For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and de...For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.展开更多
Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex ro...Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex road traffic environment of smart vehicles and other vehicles frequently experiences conflicting start and stop motion.The fine-grained scheduling of autonomous vehicles(AVs)at non-signalized intersections,which is a promising technique for exploring optimal driving paths for both assisted driving nowadays and driverless cars in the near future,has attracted significant attention owing to its high potential for improving road safety and traffic efficiency.Fine-grained scheduling primarily focuses on signalized intersection scenarios,as applying it directly to non-signalized intersections is challenging because each AV can move freely without traffic signal control.This may cause frequent driving collisions and low road traffic efficiency.Therefore,this study proposes a novel algorithm to address this issue.Our work focuses on the fine-grained scheduling of automated vehicles at non-signal intersections via dual reinforced training(FS-DRL).For FS-DRL,we first use a grid to describe the non-signalized intersection and propose a convolutional neural network(CNN)-based fast decision model that can rapidly yield a coarse-grained scheduling decision for each AV in a distributed manner.We then load these coarse-grained scheduling decisions onto a deep Q-learning network(DQN)for further evaluation.We use an adaptive learning rate to maximize the reward function and employ parameterεto tradeoff the fast speed of coarse-grained scheduling in the CNN and optimal fine-grained scheduling in the DQN.In addition,we prove that using this adaptive learning rate leads to a converged loss rate with an extremely small number of training loops.The simulation results show that compared with Dijkstra,RNN,and ant colony-based scheduling,FS-DRL yields a high accuracy of 96.5%on the sample,with improved performance of approximately 61.54%-85.37%in terms of the average conflict and traffic efficiency.展开更多
Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in...Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms.展开更多
An adaptive topology learning approach is proposed to learn the topology of a practical camera network in an unsupervised way. The nodes are modeled by the Gaussian mixture model. The connectivity between nodes is jud...An adaptive topology learning approach is proposed to learn the topology of a practical camera network in an unsupervised way. The nodes are modeled by the Gaussian mixture model. The connectivity between nodes is judged by their cross-correlation function, which is also used to calculate their transition time distribution. The mutual information of the connected node pair is employed for transition probability calculation. A false link eliminating approach is proposed, along with a topology updating strategy to improve the learned topology. A real monitoring system with five disjoint cameras is built for experiments. Comparative results with traditional methods show that the proposed method is more accurate in topology learning and is more robust to environmental changes.展开更多
In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovski...In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme.展开更多
This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separati...This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.展开更多
An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (...An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.展开更多
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a...This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.展开更多
In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-lin...In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-line from the input and output information of the system. A novel weighted one-step-ahead control criterion function is proposed for the control law. The convergence analysis shows that the proposed control law can guarantee the convergence under the assumption that the desired output is a set point. Simulation examples are provided for nonlinear systems to illustrate the better performance of the higher order learning adaptive control.展开更多
The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real ...The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor.展开更多
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani...Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.展开更多
Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward contr...Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator.展开更多
Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scal...Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.展开更多
Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial con...Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance.展开更多
To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real tim...To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm.展开更多
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi...To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.展开更多
In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring...In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.展开更多
