Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing can...Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.展开更多
With the rapid development of artificial intelligence(AI)technology,the teaching mode in the field of education is undergoing profound changes.Especially the design and implementation of personalized learning paths ha...With the rapid development of artificial intelligence(AI)technology,the teaching mode in the field of education is undergoing profound changes.Especially the design and implementation of personalized learning paths have become an important direction of intelligent teaching reform.The traditional“one-size-fits-all”teaching model has gradually failed to meet the individualized learning needs of students.However,through the advantages of data analysis and real-time feedback,AI technology can provide tailor-made teaching content and learning paths based on students’learning progress,interests,and abilities.This study explores the innovation of the personalized learning path model based on AI technology,and analyzes the potential and challenges of this model in improving teaching effectiveness,promoting the all-round development of students,and optimizing the interaction between teachers and students.Through case analysis and empirical research,this paper summarizes the implementation methods of the AI-driven personalized learning path,the innovation of teaching models,and their application prospects in educational reform.Meanwhile,the research also discussed the ethical issues of AI technology in education,data privacy protection,and its impact on the teacher-student relationship,and proposed corresponding solutions.展开更多
Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for sp...Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for spinal pathologies,leveraging AI and ML to enhance diagnostic accuracy through deep learning algorithms,enabling faster and more accurate detection of abnormalities.AIpowered robotics and surgical navigation systems improve implant placement precision and reduce complications in complex spine surgeries.Wearable devices and virtual platforms,designed with AI,offer personalized,adaptive therapies that improve treatment adherence and recovery outcomes.AI also enables preventive interventions by assessing spine condition risks early.Despite progress,challenges remain,including limited healthcare datasets,algorithmic biases,ethical concerns,and integration into existing systems.Interdisciplinary collaboration and explainable AI frameworks are essential to unlock AI’s full potential in spine care.Future developments include multimodal AI systems integrating imaging,clinical,and genetic data for holistic treatment approaches.AI and ML promise significant improvements in diagnostic accuracy,treatment personalization,service accessibility,and cost efficiency,paving the way for more streamlined and effective spine care,ultimately enhancing patient outcomes.展开更多
Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transforma...Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.展开更多
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide ...Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases.展开更多
Hepatocellular carcinoma(HCC)remains a leading cause of cancer-related mortality globally,necessitating advanced diagnostic tools to improve early detection and personalized targeted therapy.This review synthesizes ev...Hepatocellular carcinoma(HCC)remains a leading cause of cancer-related mortality globally,necessitating advanced diagnostic tools to improve early detection and personalized targeted therapy.This review synthesizes evidence on explainable ensemble learning approaches for HCC classification,emphasizing their integration with clinical workflows and multi-omics data.A systematic analysis[including datasets such as The Cancer Genome Atlas,Gene Expression Omnibus,and the Surveillance,Epidemiology,and End Results(SEER)datasets]revealed that explainable ensemble learning models achieve high diagnostic accuracy by combining clinical features,serum biomarkers such as alpha-fetoprotein,imaging features such as computed tomography and magnetic resonance imaging,and genomic data.For instance,SHapley Additive exPlanations(SHAP)-based random forests trained on NCBI GSE14520 microarray data(n=445)achieved 96.53%accuracy,while stacking ensembles applied to the SEER program data(n=1897)demonstrated an area under the receiver operating characteristic curve of 0.779 for mortality prediction.Despite promising results,challenges persist,including the computational costs of SHAP and local interpretable model-agnostic explanations analyses(e.g.,TreeSHAP requiring distributed computing for metabolomics datasets)and dataset biases(e.g.,SEER’s Western population dominance limiting generalizability).Future research must address inter-cohort heterogeneity,standardize explainability metrics,and prioritize lightweight surrogate models for resource-limited settings.This review presents the potential of explainable ensemble learning frameworks to bridge the gap between predictive accuracy and clinical interpretability,though rigorous validation in independent,multi-center cohorts is critical for real-world deployment.展开更多
Acute appendicitis(AAp)remains one of the most common abdominal emergencies,requiring rapid and accurate diagnosis to prevent complications and unnecessary surgeries.Conventional diagnostic methods,including medical h...Acute appendicitis(AAp)remains one of the most common abdominal emergencies,requiring rapid and accurate diagnosis to prevent complications and unnecessary surgeries.Conventional diagnostic methods,including medical history,clinical assessment,biochemical markers,and imaging techniques,often present limitations in sensitivity and specificity,especially in atypical cases.In recent years,artificial intelligence(AI)has demonstrated remarkable potential in enhancing diagnostic accuracy through machine learning(ML)and deep learning(DL)models.This review evaluates the current applications of AI in both adult and pediatric AAp,focusing on clinical data-based models,radiological imaging analysis,and AI-assisted clinical decision support systems.ML models such as random forest,support vector machines,logistic regression,and extreme gradient boosting have exhibited superior diagnostic performance compared to traditional scoring systems,achieving sensitivity and specificity rates exceeding 90%in multiple studies.Additionally,DL techniques,particularly convolutional neural networks,have been shown to outperform radiologists in interpreting ultrasound and computed tomography images,enhancing diagnostic confidence.This review synthesized findings from 65 studies,demonstrating that AI models integrating multimodal data including clinical,laboratory,and imaging parameters further improved diagnostic precision.Moreover,explainable AI approaches,such as SHapley Additive exPlanations and local interpretable model-agnostic explanations,have facilitated model transparency,fostering clinician trust in AI-driven decision-making.This review highlights the advancements in AI for AAp diagnosis,emphasizing that AI is used not only to establish the diagnosis of AAp but also to differentiate complicated from uncomplicated cases.While preliminary results are promising,further prospective,multicenter studies are required for large-scale clinical implementation,given that a great proportion of current evidence derives from retrospective designs,and existing prospective cohorts exhibit limited sample sizes or protocol variability.Future research should also focus on integrating AI-driven decision support tools into routine emergency care workflows.展开更多
