Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transforma...Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.展开更多
Acute appendicitis(AAp)remains one of the most common abdominal emergencies,requiring rapid and accurate diagnosis to prevent complications and unnecessary surgeries.Conventional diagnostic methods,including medical h...Acute appendicitis(AAp)remains one of the most common abdominal emergencies,requiring rapid and accurate diagnosis to prevent complications and unnecessary surgeries.Conventional diagnostic methods,including medical history,clinical assessment,biochemical markers,and imaging techniques,often present limitations in sensitivity and specificity,especially in atypical cases.In recent years,artificial intelligence(AI)has demonstrated remarkable potential in enhancing diagnostic accuracy through machine learning(ML)and deep learning(DL)models.This review evaluates the current applications of AI in both adult and pediatric AAp,focusing on clinical data-based models,radiological imaging analysis,and AI-assisted clinical decision support systems.ML models such as random forest,support vector machines,logistic regression,and extreme gradient boosting have exhibited superior diagnostic performance compared to traditional scoring systems,achieving sensitivity and specificity rates exceeding 90%in multiple studies.Additionally,DL techniques,particularly convolutional neural networks,have been shown to outperform radiologists in interpreting ultrasound and computed tomography images,enhancing diagnostic confidence.This review synthesized findings from 65 studies,demonstrating that AI models integrating multimodal data including clinical,laboratory,and imaging parameters further improved diagnostic precision.Moreover,explainable AI approaches,such as SHapley Additive exPlanations and local interpretable model-agnostic explanations,have facilitated model transparency,fostering clinician trust in AI-driven decision-making.This review highlights the advancements in AI for AAp diagnosis,emphasizing that AI is used not only to establish the diagnosis of AAp but also to differentiate complicated from uncomplicated cases.While preliminary results are promising,further prospective,multicenter studies are required for large-scale clinical implementation,given that a great proportion of current evidence derives from retrospective designs,and existing prospective cohorts exhibit limited sample sizes or protocol variability.Future research should also focus on integrating AI-driven decision support tools into routine emergency care workflows.展开更多
The manufacturing sector has been transformed owing to additive manufacturing(AM),which has made it possible to create intricate,personalized items with little material waste.However,optimizing and enhancing AM proces...The manufacturing sector has been transformed owing to additive manufacturing(AM),which has made it possible to create intricate,personalized items with little material waste.However,optimizing and enhancing AM processes remain challenging owing to the intricacies involved in design,material selection,and process parameters.This review explores the integration of artificial intelligence(AI),machine learning(ML),and deep learning(DL)techniques to improve and innovate in the field of AM.AI-driven design optimization procedures offer innovative solutions for the 3D printing of complex geometries and lightweight structures.By leveraging machine learning(ML)algorithms,these procedures analyze extensive data from previous manufacturing processes to enhance efficiency and productivity.ML models facilitate design and production automation by learning from historical data and identifying intricate patterns that human operators may miss.Deep learning(DL)further augments this capacity by utilizing sophisticated neural networks to manage and interpret complex information and provide deeper insights into the manufacturing process.Integrating AI,ML,and DL into AM enables the creation of optimized,lightweight components that are crucial for reducing fuel consumption in the automotive and aviation industries.These advanced AI techniques optimize the design and production processes and enhance predictive modeling for process optimization and defect detection,leading to improved performance and reduced manufacturing costs.Therefore,integrating AI,ML,and DL into AM improves precision in component fabrication,enabling advanced material design innovations and opening new possibilities for innovation in product design and material science.This review discusses and highlights significant advancements and identifies future directions for applying AI,ML,and DL in AM.By leveraging these technologies,AM processes can achieve unprecedented levels of precision,customization,and productivity for analysis and modification.展开更多