The recent emergence of adaptive language learning systems calls for conceptual work to guide the design of assessment and learning in an adaptive environment.Although adaptive learning might have been touted as a uni...The recent emergence of adaptive language learning systems calls for conceptual work to guide the design of assessment and learning in an adaptive environment.Although adaptive learning might have been touted as a universal cure for learning problems,many adaptive language learning systems fall short of educators’expectations,partly due to a lack of standards and best practices in this area.To fill this gap,this paper proposes some major considerations in designing a high-quality assessment and learning experience in adaptive learning and ways to evaluate an adaptive learning system.The architecture of adaptive learning is decomposed,with a chain of inferences supporting the overall efficacy of an adaptive learning system presented,including user property representation,user property estimation,content representation,user interaction representation,and user interaction impact.A detailed analysis of key validity issues is provided for each inference,which motivates the major considerations in designing and evaluating assessment and learning.The paper first provides an overview of different types of assessment used in adaptive learning and an analysis of the assessment approach,priorities,and design considerations of each to optimize its use in adaptive learning.Then it proposes a framework for evaluating different aspects of an adaptive learning system.Some special connections are made to models,techniques,designs,and technologies specific to language learning and assessment,bringing more relevance to adaptive language learning solutions.Through establishing some guidelines on key aspects to evaluate and how to evaluate them,the work intends to bring more rigor to the field of adaptive language learning systems.展开更多
The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wand...The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wander(BW)and Muscle artifact(MA),these are physiological and nonstationary.As the nature of these artifacts is random,adaptive filtering is needed than conventional fixed coefficient filtering techniques.To address this,a new block based adaptive learning scheme is proposed to remove artifacts from TEB signals in clinical scenario.The proposed block least mean square(BLMS)algorithm is mathematically normalized with reference to data and error.This normalization leads,block normalized LMS(BNLMS)and block error normalized LMS(BENLMS)algorithms.Various adaptive artifact cancellers are developed in both time and frequency domains and applied on real TEB quantities contaminated with physiological signals.The ability of these techniques is measured by calculating signal to noise ratio improvement(SNRI),Excess Mean Square Error(EMSE),and Misadjustment(Mad).Among the considered algorithms,the frequency domain version of BENLMS algorithm removes the physiological artifacts effectively then the other counter parts.Hence,this adaptive artifact canceller is suitable for real time applications like wearable,remove health care monitoring units.展开更多
基金Supported by the National Natural Science Foundation of China (60904018, 61203040)the Natural Science Foundation of Fujian Province of China (2009J05147, 2011J01352)+1 种基金the Foundation for Distinguished Young Scholars of Higher Education of Fujian Province of China (JA10004)the Science Research Foundation of Huaqiao University (09BS617)
文摘For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.
基金Supported by National Natural Science Foundation of China(Grant No.61803206)Jiangsu Provincial Natural Science Foundation(Grant No.222300420468)Jiangsu Provincial key R&D Program(Grant No.BE2017008-2).
文摘Complex road conditions without signalized intersections when the traffic flow is nearly saturated result in high traffic congestion and accidents,reducing the traffic efficiency of intelligent vehicles.The complex road traffic environment of smart vehicles and other vehicles frequently experiences conflicting start and stop motion.The fine-grained scheduling of autonomous vehicles(AVs)at non-signalized intersections,which is a promising technique for exploring optimal driving paths for both assisted driving nowadays and driverless cars in the near future,has attracted significant attention owing to its high potential for improving road safety and traffic efficiency.Fine-grained scheduling primarily focuses on signalized intersection scenarios,as applying it directly to non-signalized intersections is challenging because each AV can move freely without traffic signal control.This may cause frequent driving collisions and low road traffic efficiency.Therefore,this study proposes a novel algorithm to address this issue.Our work focuses on the fine-grained scheduling of automated vehicles at non-signal intersections via dual reinforced training(FS-DRL).For FS-DRL,we first use a grid to describe the non-signalized intersection and propose a convolutional neural network(CNN)-based fast decision model that can rapidly yield a coarse-grained scheduling decision for each AV in a distributed manner.We then load these coarse-grained scheduling decisions onto a deep Q-learning network(DQN)for further evaluation.We use an adaptive learning rate to maximize the reward function and employ parameterεto tradeoff the fast speed of coarse-grained scheduling in the CNN and optimal fine-grained scheduling in the DQN.In addition,we prove that using this adaptive learning rate leads to a converged loss rate with an extremely small number of training loops.The simulation results show that compared with Dijkstra,RNN,and ant colony-based scheduling,FS-DRL yields a high accuracy of 96.5%on the sample,with improved performance of approximately 61.54%-85.37%in terms of the average conflict and traffic efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.62303197,62273214)the Natural Science Foundation of Shandong Province(ZR2024MFO18).