The manufacturing sector has been transformed owing to additive manufacturing(AM),which has made it possible to create intricate,personalized items with little material waste.However,optimizing and enhancing AM proces...The manufacturing sector has been transformed owing to additive manufacturing(AM),which has made it possible to create intricate,personalized items with little material waste.However,optimizing and enhancing AM processes remain challenging owing to the intricacies involved in design,material selection,and process parameters.This review explores the integration of artificial intelligence(AI),machine learning(ML),and deep learning(DL)techniques to improve and innovate in the field of AM.AI-driven design optimization procedures offer innovative solutions for the 3D printing of complex geometries and lightweight structures.By leveraging machine learning(ML)algorithms,these procedures analyze extensive data from previous manufacturing processes to enhance efficiency and productivity.ML models facilitate design and production automation by learning from historical data and identifying intricate patterns that human operators may miss.Deep learning(DL)further augments this capacity by utilizing sophisticated neural networks to manage and interpret complex information and provide deeper insights into the manufacturing process.Integrating AI,ML,and DL into AM enables the creation of optimized,lightweight components that are crucial for reducing fuel consumption in the automotive and aviation industries.These advanced AI techniques optimize the design and production processes and enhance predictive modeling for process optimization and defect detection,leading to improved performance and reduced manufacturing costs.Therefore,integrating AI,ML,and DL into AM improves precision in component fabrication,enabling advanced material design innovations and opening new possibilities for innovation in product design and material science.This review discusses and highlights significant advancements and identifies future directions for applying AI,ML,and DL in AM.By leveraging these technologies,AM processes can achieve unprecedented levels of precision,customization,and productivity for analysis and modification.展开更多
The previous affiliation“Department of Computer Engineering,Cyprus International University,Nicosia,99258,Turkey”is for the Cyprus International University.
With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathemati...With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathematics)education,AI demonstrates significant advantages through adaptive learning pathways,instant feedback,and individualized resource allocation.However,current research predominantly focuses on the technical architecture and application effectiveness of such systems,with insufficient exploration of how AI-enabled personalized learning systems influence university students’learning motivation and academic achievement through educational psychological mechanisms.This paper adopts an educational psychology perspective to construct a causal mechanism model linking“learning motivation-learning behavior-academic achievement.”Findings indicate that AI-powered personalized learning systems enhance learning autonomy,boost self-efficacy,and optimize feedback mechanisms.These effects collectively stimulate university students’learning motivation in STEM disciplines,thereby promoting academic achievement.Building upon empirical research,this paper proposes implications for educational practice and policy formulation,emphasizing the necessity of advancing higher education reform through the dual influence of technology and psychological mechanisms.展开更多
The nutritional management of patients with esophageal cancer(EC)presents significant complexities,with traditional approaches facing inherent limitations in data collection,real-time decision-making,and personalized ...The nutritional management of patients with esophageal cancer(EC)presents significant complexities,with traditional approaches facing inherent limitations in data collection,real-time decision-making,and personalized care.This narrative review explores the transformative potential of artificial intelligence(AI)and machine learning(ML),particularly deep learning(DL)and reinforcement learning(RL),in revolutionizing nutritional support for this vulnerable patient population.DL has demonstrated remarkable capabilities in enhancing the accuracy and objectivity of nutritional assessment through precise,automated body composition analysis from medical imaging,offering valuable prognostic insights.Concurrently,RL enables the dynamic optimization of nutritional interventions,adapting them in real time to individual patient responses,paving the way for truly personalized care paradigms.Although AI/ML offers potential advantages in efficiency,precision,and personalization by integrating multidimensional data for superior clinical decision support,its widespread adoption is accompanied by critical challenges.These include safeguarding data privacy and security,mitigating algorithmic bias,ensuring transparency and accountability,and establishing rigorous clinical validation.Early evidence suggests the feasibility of applying AI/ML in nutritional risk stratification and workflow optimization,but highquality prospective studies are needed to demonstrate the direct impact on clinical outcomes,including complications,readmissions,and survival.Overcoming these hurdles necessitates robust ethical governance,interdisciplinary collaboration,and continuous education.Ultimately,the strategic integration of AI/ML holds immense promise to profoundly improve patient outcomes,enhance quality of life,and optimize health care resource utilization in the nutritional management of esophageal cancer.展开更多
This paper delves into the application of artificial intelligence in daily life and the basic concepts of machine learning.Firstly,the concept and background of artificial intelligence were introduced,as well as machi...This paper delves into the application of artificial intelligence in daily life and the basic concepts of machine learning.Firstly,the concept and background of artificial intelligence were introduced,as well as machine learning as an important branch of artificial intelligence.Subsequently,the specific applications of artificial intelligence in daily life were elaborated,including intelligent voice assistants,recommendation systems,as well as image recognition and facial recognition technologies.Subsequently,a preliminary exploration was conducted on the basic concepts of machine learning,including paradigms such as supervised learning,unsupervised learning,and reinforcement learning,as well as common algorithms such as linear regression,logistic regression,decision trees,and support vector machines.Finally,the application of artificial intelligence in daily life and the basic concepts of machine learning were summarized,and the development trends and future prospects of artificial intelligence technology were discussed,as well as the possibility of guiding readers to continue in-depth learning and exploration in the field of artificial intelligence.展开更多