With the rapid development of artificial intelligence(AI)technology,the teaching mode in the field of education is undergoing profound changes.Especially the design and implementation of personalized learning paths ha...With the rapid development of artificial intelligence(AI)technology,the teaching mode in the field of education is undergoing profound changes.Especially the design and implementation of personalized learning paths have become an important direction of intelligent teaching reform.The traditional“one-size-fits-all”teaching model has gradually failed to meet the individualized learning needs of students.However,through the advantages of data analysis and real-time feedback,AI technology can provide tailor-made teaching content and learning paths based on students’learning progress,interests,and abilities.This study explores the innovation of the personalized learning path model based on AI technology,and analyzes the potential and challenges of this model in improving teaching effectiveness,promoting the all-round development of students,and optimizing the interaction between teachers and students.Through case analysis and empirical research,this paper summarizes the implementation methods of the AI-driven personalized learning path,the innovation of teaching models,and their application prospects in educational reform.Meanwhile,the research also discussed the ethical issues of AI technology in education,data privacy protection,and its impact on the teacher-student relationship,and proposed corresponding solutions.展开更多
With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathemati...With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathematics)education,AI demonstrates significant advantages through adaptive learning pathways,instant feedback,and individualized resource allocation.However,current research predominantly focuses on the technical architecture and application effectiveness of such systems,with insufficient exploration of how AI-enabled personalized learning systems influence university students’learning motivation and academic achievement through educational psychological mechanisms.This paper adopts an educational psychology perspective to construct a causal mechanism model linking“learning motivation-learning behavior-academic achievement.”Findings indicate that AI-powered personalized learning systems enhance learning autonomy,boost self-efficacy,and optimize feedback mechanisms.These effects collectively stimulate university students’learning motivation in STEM disciplines,thereby promoting academic achievement.Building upon empirical research,this paper proposes implications for educational practice and policy formulation,emphasizing the necessity of advancing higher education reform through the dual influence of technology and psychological mechanisms.展开更多
This paper delves into the application of artificial intelligence in daily life and the basic concepts of machine learning.Firstly,the concept and background of artificial intelligence were introduced,as well as machi...This paper delves into the application of artificial intelligence in daily life and the basic concepts of machine learning.Firstly,the concept and background of artificial intelligence were introduced,as well as machine learning as an important branch of artificial intelligence.Subsequently,the specific applications of artificial intelligence in daily life were elaborated,including intelligent voice assistants,recommendation systems,as well as image recognition and facial recognition technologies.Subsequently,a preliminary exploration was conducted on the basic concepts of machine learning,including paradigms such as supervised learning,unsupervised learning,and reinforcement learning,as well as common algorithms such as linear regression,logistic regression,decision trees,and support vector machines.Finally,the application of artificial intelligence in daily life and the basic concepts of machine learning were summarized,and the development trends and future prospects of artificial intelligence technology were discussed,as well as the possibility of guiding readers to continue in-depth learning and exploration in the field of artificial intelligence.展开更多
Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for sp...Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for spinal pathologies,leveraging AI and ML to enhance diagnostic accuracy through deep learning algorithms,enabling faster and more accurate detection of abnormalities.AIpowered robotics and surgical navigation systems improve implant placement precision and reduce complications in complex spine surgeries.Wearable devices and virtual platforms,designed with AI,offer personalized,adaptive therapies that improve treatment adherence and recovery outcomes.AI also enables preventive interventions by assessing spine condition risks early.Despite progress,challenges remain,including limited healthcare datasets,algorithmic biases,ethical concerns,and integration into existing systems.Interdisciplinary collaboration and explainable AI frameworks are essential to unlock AI’s full potential in spine care.Future developments include multimodal AI systems integrating imaging,clinical,and genetic data for holistic treatment approaches.AI and ML promise significant improvements in diagnostic accuracy,treatment personalization,service accessibility,and cost efficiency,paving the way for more streamlined and effective spine care,ultimately enhancing patient outcomes.展开更多