文摘Accurate and reliable photovoltaic(PV)modeling is crucial for the performance evaluation,control,and optimization of PV systems.However,existing methods for PV parameter identification often suffer from limitations in accuracy and efficiency.To address these challenges,we propose an adaptive multi-learning cooperation search algorithm(AMLCSA)for efficient identification of unknown parameters in PV models.AMLCSA is a novel algorithm inspired by teamwork behaviors in modern enterprises.It enhances the original cooperation search algorithm in two key aspects:(i)an adaptive multi-learning strategy that dynamically adjusts search ranges using adaptive weights,allowing better individuals to focus on local exploitation while guiding poorer individuals toward global exploration;and(ii)a chaotic grouping reflection strategy that introduces chaotic sequences to enhance population diversity and improve search performance.The effectiveness of AMLCSA is demonstrated on single-diode,double-diode,and three PV-module models.Simulation results show that AMLCSA offers significant advantages in convergence,accuracy,and stability compared to existing state-of-the-art algorithms.
基金The National Natural Science Foundation of China(No.60972001)the Science and Technology Plan of Suzhou City(No.SS201223)
文摘An adaptive topology learning approach is proposed to learn the topology of a practical camera network in an unsupervised way. The nodes are modeled by the Gaussian mixture model. The connectivity between nodes is judged by their cross-correlation function, which is also used to calculate their transition time distribution. The mutual information of the connected node pair is employed for transition probability calculation. A false link eliminating approach is proposed, along with a topology updating strategy to improve the learned topology. A real monitoring system with five disjoint cameras is built for experiments. Comparative results with traditional methods show that the proposed method is more accurate in topology learning and is more robust to environmental changes.
基金supported by the National Natural Science Foundation of China (Grant No. 60374015)
文摘In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov--Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme.
基金supported by National Natural Science Foundation of China (No. 60974139)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘This paper proposes a new adaptive iterative learning control approach for a class of nonlinearly parameterized systems with unknown time-varying delay and unknown control direction.By employing the parameter separation technique and signal replacement mechanism,the approach can overcome unknown time-varying parameters and unknown time-varying delay of the nonlinear systems.By incorporating a Nussbaum-type function,the proposed approach can deal with the unknown control direction of the nonlinear systems.Based on a Lyapunov-Krasovskii-like composite energy function,the convergence of tracking error sequence is achieved in the iteration domain.Finally,two simulation examples are provided to illustrate the feasibility of the proposed control method.
基金supported by National Natural Science Foundation of China(No.60804021,No.60702063)
文摘An observer-based adaptive iterative learning control (AILC) scheme is developed for a class of nonlinear systems with unknown time-varying parameters and unknown time-varying delays. The linear matrix inequality (LMI) method is employed to design the nonlinear observer. The designed controller contains a proportional-integral-derivative (PID) feedback term in time domain. The learning law of unknown constant parameter is differential-difference-type, and the learning law of unknown time-varying parameter is difference-type. It is assumed that the unknown delay-dependent uncertainty is nonlinearly parameterized. By constructing a Lyapunov-Krasovskii-like composite energy function (CEF), we prove the boundedness of all closed-loop signals and the convergence of tracking error. A simulation example is provided to illustrate the effectiveness of the control algorithm proposed in this paper.
基金supported by the National Natural Science Foundation of China(61873013,61922007)。
文摘This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and analyze adaptive ILC,for which robust convergence analysis via a contraction mapping approach is realized by leveraging properties of substochastic matrices.It is shown that robust tracking tasks can be realized for optimization-based adaptive ILC,where the boundedness of system trajectories and estimated parameters can be ensured,regardless of unknown time-varying nonlinearities and nonrepetitive uncertainties.Two simulation tests,especially implemented for an injection molding process,demonstrate the effectiveness of our robust optimization-based ILC results.
基金This work was supported by National Natural Science Foundation of China (No .60474038)
文摘In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-line from the input and output information of the system. A novel weighted one-step-ahead control criterion function is proposed for the control law. The convergence analysis shows that the proposed control law can guarantee the convergence under the assumption that the desired output is a set point. Simulation examples are provided for nonlinear systems to illustrate the better performance of the higher order learning adaptive control.