Let’s review the role of gut microbiota in pathogenesis of chronic hepatitis B infection as addressed in by Zhu et al.Zhu et al used high-throughput technology to characterize the microbial ecosystems,which led to an...Let’s review the role of gut microbiota in pathogenesis of chronic hepatitis B infection as addressed in by Zhu et al.Zhu et al used high-throughput technology to characterize the microbial ecosystems,which led to an explosion of various types of molecular profiling data,such as metagenomics,metatranscriptomics,and metabolomics.To analyze such data,machine learning(ML)algorithms have shown to be useful for identifying key molecular signatures,discovering potential patient stratifications,and,particularly,for generating models that can accurately predict phenotypes.Strong evidence suggests that such gut microbiome-based stratification could guide customized interventions to benefit human health.Supervised learning includes designing an algorithm to fix a pre-identified pro-blem.To get an answer,ML software must access data that have been nominated.On the other hand,unsupervised learning does not address any pre-defined prob-lems.Bias should be eliminated as much as possible.In unsupervised learning,an ML algorithm works to identify data patterns without any prior operator input.This can subsequently lead to elements being identified that could not be concei-ved by the operator.At the intersection between supervised and unsupervised learning is semi-supervised ML.Semi-supervised learning includes using a par-tially labeled data set.The ML algorithm utilizes unsupervised learning to label data(that has not yet been labelled)by drawing findings from the labeled data.Then,supervised techniques can be used to solve defined problems involving the labeled data.Reinforcement learning,which is similar to supervised learning in the meaning,is goal-oriented.Reinforcement learning does not need labeled data,instead,it is provided with a set of regulations on a problem.An algorithm will carry out operations to try to answer questions involving the problem.Based on obtained data of gut microbiota,various therapeutic modalities can be applied:Prebiotics,probiotics,postbiotics,engineered bacteria,bacteriophage,and novel microbe-materials therapeutic system and fecal transplantation.In conclusion,ML is an artificial intelligence application that helps in providing new perspectives on tailored therapy.Furthermore,assessing the impact of gut microbiota modification is a critical step in advanced liver disease management.These new artificial intelligence techniques although promising,still require further analysis and validation in future studies.展开更多
Artificial intelligence(AI)is rapidly transforming the landscape of hepatology by enabling automated data interpretation,early disease detection,and individualized treatment strategies.Chronic liver diseases,including...Artificial intelligence(AI)is rapidly transforming the landscape of hepatology by enabling automated data interpretation,early disease detection,and individualized treatment strategies.Chronic liver diseases,including non-alcoholic fatty liver disease,cirrhosis,and hepatocellular carcinoma,often progress silently and pose diagnostic challenges due to reliance on invasive biopsies and operatordependent imaging.This review explores the integration of AI across key domains such as big data analytics,deep learning-based image analysis,histopathological interpretation,biomarker discovery,and clinical prediction modeling.AI algorithms have demonstrated high accuracy in liver fibrosis staging,hepatocellular carcinoma detection,and non-alcoholic fatty liver disease risk stratification,while also enhancing survival prediction and treatment response assessment.For instance,convolutional neural networks trained on portal venous-phase computed tomography have achieved area under the curves up to 0.92 for significant fibrosis(F2-F4)and 0.89 for advanced fibrosis,with magnetic resonance imaging-based models reporting comparable performance.Advanced methodologies such as federated learning preserve patient privacy during cross-center model training,and explainable AI techniques promote transparency and clinician trust.Despite these advancements,clinical adoption remains limited by challenges including data heterogeneity,algorithmic bias,regulatory uncertainty,and lack of real-time integration into electronic health records.Looking forward,the convergence of multi-omics,imaging,and clinical data through interpretable and validated AI frameworks holds great promise for precision liver care.Continued efforts in model standardization,ethical oversight,and clinician-centered deployment will be essential to realize the full potential of AI in hepatopathy diagnosis and treatment.展开更多
The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment ...The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound(GIC)adsorption,direct anodic oxidation,and·OH oxidation for decolourising Reactive Black 5(RB5)from aqueous solutions.The electrochemical process was optimised using the novel progressive central composite design-response surface methodology(CCD-NPRSM),hybrid artificial neural network-extreme gradient boosting(hybrid ANN-XGBoost),and classification and regression trees(CART).CCD-NPRSM and hybrid ANN-XGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational parameters:current density,electrolysis(treatment)time,and initial dye concentration.The optimised decolourisation efficiencies were 99.30%,96.63%,and 99.14%for CCD-NPRSM,hybrid ANN-XGBoost,and CART,respectively,compared to the 98.46%RB5 removal rate observed experimentally under optimum conditions:approximately 20 mA/cm^(2) of current density,20 min of electrolysis time,and 65 mg/L of RB5.The optimised mineralisation efficiencies ranged between 89%and 92%for different models based on total organic carbon(TOC).Experimental studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANN-XGBoost,CCD-NPRSM,and CART.Model validation using analysis of variance(ANOVA)revealed that hybrid ANN-XGBoost had a mean squared error(MSE)and a coefficient of determination(R^(2))of approximately 0.014 and 0.998,respectively,for the RB5 removal efficiency,outperforming CCD-NPRSM with MSE and R^(2) of 0.518 and 0.998,respectively.Overall,the hybrid ANN-XGBoost approach is the most feasible technique for assessing the electrochemical treatment efficiency in RB5 dye wastewater decolourisation.展开更多