The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment ...The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound(GIC)adsorption,direct anodic oxidation,and·OH oxidation for decolourising Reactive Black 5(RB5)from aqueous solutions.The electrochemical process was optimised using the novel progressive central composite design-response surface methodology(CCD-NPRSM),hybrid artificial neural network-extreme gradient boosting(hybrid ANN-XGBoost),and classification and regression trees(CART).CCD-NPRSM and hybrid ANN-XGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational parameters:current density,electrolysis(treatment)time,and initial dye concentration.The optimised decolourisation efficiencies were 99.30%,96.63%,and 99.14%for CCD-NPRSM,hybrid ANN-XGBoost,and CART,respectively,compared to the 98.46%RB5 removal rate observed experimentally under optimum conditions:approximately 20 mA/cm^(2) of current density,20 min of electrolysis time,and 65 mg/L of RB5.The optimised mineralisation efficiencies ranged between 89%and 92%for different models based on total organic carbon(TOC).Experimental studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANN-XGBoost,CCD-NPRSM,and CART.Model validation using analysis of variance(ANOVA)revealed that hybrid ANN-XGBoost had a mean squared error(MSE)and a coefficient of determination(R^(2))of approximately 0.014 and 0.998,respectively,for the RB5 removal efficiency,outperforming CCD-NPRSM with MSE and R^(2) of 0.518 and 0.998,respectively.Overall,the hybrid ANN-XGBoost approach is the most feasible technique for assessing the electrochemical treatment efficiency in RB5 dye wastewater decolourisation.展开更多
BACKGROUND Knowledge-based systems(KBS)are software applications based on a knowledge database and an inference engine.Various experimental KBS for computerassisted medical diagnosis and treatment were started to be u...BACKGROUND Knowledge-based systems(KBS)are software applications based on a knowledge database and an inference engine.Various experimental KBS for computerassisted medical diagnosis and treatment were started to be used since 70s(VisualDx,GIDEON,DXPlain,CADUCEUS,Internist-I,Mycin etc.).AIM To present in detail the“Electronic Pediatrician(EPed)”,a medical non-machine learning artificial intelligence(nml-AI)KBS in its prototype version created by the corresponding author(with database written in Romanian)that offers a physiopathology-based differential and positive diagnosis and treatment of ill children.METHODS EPed specifically focuses on the physiopathological reasoning of pediatric clinical cases.EPed has currently reached its prototype version 2.0,being able to diagnose 302 physiopathological macro-links(briefly named“clusters”)and 269 pediatric diseases:Some examples of diagnosis and a previous testing of EPed on a group of 34 patients are also presented in this paper.RESULTS The prototype EPed can currently diagnose 269 pediatric infectious and noninfectious diseases(based on 302 clusters),including the most frequent respiratory/digestive/renal/central nervous system infections,but also many other noninfectious pediatric diseases like autoimmune,oncological,genetical diseases and even intoxications,plus some important surgical pathologies.CONCLUSION EPed is the first and only physiopathology-based nml-AI KBS focused on general pediatrics and is the first and only pediatric Romanian KBS addressed to medical professionals.Furthermore,EPed is the first and only nml-AI KBS that offers not only both a physiopathology-based differential and positive disease diagnosis,but also identifies possible physiopathological“clusters”that may explain the signs and symptoms of any child-patient and may help treating that patient physiopathologically(until a final diagnosis is found),thus encouraging and developing the physiopathological reasoning of any clinician.展开更多
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide ...Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases.展开更多
This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and...This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and Best First Search(BFS).The study demonstrates that BFS significantly enhances the performance of both classifiers.With BFS preprocessing,the ANN model achieved an impressive accuracy of 97.5%,precision and recall of 97.5%,and an Receiver Operating Characteristics(ROC)area of 97.9%,outperforming the Chi-Square-based ANN,which recorded an accuracy of 91.4%.Similarly,the F-KNN model with BFS achieved an accuracy of 96.3%,precision and recall of 96.3%,and a Receiver Operating Characteristics(ROC)area of 96.2%,surpassing the performance of the Chi-Square F-KNN model,which showed an accuracy of 95%.These results highlight that BFS improves the ability to select the most relevant features,contributing to more reliable and accurate stroke predictions.The findings underscore the importance of using advanced feature selection methods like BFS to enhance the performance of machine learning models in healthcare applications,leading to better stroke risk management and improved patient outcomes.展开更多
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,f...The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,flexible sensors are evolving from a single sensing element to a smarter system,which is capable of highly efficient acquisition,analysis,and even perception of vast,multifaceted data.While challenging from a manual perspective,the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm(machine learning)and the framework(artificial synapses)level.This review presents the recent progress of the emerging AI-driven,intelligent flexible sensing systems.The basic concept of machine learning and artificial synapses are introduced.The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed,which significantly advances the applications such as flexible sensory systems,soft/humanoid robotics,and human activity monitoring.As two of the most profound innovations in the twenty-first century,the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.展开更多