文摘The adaptive learning and prediction of a highly nonlinear and time-varying bioreactor benchmark process is studied using Neur-On-Line, a graphical tool kit for developing and deploying neural networks in the G2 real time intelligent environment,and a new modified Broyden, Fletcher, Goldfarb, and Shanno (BFGS) quasi-Newton algorithm. The modified BFGS algorithm for the adaptive learning of back propagation (BP) neural networks is developed and embedded into NeurOn-Line by introducing a new search method of learning rate to the full memory BFGS algorithm. Simulation results show that the adaptive learning and prediction neural network system can quicklv track the time-varving and nonlinear behavior of the bioreactor.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by theKoreaGovernment(MOTIE)(P0008703,The CompetencyDevelopment Program for Industry Specialist).
文摘Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.
基金supported by Grant-in-Aid for Scientific Research(C) (No. 20560248) of Japan
文摘Recently, various control methods represented by proportional-integral-derivative (PID) control are used for robotic control. To cope with the requirements for high response and precision, advanced feedforward controllers such as gravity compensator, Coriolis/centrifugal force compensator and friction compensators have been built in the controller. Generally, it causes heavy computational load when calculating the compensating value within a short sampling period. In this paper, integrated recurrent neural networks are applied as a feedforward controller for PUMA560 manipulator. The feedforward controller works instead of gravity and Coriolis/centrifugal force compensators. In the learning process of the neural network by using back propagation algorithm, the learning coefficient and gain of sigmoid function are tuned intuitively and empirically according to teaching signals. The tuning is complicated because it is being conducted by trial and error. Especially, when the scale of teaching signal is large, the problem becomes crucial. To cope with the problem which concerns the learning performance, a simple and adaptive learning technique for large scale teaching signals is proposed. The learning techniques and control effectiveness are evaluated through simulations using the dynamic model of PUMA560 manipulator.
基金This research was funded by King Mongkut’s University of Technology North Bangkok(Contract no.KMUTNB-62-KNOW-026).
文摘Fine-grained image classification is a challenging research topic because of the high degree of similarity among categories and the high degree of dissimilarity for a specific category caused by different poses and scales.A cul-tural heritage image is one of thefine-grained images because each image has the same similarity in most cases.Using the classification technique,distinguishing cultural heritage architecture may be difficult.This study proposes a cultural heri-tage content retrieval method using adaptive deep learning forfine-grained image retrieval.The key contribution of this research was the creation of a retrieval mod-el that could handle incremental streams of new categories while maintaining its past performance in old categories and not losing the old categorization of a cul-tural heritage image.The goal of the proposed method is to perform a retrieval task for classes.Incremental learning for new classes was conducted to reduce the re-training process.In this step,the original class is not necessary for re-train-ing which we call an adaptive deep learning technique.Cultural heritage in the case of Thai archaeological site architecture was retrieved through machine learn-ing and image processing.We analyze the experimental results of incremental learning forfine-grained images with images of Thai archaeological site architec-ture from world heritage provinces in Thailand,which have a similar architecture.Using afine-grained image retrieval technique for this group of cultural heritage images in a database can solve the problem of a high degree of similarity among categories and a high degree of dissimilarity for a specific category.The proposed method for retrieving the correct image from a database can deliver an average accuracy of 85 percent.Adaptive deep learning forfine-grained image retrieval was used to retrieve cultural heritage content,and it outperformed state-of-the-art methods infine-grained image retrieval.
基金supported by National Natural Science Foundation of China(Nos.61374102,61433002 and 61120106009)High Education Science&Technology Fund Planning Project of Shandong Province of China(No.J14LN30)
文摘Terminal iterative learning control(TILC) is developed to reduce the error between system output and a fixed desired point at the terminal end of operation interval over iterations under strictly identical initial conditions. In this work, the initial states are not required to be identical further but can be varying from iteration to iteration. In addition, the desired terminal point is not fixed any more but is allowed to change run-to-run. Consequently, a new adaptive TILC is proposed with a neural network initial state learning mechanism to achieve the learning objective over iterations. The neural network is used to approximate the effect of iteration-varying initial states on the terminal output and the neural network weights are identified iteratively along the iteration axis.A dead-zone scheme is developed such that both learning and adaptation are performed only if the terminal tracking error is outside a designated error bound. It is shown that the proposed approach is able to track run-varying terminal desired points fast with a specified tracking accuracy beyond the initial state variance.