BACKGROUND Knowledge-based systems(KBS)are software applications based on a knowledge database and an inference engine.Various experimental KBS for computerassisted medical diagnosis and treatment were started to be u...BACKGROUND Knowledge-based systems(KBS)are software applications based on a knowledge database and an inference engine.Various experimental KBS for computerassisted medical diagnosis and treatment were started to be used since 70s(VisualDx,GIDEON,DXPlain,CADUCEUS,Internist-I,Mycin etc.).AIM To present in detail the“Electronic Pediatrician(EPed)”,a medical non-machine learning artificial intelligence(nml-AI)KBS in its prototype version created by the corresponding author(with database written in Romanian)that offers a physiopathology-based differential and positive diagnosis and treatment of ill children.METHODS EPed specifically focuses on the physiopathological reasoning of pediatric clinical cases.EPed has currently reached its prototype version 2.0,being able to diagnose 302 physiopathological macro-links(briefly named“clusters”)and 269 pediatric diseases:Some examples of diagnosis and a previous testing of EPed on a group of 34 patients are also presented in this paper.RESULTS The prototype EPed can currently diagnose 269 pediatric infectious and noninfectious diseases(based on 302 clusters),including the most frequent respiratory/digestive/renal/central nervous system infections,but also many other noninfectious pediatric diseases like autoimmune,oncological,genetical diseases and even intoxications,plus some important surgical pathologies.CONCLUSION EPed is the first and only physiopathology-based nml-AI KBS focused on general pediatrics and is the first and only pediatric Romanian KBS addressed to medical professionals.Furthermore,EPed is the first and only nml-AI KBS that offers not only both a physiopathology-based differential and positive disease diagnosis,but also identifies possible physiopathological“clusters”that may explain the signs and symptoms of any child-patient and may help treating that patient physiopathologically(until a final diagnosis is found),thus encouraging and developing the physiopathological reasoning of any clinician.展开更多
Artificial intelligence(AI)serves as a key technology in global industrial transformation and technological restructuring and as the core driver of the fourth industrial revolution.Currently,deep learning techniques,s...Artificial intelligence(AI)serves as a key technology in global industrial transformation and technological restructuring and as the core driver of the fourth industrial revolution.Currently,deep learning techniques,such as convolutional neural networks,enable intelligent information collection in fields such as tongue and pulse diagnosis owing to their robust feature-processing capabilities.Natural language processing models,including long short-term memory and transformers,have been applied to traditional Chinese medicine(TCM)for diagnosis,syndrome differentiation,and prescription generation.Traditional machine learning algorithms,such as neural networks,support vector machines,and random forests,are also widely used in TCM diagnosis and treatment because of their strong regression and classification performance on small structured datasets.Future research on AI in TCM diagnosis and treatment may emphasize building large-scale,high-quality TCM datasets with unified criteria based on syndrome elements;identifying algorithms suited to TCM theoretical data distributions;and leveraging AI multimodal fusion and ensemble learning techniques for diverse raw features,such as images,text,and manually processed structured data,to increase the clinical efficacy of TCM diagnosis and treatment.展开更多
Metabolic dysfunction-associated steatotic liver disease(MASLD),formerly known as non-alcoholic fatty liver disease,represents a growing global health burden,contributing significantly to liver-related morbidity and m...Metabolic dysfunction-associated steatotic liver disease(MASLD),formerly known as non-alcoholic fatty liver disease,represents a growing global health burden,contributing significantly to liver-related morbidity and mortality.Early detection and timely intervention are essential to prevent disease progression.Conventional diagnostic methods,which rely on specialized imaging and invasive liver biopsies,underscore the need for non-invasive,cost-effective alternatives.Artificial intelligence—particularly machine learning and deep learning—has emerged as a transformative tool in MASLD diagnostics,offering improved accuracy in risk prediction,imaging interpretation,and disease stratification.This review synthesizes recent advancements in AI-based MASLD diagnostics,highlighting key models,performance metrics,and clinical applications,while addressing ongoing challenges such as data standardization,interpretability,and clinical validation.展开更多
This review comprehensively summarized the potential of artificial intelligence(AI)in the management of esophageal cancer.It highlighted the significance of AI-assisted endoscopy in Japan where endoscopy is central to...This review comprehensively summarized the potential of artificial intelligence(AI)in the management of esophageal cancer.It highlighted the significance of AI-assisted endoscopy in Japan where endoscopy is central to both screening and diagnosis.For the clinical adaptation of AI,several challenges remain for its effective translation.The establishment of high-quality clinical databases,such as the National Clinical Database and Japan Endoscopy Database in Japan,which covers almost all cases of esophageal cancer,is essential for validating multimodal AI models.This requires rigorous external validation using diverse datasets,including those from different endoscope manufacturers and image qualities.Furthermore,endoscopists’skills significantly affect diagnostic accuracy,suggesting that AI should serve as a supportive tool rather than a replacement.Addressing these challenges,along with country-specific legal and ethical considerations,will facilitate the successful integration of multimodal AI into the management of esophageal cancer,particularly in endoscopic diagnosis,and contribute to improved patient outcomes.Although this review focused on Japan as a case study,the challenges and solutions described are broadly applicable to other high-incidence regions.展开更多
Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparame...Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field.展开更多
文摘Gastrointestinal(GI)cancers remain a leading cause of cancer-related morbidity and mortality worldwide.Artificial intelligence(AI),particularly machine learning and deep learning(DL),has shown promise in enhancing cancer detection,diagnosis,and prognostication.A narrative review of literature published from January 2015 to march 2025 was conducted using PubMed,Web of Science,and Scopus.Search terms included"gastrointestinal cancer","artificial intelligence","machine learning","deep learning","radiomics","multimodal detection"and"predictive modeling".Studies were included if they focused on clinically relevant AI applications in GI oncology.AI algorithms for GI cancer detection have achieved high performance across imaging modalities,with endoscopic DL systems reporting accuracies of 85%-97%for polyp detection and segmentation.Radiomics-based models have predicted molecular biomarkers such as programmed cell death ligand 2 expression with area under the curves up to 0.92.Large language models applied to radiology reports demonstrated diagnostic accuracy comparable to junior radiologists(78.9%vs 80.0%),though without incremental value when combined with human interpretation.Multimodal AI approaches integrating imaging,pathology,and clinical data show emerging potential for precision oncology.AI in GI oncology has reached clinically relevant accuracy levels in multiple diagnostic tasks,with multimodal approaches and predictive biomarker modeling offering new opportunities for personalized care.However,broader validation,integration into clinical workflows,and attention to ethical,legal,and social implications remain critical for widespread adoption.