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are...Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.展开更多
Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Metho...Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT.展开更多
Breast cancer stands as one of the world’s most perilous and formidable diseases,having recently surpassed lung cancer as the most prevalent cancer type.This disease arises when cells in the breast undergo unregulate...Breast cancer stands as one of the world’s most perilous and formidable diseases,having recently surpassed lung cancer as the most prevalent cancer type.This disease arises when cells in the breast undergo unregulated proliferation,resulting in the formation of a tumor that has the capacity to invade surrounding tissues.It is not confined to a specific gender;both men and women can be diagnosed with breast cancer,although it is more frequently observed in women.Early detection is pivotal in mitigating its mortality rate.The key to curbing its mortality lies in early detection.However,it is crucial to explain the black-box machine learning algorithms in this field to gain the trust of medical professionals and patients.In this study,we experimented with various machine learning models to predict breast cancer using the Wisconsin Breast Cancer Dataset(WBCD)dataset.We applied Random Forest,XGBoost,Support Vector Machine(SVM),Multi-Layer Perceptron(MLP),and Gradient Boost classifiers,with the Random Forest model outperforming the others.A comparison analysis between the two methods was done after performing hyperparameter tuning on each method.The analysis showed that the random forest performs better and yields the highest result with 99.46%accuracy.After performance evaluation,two Explainable Artificial Intelligence(XAI)methods,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-Agnostic Explanations(LIME),have been utilized to explain the random forest machine learning model.展开更多
The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this stud...The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this study proposes an artificial emotional lazy Q-learning method,which combines artificial emotion,lazy learning,and reinforcement learning for static security and stability analysis of power systems.Moreover,this study compares the analysis results of the proposed method with those of the small disturbance method for a stand-alone power system and verifies that the proposed lazy Q-learning method is able to effectively screen useful data for learning,and improve the static security stability of the new type of power system more effectively than the traditional proportional-integral-differential control and Q-learning methods.展开更多
Sleep and well-being have been intricately linked,and sleep hygiene is paramount for developing mental well-being and resilience.Although widespread,sleep disorders require elaborate polysomnography laboratory and pat...Sleep and well-being have been intricately linked,and sleep hygiene is paramount for developing mental well-being and resilience.Although widespread,sleep disorders require elaborate polysomnography laboratory and patient-stay with sleep in unfamiliar environments.Current technologies have allowed various devices to diagnose sleep disorders at home.However,these devices are in various validation stages,with many already receiving approvals from competent authorities.This has captured vast patient-related physiologic data for advanced analytics using artificial intelligence through machine and deep learning applications.This is expected to be integrated with patients’Electronic Health Records and provide individualized prescriptive therapy for sleep disorders in the future.展开更多
The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As t...The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks.展开更多
文摘Diabetic retinopathy(DR)remains a leading cause of vision impairment and blindness among individuals with diabetes,necessitating innovative approaches to screening and management.This editorial explores the transformative potential of artificial intelligence(AI)and machine learning(ML)in revolutionizing DR care.AI and ML technologies have demonstrated remarkable advancements in enhancing the accuracy,efficiency,and accessibility of DR screening,helping to overcome barriers to early detection.These technologies leverage vast datasets to identify patterns and predict disease progression with unprecedented precision,enabling clinicians to make more informed decisions.Furthermore,AI-driven solutions hold promise in personalizing management strategies for DR,incorpo-rating predictive analytics to tailor interventions and optimize treatment path-ways.By automating routine tasks,AI can reduce the burden on healthcare providers,allowing for a more focused allocation of resources towards complex patient care.This review aims to evaluate the current advancements and applic-ations of AI and ML in DR screening,and to discuss the potential of these techno-logies in developing personalized management strategies,ultimately aiming to improve patient outcomes and reduce the global burden of DR.The integration of AI and ML in DR care represents a paradigm shift,offering a glimpse into the future of ophthalmic healthcare.
