the IoT has many problems,such as large assets,complex and diverse structures,and lack of computing resources.Traditional network intrusion detection systems cannot meet the security needs of IoT applications.In view of this situation,this study applies cloud computing and machine learning to the intrusion detection system of IoT to improve detection performance.Usually,traditional intrusion detection algorithms require considerable time for training,and these intrusion detection algorithms are not suitable for cloud computing due to the limited computing power and storage capacity of cloud nodes;therefore,it is necessary to study intrusion detection algorithms with low weights,short training time,and high detection accuracy for deployment and application on cloud nodes.An appropriate classification algorithm is a primary factor for deploying cloud computing intrusion prevention systems and a prerequisite for the system to respond to intrusion and reduce intrusion threats.This paper discusses the problems related to IoT intrusion prevention in cloud computing environments.Based on the analysis of cloud computing security threats,this study extensively explores IoT intrusion detection,cloud node monitoring,and intrusion response in cloud computing environments by using cloud computing,an improved extreme learning machine,and other methods.We use the Multi-Feature Extraction Extreme Learning Machine(MFE-ELM)algorithm for cloud computing,which adds a multi-feature extraction process to cloud servers,and use the deployed MFE-ELM algorithm on cloud nodes to detect and discover network intrusions to cloud nodes.In our simulation experiments,a classical dataset for intrusion detection is selected as a test,and test steps such as data preprocessing,feature engineering,model training,and result analysis are performed.The experimental results show that the proposed algorithm can effectively detect and identify most network data packets with good model performance and achieve efficient intrusion detection for heterogeneous data of the IoT from cloud nodes.Furthermore,it can enable the cloud server to discover nodes with serious security threats in the cloud cluster in real time,so that further security protection measures can be taken to obtain the optimal intrusion response strategy for the cloud cluster. 展开更多
关键词 Internet of Things Cloud Computing Intrusion Prevention Intrusion Detection Extreme learning machine
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部