基金The 2024 Guangdong University of Science and Technology Teaching,Science and Innovation Project(GKJXXZ2024028)。
文摘With the rapid development of artificial intelligence(AI)technology,the teaching mode in the field of education is undergoing profound changes.Especially the design and implementation of personalized learning paths have become an important direction of intelligent teaching reform.The traditional“one-size-fits-all”teaching model has gradually failed to meet the individualized learning needs of students.However,through the advantages of data analysis and real-time feedback,AI technology can provide tailor-made teaching content and learning paths based on students’learning progress,interests,and abilities.This study explores the innovation of the personalized learning path model based on AI technology,and analyzes the potential and challenges of this model in improving teaching effectiveness,promoting the all-round development of students,and optimizing the interaction between teachers and students.Through case analysis and empirical research,this paper summarizes the implementation methods of the AI-driven personalized learning path,the innovation of teaching models,and their application prospects in educational reform.Meanwhile,the research also discussed the ethical issues of AI technology in education,data privacy protection,and its impact on the teacher-student relationship,and proposed corresponding solutions.
文摘Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for spinal pathologies,leveraging AI and ML to enhance diagnostic accuracy through deep learning algorithms,enabling faster and more accurate detection of abnormalities.AIpowered robotics and surgical navigation systems improve implant placement precision and reduce complications in complex spine surgeries.Wearable devices and virtual platforms,designed with AI,offer personalized,adaptive therapies that improve treatment adherence and recovery outcomes.AI also enables preventive interventions by assessing spine condition risks early.Despite progress,challenges remain,including limited healthcare datasets,algorithmic biases,ethical concerns,and integration into existing systems.Interdisciplinary collaboration and explainable AI frameworks are essential to unlock AI’s full potential in spine care.Future developments include multimodal AI systems integrating imaging,clinical,and genetic data for holistic treatment approaches.AI and ML promise significant improvements in diagnostic accuracy,treatment personalization,service accessibility,and cost efficiency,paving the way for more streamlined and effective spine care,ultimately enhancing patient outcomes.
文摘Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00460621,Developing BCI-Based Digital Health Technologies for Mental Illness and Pain Management).
文摘Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases.
文摘Hepatocellular carcinoma(HCC)remains a leading cause of cancer-related mortality globally,necessitating advanced diagnostic tools to improve early detection and personalized targeted therapy.This review synthesizes evidence on explainable ensemble learning approaches for HCC classification,emphasizing their integration with clinical workflows and multi-omics data.A systematic analysis[including datasets such as The Cancer Genome Atlas,Gene Expression Omnibus,and the Surveillance,Epidemiology,and End Results(SEER)datasets]revealed that explainable ensemble learning models achieve high diagnostic accuracy by combining clinical features,serum biomarkers such as alpha-fetoprotein,imaging features such as computed tomography and magnetic resonance imaging,and genomic data.For instance,SHapley Additive exPlanations(SHAP)-based random forests trained on NCBI GSE14520 microarray data(n=445)achieved 96.53%accuracy,while stacking ensembles applied to the SEER program data(n=1897)demonstrated an area under the receiver operating characteristic curve of 0.779 for mortality prediction.Despite promising results,challenges persist,including the computational costs of SHAP and local interpretable model-agnostic explanations analyses(e.g.,TreeSHAP requiring distributed computing for metabolomics datasets)and dataset biases(e.g.,SEER’s Western population dominance limiting generalizability).Future research must address inter-cohort heterogeneity,standardize explainability metrics,and prioritize lightweight surrogate models for resource-limited settings.This review presents the potential of explainable ensemble learning frameworks to bridge the gap between predictive accuracy and clinical interpretability,though rigorous validation in independent,multi-center cohorts is critical for real-world deployment.