文摘Acute appendicitis(AAp)remains one of the most common abdominal emergencies,requiring rapid and accurate diagnosis to prevent complications and unnecessary surgeries.Conventional diagnostic methods,including medical history,clinical assessment,biochemical markers,and imaging techniques,often present limitations in sensitivity and specificity,especially in atypical cases.In recent years,artificial intelligence(AI)has demonstrated remarkable potential in enhancing diagnostic accuracy through machine learning(ML)and deep learning(DL)models.This review evaluates the current applications of AI in both adult and pediatric AAp,focusing on clinical data-based models,radiological imaging analysis,and AI-assisted clinical decision support systems.ML models such as random forest,support vector machines,logistic regression,and extreme gradient boosting have exhibited superior diagnostic performance compared to traditional scoring systems,achieving sensitivity and specificity rates exceeding 90%in multiple studies.Additionally,DL techniques,particularly convolutional neural networks,have been shown to outperform radiologists in interpreting ultrasound and computed tomography images,enhancing diagnostic confidence.This review synthesized findings from 65 studies,demonstrating that AI models integrating multimodal data including clinical,laboratory,and imaging parameters further improved diagnostic precision.Moreover,explainable AI approaches,such as SHapley Additive exPlanations and local interpretable model-agnostic explanations,have facilitated model transparency,fostering clinician trust in AI-driven decision-making.This review highlights the advancements in AI for AAp diagnosis,emphasizing that AI is used not only to establish the diagnosis of AAp but also to differentiate complicated from uncomplicated cases.While preliminary results are promising,further prospective,multicenter studies are required for large-scale clinical implementation,given that a great proportion of current evidence derives from retrospective designs,and existing prospective cohorts exhibit limited sample sizes or protocol variability.Future research should also focus on integrating AI-driven decision support tools into routine emergency care workflows.
文摘The manufacturing sector has been transformed owing to additive manufacturing(AM),which has made it possible to create intricate,personalized items with little material waste.However,optimizing and enhancing AM processes remain challenging owing to the intricacies involved in design,material selection,and process parameters.This review explores the integration of artificial intelligence(AI),machine learning(ML),and deep learning(DL)techniques to improve and innovate in the field of AM.AI-driven design optimization procedures offer innovative solutions for the 3D printing of complex geometries and lightweight structures.By leveraging machine learning(ML)algorithms,these procedures analyze extensive data from previous manufacturing processes to enhance efficiency and productivity.ML models facilitate design and production automation by learning from historical data and identifying intricate patterns that human operators may miss.Deep learning(DL)further augments this capacity by utilizing sophisticated neural networks to manage and interpret complex information and provide deeper insights into the manufacturing process.Integrating AI,ML,and DL into AM enables the creation of optimized,lightweight components that are crucial for reducing fuel consumption in the automotive and aviation industries.These advanced AI techniques optimize the design and production processes and enhance predictive modeling for process optimization and defect detection,leading to improved performance and reduced manufacturing costs.Therefore,integrating AI,ML,and DL into AM improves precision in component fabrication,enabling advanced material design innovations and opening new possibilities for innovation in product design and material science.This review discusses and highlights significant advancements and identifies future directions for applying AI,ML,and DL in AM.By leveraging these technologies,AM processes can achieve unprecedented levels of precision,customization,and productivity for analysis and modification.
基金The 2024 Guangdong University of Science and Technology Teaching,Science and Innovation Project(GKJXXZ2024028)。
文摘With the rapid development of artificial intelligence(AI)technology,the teaching mode in the field of education is undergoing profound changes.Especially the design and implementation of personalized learning paths have become an important direction of intelligent teaching reform.The traditional“one-size-fits-all”teaching model has gradually failed to meet the individualized learning needs of students.However,through the advantages of data analysis and real-time feedback,AI technology can provide tailor-made teaching content and learning paths based on students’learning progress,interests,and abilities.This study explores the innovation of the personalized learning path model based on AI technology,and analyzes the potential and challenges of this model in improving teaching effectiveness,promoting the all-round development of students,and optimizing the interaction between teachers and students.Through case analysis and empirical research,this paper summarizes the implementation methods of the AI-driven personalized learning path,the innovation of teaching models,and their application prospects in educational reform.Meanwhile,the research also discussed the ethical issues of AI technology in education,data privacy protection,and its impact on the teacher-student relationship,and proposed corresponding solutions.
文摘With the continuous advancement of artificial intelligence(AI)technology,personalized learning systems are increasingly applied in higher education.Particularly within STEM(Science,Technology,Engineering,and Mathematics)education,AI demonstrates significant advantages through adaptive learning pathways,instant feedback,and individualized resource allocation.However,current research predominantly focuses on the technical architecture and application effectiveness of such systems,with insufficient exploration of how AI-enabled personalized learning systems influence university students’learning motivation and academic achievement through educational psychological mechanisms.This paper adopts an educational psychology perspective to construct a causal mechanism model linking“learning motivation-learning behavior-academic achievement.”Findings indicate that AI-powered personalized learning systems enhance learning autonomy,boost self-efficacy,and optimize feedback mechanisms.These effects collectively stimulate university students’learning motivation in STEM disciplines,thereby promoting academic achievement.Building upon empirical research,this paper proposes implications for educational practice and policy formulation,emphasizing the necessity of advancing higher education reform through the dual influence of technology and psychological mechanisms.
