期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Novel Malware Detection Framework for Internet of Things Applications
1
作者 Muhammad Adil Mona M.Jamjoom Zahid Ullah 《Computers, Materials & Continua》 2025年第9期4363-4380,共18页
In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer sever... In today’s digital world,the Internet of Things(IoT)plays an important role in both local and global economies due to its widespread adoption in different applications.This technology has the potential to offer several advantages over conventional technologies in the near future.However,the potential growth of this technology also attracts attention from hackers,which introduces new challenges for the research community that range from hardware and software security to user privacy and authentication.Therefore,we focus on a particular security concern that is associated with malware detection.The literature presents many countermeasures,but inconsistent results on identical datasets and algorithms raise concerns about model biases,training quality,and complexity.This highlights the need for an adaptive,real-time learning framework that can effectively mitigate malware threats in IoT applications.To address these challenges,(i)we propose an intelligent framework based on Two-step Deep Reinforcement Learning(TwStDRL)that is capable of learning and adapting in real-time to counter malware threats in IoT applications.This framework uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay memory.The stored knowledge allows the model to effectively navigate the environment and maximize cumulative rewards.(ii)To demonstrate the superiority of the TwStDRL framework,we implement and evaluate several machine learning algorithms for comparative analysis that include Support Vector Machines(SVM),Multi-Layer Perceptron,Random Forests,and k-means Clustering.The selection of these algorithms is driven by the inconsistent results reported in the literature,which create doubt about their robustness and reliability in real-world IoT deployments.(iii)Finally,we provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security threats.During analysis,we noted that our proposed TwStDRL scheme achieves an average performance of 99.45%across accuracy,precision,recall,and F1-score,which is an absolute improvement of roughly 3%over the existing malware-detection models. 展开更多
关键词 IoT applications security malware detection advanced machine learning algorithms data privacy challenges
在线阅读 下载PDF
AutoML: A systematic review on automated machine learning with neural architecture search 被引量:7
2
作者 Imrus Salehin Md.Shamiul Islam +4 位作者 Pritom Saha S.M.Noman Azra Tuni Md.Mehedi Hasan Md.Abu Baten 《Journal of Information and Intelligence》 2024年第1期52-81,共30页
AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the... AutoML(Automated Machine Learning)is an emerging field that aims to automate the process of building machine learning models.AutoML emerged to increase productivity and efficiency by automating as much as possible the inefficient work that occurs while repeating this process whenever machine learning is applied.In particular,research has been conducted for a long time on technologies that can effectively develop high-quality models by minimizing the intervention of model developers in the process from data preprocessing to algorithm selection and tuning.In this semantic review research,we summarize the data processing requirements for AutoML approaches and provide a detailed explanation.We place greater emphasis on neural architecture search(NAS)as it currently represents a highly popular sub-topic within the field of AutoML.NAS methods use machine learning algorithms to search through a large space of possible architectures and find the one that performs best on a given task.We provide a summary of the performance achieved by representative NAS algorithms on the CIFAR-10,CIFAR-100,ImageNet and wellknown benchmark datasets.Additionally,we delve into several noteworthy research directions in NAS methods including one/two-stage NAS,one-shot NAS and joint hyperparameter with architecture optimization.We discussed how the search space size and complexity in NAS can vary depending on the specific problem being addressed.To conclude,we examine several open problems(SOTA problems)within current AutoML methods that assure further investigation in future research. 展开更多
关键词 AutoML Neural architecture search Advance machine learning Search space Hyperparameter optimization
原文传递
Acknowledgments
3
《The Journal of Biomedical Research》 CAS CSCD 2018年第1期I0007-I0007,共1页
Epilepsy is the most common neurological disorder of the brain that affects people worldwide at any age from newborn to adult. It is characterized by recurrent seizures, which are brief episodes of signs or symptoms d... Epilepsy is the most common neurological disorder of the brain that affects people worldwide at any age from newborn to adult. It is characterized by recurrent seizures, which are brief episodes of signs or symptoms due to abnormal excessive or synchronous neuronal activity in the brain. The electroencephalogram, or EEG, is a physiological method to measure and record the electrical 展开更多
关键词 EEG The Journal of Biomedical Research plans to publish a special issue on Advances in EEG Signal Processing and Machine learning for Epileptic Seizure Detection and Prediction
暂未订购
Traffic signal control in mixed traffic environment based on advance decision and reinforcement learning
4
作者 Yu Du Wei ShangGuan Linguo Chai 《Transportation Safety and Environment》 EI 2022年第4期96-106,共11页
Reinforcement learning-based traffic signal control systems (RLTSC) can enhance dynamic adaptability, save vehicle travelling timeand promote intersection capacity. However, the existing RLTSC methods do not consider ... Reinforcement learning-based traffic signal control systems (RLTSC) can enhance dynamic adaptability, save vehicle travelling timeand promote intersection capacity. However, the existing RLTSC methods do not consider the driver’s response time requirement, sothe systems often face efficiency limitations and implementation difficulties.We propose the advance decision-making reinforcementlearning traffic signal control (AD-RLTSC) algorithm to improve traffic efficiency while ensuring safety in mixed traffic environment.First, the relationship between the intersection perception range and the signal control period is established and the trust region state(TRS) is proposed. Then, the scalable state matrix is dynamically adjusted to decide the future signal light status. The decision will bedisplayed to the human-driven vehicles (HDVs) through the bi-countdown timer mechanism and sent to the nearby connected automatedvehicles (CAVs) using the wireless network rather than be executed immediately. HDVs and CAVs optimize the driving speedbased on the remaining green (or red) time. Besides, the Double Dueling Deep Q-learning Network algorithm is used for reinforcementlearning training;a standardized reward is proposed to enhance the performance of intersection control and prioritized experiencereplay is adopted to improve sample utilization. The experimental results on vehicle micro-behaviour and traffic macro-efficiencyshowed that the proposed AD-RLTSC algorithm can simultaneously improve both traffic efficiency and traffic flow stability. 展开更多
关键词 Adaptive traffic signal control mixed traffic flow control advance decision-making reinforcement learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部