文摘Acute appendicitis(AAp)remains one of the most common abdominal emergencies,requiring rapid and accurate diagnosis to prevent complications and unnecessary surgeries.Conventional diagnostic methods,including medical history,clinical assessment,biochemical markers,and imaging techniques,often present limitations in sensitivity and specificity,especially in atypical cases.In recent years,artificial intelligence(AI)has demonstrated remarkable potential in enhancing diagnostic accuracy through machine learning(ML)and deep learning(DL)models.This review evaluates the current applications of AI in both adult and pediatric AAp,focusing on clinical data-based models,radiological imaging analysis,and AI-assisted clinical decision support systems.ML models such as random forest,support vector machines,logistic regression,and extreme gradient boosting have exhibited superior diagnostic performance compared to traditional scoring systems,achieving sensitivity and specificity rates exceeding 90%in multiple studies.Additionally,DL techniques,particularly convolutional neural networks,have been shown to outperform radiologists in interpreting ultrasound and computed tomography images,enhancing diagnostic confidence.This review synthesized findings from 65 studies,demonstrating that AI models integrating multimodal data including clinical,laboratory,and imaging parameters further improved diagnostic precision.Moreover,explainable AI approaches,such as SHapley Additive exPlanations and local interpretable model-agnostic explanations,have facilitated model transparency,fostering clinician trust in AI-driven decision-making.This review highlights the advancements in AI for AAp diagnosis,emphasizing that AI is used not only to establish the diagnosis of AAp but also to differentiate complicated from uncomplicated cases.While preliminary results are promising,further prospective,multicenter studies are required for large-scale clinical implementation,given that a great proportion of current evidence derives from retrospective designs,and existing prospective cohorts exhibit limited sample sizes or protocol variability.Future research should also focus on integrating AI-driven decision support tools into routine emergency care workflows.
文摘The manufacturing sector has been transformed owing to additive manufacturing(AM),which has made it possible to create intricate,personalized items with little material waste.However,optimizing and enhancing AM processes remain challenging owing to the intricacies involved in design,material selection,and process parameters.This review explores the integration of artificial intelligence(AI),machine learning(ML),and deep learning(DL)techniques to improve and innovate in the field of AM.AI-driven design optimization procedures offer innovative solutions for the 3D printing of complex geometries and lightweight structures.By leveraging machine learning(ML)algorithms,these procedures analyze extensive data from previous manufacturing processes to enhance efficiency and productivity.ML models facilitate design and production automation by learning from historical data and identifying intricate patterns that human operators may miss.Deep learning(DL)further augments this capacity by utilizing sophisticated neural networks to manage and interpret complex information and provide deeper insights into the manufacturing process.Integrating AI,ML,and DL into AM enables the creation of optimized,lightweight components that are crucial for reducing fuel consumption in the automotive and aviation industries.These advanced AI techniques optimize the design and production processes and enhance predictive modeling for process optimization and defect detection,leading to improved performance and reduced manufacturing costs.Therefore,integrating AI,ML,and DL into AM improves precision in component fabrication,enabling advanced material design innovations and opening new possibilities for innovation in product design and material science.This review discusses and highlights significant advancements and identifies future directions for applying AI,ML,and DL in AM.By leveraging these technologies,AM processes can achieve unprecedented levels of precision,customization,and productivity for analysis and modification.
文摘The previous affiliation“Department of Computer Engineering,Cyprus International University,Nicosia,99258,Turkey”is for the Cyprus International University.
文摘With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathematics)education,AI demonstrates significant advantages through adaptive learning pathways,instant feedback,and individualized resource allocation.However,current research predominantly focuses on the technical architecture and application effectiveness of such systems,with insufficient exploration of how AI-enabled personalized learning systems influence university students’learning motivation and academic achievement through educational psychological mechanisms.This paper adopts an educational psychology perspective to construct a causal mechanism model linking“learning motivation-learning behavior-academic achievement.”Findings indicate that AI-powered personalized learning systems enhance learning autonomy,boost self-efficacy,and optimize feedback mechanisms.These effects collectively stimulate university students’learning motivation in STEM disciplines,thereby promoting academic achievement.Building upon empirical research,this paper proposes implications for educational practice and policy formulation,emphasizing the necessity of advancing higher education reform through the dual influence of technology and psychological mechanisms.
文摘The nutritional management of patients with esophageal cancer(EC)presents significant complexities,with traditional approaches facing inherent limitations in data collection,real-time decision-making,and personalized care.This narrative review explores the transformative potential of artificial intelligence(AI)and machine learning(ML),particularly deep learning(DL)and reinforcement learning(RL),in revolutionizing nutritional support for this vulnerable patient population.DL has demonstrated remarkable capabilities in enhancing the accuracy and objectivity of nutritional assessment through precise,automated body composition analysis from medical imaging,offering valuable prognostic insights.Concurrently,RL enables the dynamic optimization of nutritional interventions,adapting them in real time to individual patient responses,paving the way for truly personalized care paradigms.Although AI/ML offers potential advantages in efficiency,precision,and personalization by integrating multidimensional data for superior clinical decision support,its widespread adoption is accompanied by critical challenges.These include safeguarding data privacy and security,mitigating algorithmic bias,ensuring transparency and accountability,and establishing rigorous clinical validation.Early evidence suggests the feasibility of applying AI/ML in nutritional risk stratification and workflow optimization,but highquality prospective studies are needed to demonstrate the direct impact on clinical outcomes,including complications,readmissions,and survival.Overcoming these hurdles necessitates robust ethical governance,interdisciplinary collaboration,and continuous education.Ultimately,the strategic integration of AI/ML holds immense promise to profoundly improve patient outcomes,enhance quality of life,and optimize health care resource utilization in the nutritional management of esophageal cancer.