文摘This paper delves into the application of artificial intelligence in daily life and the basic concepts of machine learning.Firstly,the concept and background of artificial intelligence were introduced,as well as machine learning as an important branch of artificial intelligence.Subsequently,the specific applications of artificial intelligence in daily life were elaborated,including intelligent voice assistants,recommendation systems,as well as image recognition and facial recognition technologies.Subsequently,a preliminary exploration was conducted on the basic concepts of machine learning,including paradigms such as supervised learning,unsupervised learning,and reinforcement learning,as well as common algorithms such as linear regression,logistic regression,decision trees,and support vector machines.Finally,the application of artificial intelligence in daily life and the basic concepts of machine learning were summarized,and the development trends and future prospects of artificial intelligence technology were discussed,as well as the possibility of guiding readers to continue in-depth learning and exploration in the field of artificial intelligence.
文摘Artificial intelligence(AI)and machine learning(ML)are transforming spine care by addressing diagnostics,treatment planning,and rehabilitation challenges.This study highlights advancements in precision medicine for spinal pathologies,leveraging AI and ML to enhance diagnostic accuracy through deep learning algorithms,enabling faster and more accurate detection of abnormalities.AIpowered robotics and surgical navigation systems improve implant placement precision and reduce complications in complex spine surgeries.Wearable devices and virtual platforms,designed with AI,offer personalized,adaptive therapies that improve treatment adherence and recovery outcomes.AI also enables preventive interventions by assessing spine condition risks early.Despite progress,challenges remain,including limited healthcare datasets,algorithmic biases,ethical concerns,and integration into existing systems.Interdisciplinary collaboration and explainable AI frameworks are essential to unlock AI’s full potential in spine care.Future developments include multimodal AI systems integrating imaging,clinical,and genetic data for holistic treatment approaches.AI and ML promise significant improvements in diagnostic accuracy,treatment personalization,service accessibility,and cost efficiency,paving the way for more streamlined and effective spine care,ultimately enhancing patient outcomes.
文摘The highly efficient electrochemical treatment technology for dye-polluted wastewater is one of hot research topics in industrial wastewater treatment.This study reported a three-dimensional electrochemical treatment process integrating graphite intercalation compound(GIC)adsorption,direct anodic oxidation,and·OH oxidation for decolourising Reactive Black 5(RB5)from aqueous solutions.The electrochemical process was optimised using the novel progressive central composite design-response surface methodology(CCD-NPRSM),hybrid artificial neural network-extreme gradient boosting(hybrid ANN-XGBoost),and classification and regression trees(CART).CCD-NPRSM and hybrid ANN-XGBoost were employed to minimise errors in evaluating the electrochemical process involving three manipulated operational parameters:current density,electrolysis(treatment)time,and initial dye concentration.The optimised decolourisation efficiencies were 99.30%,96.63%,and 99.14%for CCD-NPRSM,hybrid ANN-XGBoost,and CART,respectively,compared to the 98.46%RB5 removal rate observed experimentally under optimum conditions:approximately 20 mA/cm^(2) of current density,20 min of electrolysis time,and 65 mg/L of RB5.The optimised mineralisation efficiencies ranged between 89%and 92%for different models based on total organic carbon(TOC).Experimental studies confirmed that the predictive efficiency of optimised models ranked in the descending order of hybrid ANN-XGBoost,CCD-NPRSM,and CART.Model validation using analysis of variance(ANOVA)revealed that hybrid ANN-XGBoost had a mean squared error(MSE)and a coefficient of determination(R^(2))of approximately 0.014 and 0.998,respectively,for the RB5 removal efficiency,outperforming CCD-NPRSM with MSE and R^(2) of 0.518 and 0.998,respectively.Overall,the hybrid ANN-XGBoost approach is the most feasible technique for assessing the electrochemical treatment efficiency in RB5 dye wastewater decolourisation.