基金Project(50276005) supported by the National Natural Science Foundation of China Projects (2006CB705400, 2003CB716206) supported by National Basic Research Program of China
文摘To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm.
文摘To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.
基金Supported by the National Natural Science Foundation of China(61273160)the Fundamental Research Funds for the Central Universities(14CX06067A,13CX05021A)
文摘In soft sensor field, just-in-time learning(JITL) is an effective approach to model nonlinear and time varying processes. However, most similarity criterions in JITL are computed in the input space only while ignoring important output information, which may lead to inaccurate construction of relevant sample set. To solve this problem, we propose a novel supervised feature extraction method suitable for the regression problem called supervised local and non-local structure preserving projections(SLNSPP), in which both input and output information can be easily and effectively incorporated through a newly defined similarity index. The SLNSPP can not only retain the virtue of locality preserving projections but also prevent faraway points from nearing after projection,which endues SLNSPP with powerful discriminating ability. Such two good properties of SLNSPP are desirable for JITL as they are expected to enhance the accuracy of similar sample selection. Consequently, we present a SLNSPP-JITL framework for developing adaptive soft sensor, including a sparse learning strategy to limit the scale and update the frequency of database. Finally, two case studies are conducted with benchmark datasets to evaluate the performance of the proposed schemes. The results demonstrate the effectiveness of LNSPP and SLNSPP.
文摘The recent emergence of adaptive language learning systems calls for conceptual work to guide the design of assessment and learning in an adaptive environment.Although adaptive learning might have been touted as a universal cure for learning problems,many adaptive language learning systems fall short of educators’expectations,partly due to a lack of standards and best practices in this area.To fill this gap,this paper proposes some major considerations in designing a high-quality assessment and learning experience in adaptive learning and ways to evaluate an adaptive learning system.The architecture of adaptive learning is decomposed,with a chain of inferences supporting the overall efficacy of an adaptive learning system presented,including user property representation,user property estimation,content representation,user interaction representation,and user interaction impact.A detailed analysis of key validity issues is provided for each inference,which motivates the major considerations in designing and evaluating assessment and learning.The paper first provides an overview of different types of assessment used in adaptive learning and an analysis of the assessment approach,priorities,and design considerations of each to optimize its use in adaptive learning.Then it proposes a framework for evaluating different aspects of an adaptive learning system.Some special connections are made to models,techniques,designs,and technologies specific to language learning and assessment,bringing more relevance to adaptive language learning solutions.Through establishing some guidelines on key aspects to evaluate and how to evaluate them,the work intends to bring more rigor to the field of adaptive language learning systems.
文摘The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wander(BW)and Muscle artifact(MA),these are physiological and nonstationary.As the nature of these artifacts is random,adaptive filtering is needed than conventional fixed coefficient filtering techniques.To address this,a new block based adaptive learning scheme is proposed to remove artifacts from TEB signals in clinical scenario.The proposed block least mean square(BLMS)algorithm is mathematically normalized with reference to data and error.This normalization leads,block normalized LMS(BNLMS)and block error normalized LMS(BENLMS)algorithms.Various adaptive artifact cancellers are developed in both time and frequency domains and applied on real TEB quantities contaminated with physiological signals.The ability of these techniques is measured by calculating signal to noise ratio improvement(SNRI),Excess Mean Square Error(EMSE),and Misadjustment(Mad).Among the considered algorithms,the frequency domain version of BENLMS algorithm removes the physiological artifacts effectively then the other counter parts.Hence,this adaptive artifact canceller is suitable for real time applications like wearable,remove health care monitoring units.