文摘This paper delves into the application of artificial intelligence in daily life and the basic concepts of machine learning.Firstly,the concept and background of artificial intelligence were introduced,as well as machine learning as an important branch of artificial intelligence.Subsequently,the specific applications of artificial intelligence in daily life were elaborated,including intelligent voice assistants,recommendation systems,as well as image recognition and facial recognition technologies.Subsequently,a preliminary exploration was conducted on the basic concepts of machine learning,including paradigms such as supervised learning,unsupervised learning,and reinforcement learning,as well as common algorithms such as linear regression,logistic regression,decision trees,and support vector machines.Finally,the application of artificial intelligence in daily life and the basic concepts of machine learning were summarized,and the development trends and future prospects of artificial intelligence technology were discussed,as well as the possibility of guiding readers to continue in-depth learning and exploration in the field of artificial intelligence.
文摘Let’s review the role of gut microbiota in pathogenesis of chronic hepatitis B infection as addressed in by Zhu et al.Zhu et al used high-throughput technology to characterize the microbial ecosystems,which led to an explosion of various types of molecular profiling data,such as metagenomics,metatranscriptomics,and metabolomics.To analyze such data,machine learning(ML)algorithms have shown to be useful for identifying key molecular signatures,discovering potential patient stratifications,and,particularly,for generating models that can accurately predict phenotypes.Strong evidence suggests that such gut microbiome-based stratification could guide customized interventions to benefit human health.Supervised learning includes designing an algorithm to fix a pre-identified pro-blem.To get an answer,ML software must access data that have been nominated.On the other hand,unsupervised learning does not address any pre-defined prob-lems.Bias should be eliminated as much as possible.In unsupervised learning,an ML algorithm works to identify data patterns without any prior operator input.This can subsequently lead to elements being identified that could not be concei-ved by the operator.At the intersection between supervised and unsupervised learning is semi-supervised ML.Semi-supervised learning includes using a par-tially labeled data set.The ML algorithm utilizes unsupervised learning to label data(that has not yet been labelled)by drawing findings from the labeled data.Then,supervised techniques can be used to solve defined problems involving the labeled data.Reinforcement learning,which is similar to supervised learning in the meaning,is goal-oriented.Reinforcement learning does not need labeled data,instead,it is provided with a set of regulations on a problem.An algorithm will carry out operations to try to answer questions involving the problem.Based on obtained data of gut microbiota,various therapeutic modalities can be applied:Prebiotics,probiotics,postbiotics,engineered bacteria,bacteriophage,and novel microbe-materials therapeutic system and fecal transplantation.In conclusion,ML is an artificial intelligence application that helps in providing new perspectives on tailored therapy.Furthermore,assessing the impact of gut microbiota modification is a critical step in advanced liver disease management.These new artificial intelligence techniques although promising,still require further analysis and validation in future studies.
基金Supported by the Science Planning Project of Liaoning Province,No.2019JH2/10300031-05the National Natural Science Foundation of China,No.12171074.
文摘Artificial intelligence(AI)is rapidly transforming the landscape of hepatology by enabling automated data interpretation,early disease detection,and individualized treatment strategies.Chronic liver diseases,including non-alcoholic fatty liver disease,cirrhosis,and hepatocellular carcinoma,often progress silently and pose diagnostic challenges due to reliance on invasive biopsies and operatordependent imaging.This review explores the integration of AI across key domains such as big data analytics,deep learning-based image analysis,histopathological interpretation,biomarker discovery,and clinical prediction modeling.AI algorithms have demonstrated high accuracy in liver fibrosis staging,hepatocellular carcinoma detection,and non-alcoholic fatty liver disease risk stratification,while also enhancing survival prediction and treatment response assessment.For instance,convolutional neural networks trained on portal venous-phase computed tomography have achieved area under the curves up to 0.92 for significant fibrosis(F2-F4)and 0.89 for advanced fibrosis,with magnetic resonance imaging-based models reporting comparable performance.Advanced methodologies such as federated learning preserve patient privacy during cross-center model training,and explainable AI techniques promote transparency and clinician trust.Despite these advancements,clinical adoption remains limited by challenges including data heterogeneity,algorithmic bias,regulatory uncertainty,and lack of real-time integration into electronic health records.Looking forward,the convergence of multi-omics,imaging,and clinical data through interpretable and validated AI frameworks holds great promise for precision liver care.Continued efforts in model standardization,ethical oversight,and clinician-centered deployment will be essential to realize the full potential of AI in hepatopathy diagnosis and treatment.
文摘The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound(GIC)adsorption,direct anodic oxidation,and·OH oxidation for decolourising Reactive Black 5(RB5)from aqueous solutions.The electrochemical process was optimised using the novel progressive central composite design-response surface methodology(CCD-NPRSM),hybrid artificial neural network-extreme gradient boosting(hybrid ANN-XGBoost),and classification and regression trees(CART).CCD-NPRSM and hybrid ANN-XGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational parameters:current density,electrolysis(treatment)time,and initial dye concentration.The optimised decolourisation efficiencies were 99.30%,96.63%,and 99.14%for CCD-NPRSM,hybrid ANN-XGBoost,and CART,respectively,compared to the 98.46%RB5 removal rate observed experimentally under optimum conditions:approximately 20 mA/cm^(2) of current density,20 min of electrolysis time,and 65 mg/L of RB5.The optimised mineralisation efficiencies ranged between 89%and 92%for different models based on total organic carbon(TOC).Experimental studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANN-XGBoost,CCD-NPRSM,and CART.Model validation using analysis of variance(ANOVA)revealed that hybrid ANN-XGBoost had a mean squared error(MSE)and a coefficient of determination(R^(2))of approximately 0.014 and 0.998,respectively,for the RB5 removal efficiency,outperforming CCD-NPRSM with MSE and R^(2) of 0.518 and 0.998,respectively.Overall,the hybrid ANN-XGBoost approach is the most feasible technique for assessing the electrochemical treatment efficiency in RB5 dye wastewater decolourisation.