文摘BACKGROUND Knowledge-based systems(KBS)are software applications based on a knowledge database and an inference engine.Various experimental KBS for computerassisted medical diagnosis and treatment were started to be used since 70s(VisualDx,GIDEON,DXPlain,CADUCEUS,Internist-I,Mycin etc.).AIM To present in detail the“Electronic Pediatrician(EPed)”,a medical non-machine learning artificial intelligence(nml-AI)KBS in its prototype version created by the corresponding author(with database written in Romanian)that offers a physiopathology-based differential and positive diagnosis and treatment of ill children.METHODS EPed specifically focuses on the physiopathological reasoning of pediatric clinical cases.EPed has currently reached its prototype version 2.0,being able to diagnose 302 physiopathological macro-links(briefly named“clusters”)and 269 pediatric diseases:Some examples of diagnosis and a previous testing of EPed on a group of 34 patients are also presented in this paper.RESULTS The prototype EPed can currently diagnose 269 pediatric infectious and noninfectious diseases(based on 302 clusters),including the most frequent respiratory/digestive/renal/central nervous system infections,but also many other noninfectious pediatric diseases like autoimmune,oncological,genetical diseases and even intoxications,plus some important surgical pathologies.CONCLUSION EPed is the first and only physiopathology-based nml-AI KBS focused on general pediatrics and is the first and only pediatric Romanian KBS addressed to medical professionals.Furthermore,EPed is the first and only nml-AI KBS that offers not only both a physiopathology-based differential and positive disease diagnosis,but also identifies possible physiopathological“clusters”that may explain the signs and symptoms of any child-patient and may help treating that patient physiopathologically(until a final diagnosis is found),thus encouraging and developing the physiopathological reasoning of any clinician.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00460621,Developing BCI-Based Digital Health Technologies for Mental Illness and Pain Management).
文摘Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases.
基金funded by FCT/MECI through national funds and,when applicable,co-funded EU funds under UID/50008:Instituto de Telecomunicacoes.
文摘This research explores the use of Fuzzy K-Nearest Neighbor(F-KNN)and Artificial Neural Networks(ANN)for predicting heart stroke incidents,focusing on the impact of feature selection methods,specifically Chi-Square and Best First Search(BFS).The study demonstrates that BFS significantly enhances the performance of both classifiers.With BFS preprocessing,the ANN model achieved an impressive accuracy of 97.5%,precision and recall of 97.5%,and an Receiver Operating Characteristics(ROC)area of 97.9%,outperforming the Chi-Square-based ANN,which recorded an accuracy of 91.4%.Similarly,the F-KNN model with BFS achieved an accuracy of 96.3%,precision and recall of 96.3%,and a Receiver Operating Characteristics(ROC)area of 96.2%,surpassing the performance of the Chi-Square F-KNN model,which showed an accuracy of 95%.These results highlight that BFS improves the ability to select the most relevant features,contributing to more reliable and accurate stroke predictions.The findings underscore the importance of using advanced feature selection methods like BFS to enhance the performance of machine learning models in healthcare applications,leading to better stroke risk management and improved patient outcomes.
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金National Natural Science Foundation of China(Nos.52275346 and 52075287)Tsinghua University Initiative Scientific Research Program(20221080070).
文摘The recent wave of the artificial intelligence(AI)revolution has aroused unprecedented interest in the intelligentialize of human society.As an essential component that bridges the physical world and digital signals,flexible sensors are evolving from a single sensing element to a smarter system,which is capable of highly efficient acquisition,analysis,and even perception of vast,multifaceted data.While challenging from a manual perspective,the development of intelligent flexible sensing has been remarkably facilitated owing to the rapid advances of brain-inspired AI innovations from both the algorithm(machine learning)and the framework(artificial synapses)level.This review presents the recent progress of the emerging AI-driven,intelligent flexible sensing systems.The basic concept of machine learning and artificial synapses are introduced.The new enabling features induced by the fusion of AI and flexible sensing are comprehensively reviewed,which significantly advances the applications such as flexible sensory systems,soft/humanoid robotics,and human activity monitoring.As two of the most profound innovations in the twenty-first century,the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.
基金supported by the Ministry of Science and Technology of China,No.2020AAA0109605(to XL)Meizhou Major Scientific and Technological Innovation PlatformsProjects of Guangdong Provincial Science & Technology Plan Projects,No.2019A0102005(to HW).
文摘Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting.
文摘Objective To observe the value of self-supervised deep learning artificial intelligence(AI)noise reduction technology based on the nearest adjacent layer applicated in ultra-low dose CT(ULDCT)for urinary calculi.Methods Eighty-eight urinary calculi patients were prospectively enrolled.Low dose CT(LDCT)and ULDCT scanning were performed,and the effective dose(ED)of each scanning protocol were calculated.The patients were then randomly divided into training set(n=75)and test set(n=13),and a self-supervised deep learning AI noise reduction system based on the nearest adjacent layer constructed with ULDCT images in training set was used for reducing noise of ULDCT images in test set.In test set,the quality of ULDCT images before and after AI noise reduction were compared with LDCT images,i.e.Blind/Referenceless Image Spatial Quality Evaluator(BRISQUE)scores,image noise(SD ROI)and signal-to-noise ratio(SNR).Results The tube current,the volume CT dose index and the dose length product of abdominal ULDCT scanning protocol were all lower compared with those of LDCT scanning protocol(all P<0.05),with a decrease of ED for approximately 82.66%.For 13 patients with urinary calculi in test set,BRISQUE score showed that the quality level of ULDCT images before AI noise reduction reached 54.42%level but raised to 95.76%level of LDCT images after AI noise reduction.Both ULDCT images after AI noise reduction and LDCT images had lower SD ROI and higher SNR than ULDCT images before AI noise reduction(all adjusted P<0.05),whereas no significant difference was found between the former two(both adjusted P>0.05).Conclusion Self-supervised learning AI noise reduction technology based on the nearest adjacent layer could effectively reduce noise and improve image quality of urinary calculi ULDCT images,being conducive for clinical application of ULDCT.
基金supported by the Researchers Supporting Project(RSPD2024R846),King Saud University,Riyadh,Saudi Arabia.
文摘Breast cancer stands as one of the world’s most perilous and formidable diseases,having recently surpassed lung cancer as the most prevalent cancer type.This disease arises when cells in the breast undergo unregulated proliferation,resulting in the formation of a tumor that has the capacity to invade surrounding tissues.It is not confined to a specific gender;both men and women can be diagnosed with breast cancer,although it is more frequently observed in women.Early detection is pivotal in mitigating its mortality rate.The key to curbing its mortality lies in early detection.However,it is crucial to explain the black-box machine learning algorithms in this field to gain the trust of medical professionals and patients.In this study,we experimented with various machine learning models to predict breast cancer using the Wisconsin Breast Cancer Dataset(WBCD)dataset.We applied Random Forest,XGBoost,Support Vector Machine(SVM),Multi-Layer Perceptron(MLP),and Gradient Boost classifiers,with the Random Forest model outperforming the others.A comparison analysis between the two methods was done after performing hyperparameter tuning on each method.The analysis showed that the random forest performs better and yields the highest result with 99.46%accuracy.After performance evaluation,two Explainable Artificial Intelligence(XAI)methods,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-Agnostic Explanations(LIME),have been utilized to explain the random forest machine learning model.
基金the Technology Project of China Southern Power Grid Digital Grid Research Institute Corporation,Ltd.(670000KK52220003)the National Key R&D Program of China(2020YFB0906000).
文摘The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this study proposes an artificial emotional lazy Q-learning method,which combines artificial emotion,lazy learning,and reinforcement learning for static security and stability analysis of power systems.Moreover,this study compares the analysis results of the proposed method with those of the small disturbance method for a stand-alone power system and verifies that the proposed lazy Q-learning method is able to effectively screen useful data for learning,and improve the static security stability of the new type of power system more effectively than the traditional proportional-integral-differential control and Q-learning methods.
文摘Sleep and well-being have been intricately linked,and sleep hygiene is paramount for developing mental well-being and resilience.Although widespread,sleep disorders require elaborate polysomnography laboratory and patient-stay with sleep in unfamiliar environments.Current technologies have allowed various devices to diagnose sleep disorders at home.However,these devices are in various validation stages,with many already receiving approvals from competent authorities.This has captured vast patient-related physiologic data for advanced analytics using artificial intelligence through machine and deep learning applications.This is expected to be integrated with patients’Electronic Health Records and provide individualized prescriptive therapy for sleep disorders in the future.
文摘The brain,with its trillions of neural connections,different cellular types,and molecular complexities,presents a formidable challenge for researchers aiming to comprehend the multifaceted nature of neural health.As traditional methods have provided valuable insights,emerging technologies offer unprecedented opportunities to delve deeper into the underpinnings of brain function.In the everevolving landscape of neuroscience,the quest to unravel the mysteries of the human brain is bound to take a leap forward thanks to new technological improvements and bold interpretative frameworks.