文摘BACKGROUND Knowledge-based systems(KBS)are software applications based on a knowledge database and an inference engine.Various experimental KBS for computerassisted medical diagnosis and treatment were started to be used since 70s(VisualDx,GIDEON,DXPlain,CADUCEUS,Internist-I,Mycin etc.).AIM To present in detail the“Electronic Pediatrician(EPed)”,a medical non-machine learning artificial intelligence(nml-AI)KBS in its prototype version created by the corresponding author(with database written in Romanian)that offers a physiopathology-based differential and positive diagnosis and treatment of ill children.METHODS EPed specifically focuses on the physiopathological reasoning of pediatric clinical cases.EPed has currently reached its prototype version 2.0,being able to diagnose 302 physiopathological macro-links(briefly named“clusters”)and 269 pediatric diseases:Some examples of diagnosis and a previous testing of EPed on a group of 34 patients are also presented in this paper.RESULTS The prototype EPed can currently diagnose 269 pediatric infectious and noninfectious diseases(based on 302 clusters),including the most frequent respiratory/digestive/renal/central nervous system infections,but also many other noninfectious pediatric diseases like autoimmune,oncological,genetical diseases and even intoxications,plus some important surgical pathologies.CONCLUSION EPed is the first and only physiopathology-based nml-AI KBS focused on general pediatrics and is the first and only pediatric Romanian KBS addressed to medical professionals.Furthermore,EPed is the first and only nml-AI KBS that offers not only both a physiopathology-based differential and positive disease diagnosis,but also identifies possible physiopathological“clusters”that may explain the signs and symptoms of any child-patient and may help treating that patient physiopathologically(until a final diagnosis is found),thus encouraging and developing the physiopathological reasoning of any clinician.
基金supported by grants from the National Natural Science Foundation of China(Key Program)(No.82230124)Traditional Chinese Medicine Inheritance and Innovation“Ten million”talent project-Qihuang Project Chief Scientist Project(No.0201000401)+1 种基金State Administration of Traditional Chinese Medicine 2nd National Traditional Chinese Medicine Inheritance Studio Construction Project(Official Letter of the State Office of Traditional Chinese Medicine[2022]No.245)National Natural Science Foundation of China(General Program)(No.81974556).
文摘Artificial intelligence(AI)serves as a key technology in global industrial transformation and technological restructuring and as the core driver of the fourth industrial revolution.Currently,deep learning techniques,such as convolutional neural networks,enable intelligent information collection in fields such as tongue and pulse diagnosis owing to their robust feature-processing capabilities.Natural language processing models,including long short-term memory and transformers,have been applied to traditional Chinese medicine(TCM)for diagnosis,syndrome differentiation,and prescription generation.Traditional machine learning algorithms,such as neural networks,support vector machines,and random forests,are also widely used in TCM diagnosis and treatment because of their strong regression and classification performance on small structured datasets.Future research on AI in TCM diagnosis and treatment may emphasize building large-scale,high-quality TCM datasets with unified criteria based on syndrome elements;identifying algorithms suited to TCM theoretical data distributions;and leveraging AI multimodal fusion and ensemble learning techniques for diverse raw features,such as images,text,and manually processed structured data,to increase the clinical efficacy of TCM diagnosis and treatment.
文摘Metabolic dysfunction-associated steatotic liver disease(MASLD),formerly known as non-alcoholic fatty liver disease,represents a growing global health burden,contributing significantly to liver-related morbidity and mortality.Early detection and timely intervention are essential to prevent disease progression.Conventional diagnostic methods,which rely on specialized imaging and invasive liver biopsies,underscore the need for non-invasive,cost-effective alternatives.Artificial intelligence—particularly machine learning and deep learning—has emerged as a transformative tool in MASLD diagnostics,offering improved accuracy in risk prediction,imaging interpretation,and disease stratification.This review synthesizes recent advancements in AI-based MASLD diagnostics,highlighting key models,performance metrics,and clinical applications,while addressing ongoing challenges such as data standardization,interpretability,and clinical validation.
基金Supported by Japan Society for the Promotion of Science,No.24K11935.
文摘This review comprehensively summarized the potential of artificial intelligence(AI)in the management of esophageal cancer.It highlighted the significance of AI-assisted endoscopy in Japan where endoscopy is central to both screening and diagnosis.For the clinical adaptation of AI,several challenges remain for its effective translation.The establishment of high-quality clinical databases,such as the National Clinical Database and Japan Endoscopy Database in Japan,which covers almost all cases of esophageal cancer,is essential for validating multimodal AI models.This requires rigorous external validation using diverse datasets,including those from different endoscope manufacturers and image qualities.Furthermore,endoscopists’skills significantly affect diagnostic accuracy,suggesting that AI should serve as a supportive tool rather than a replacement.Addressing these challenges,along with country-specific legal and ethical considerations,will facilitate the successful integration of multimodal AI into the management of esophageal cancer,particularly in endoscopic diagnosis,and contribute to improved patient outcomes.Although this review focused on Japan as a case study,the challenges and solutions described are broadly applicable to other high-incidence regions.
文摘Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field.