期刊文献+
共找到12,157篇文章
< 1 2 250 >
每页显示 20 50 100
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
1
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
A Literature Review on Model Conversion, Inference, and Learning Strategies in EdgeML with TinyML Deployment
2
作者 Muhammad Arif Muhammad Rashid 《Computers, Materials & Continua》 2025年第4期13-64,共52页
Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’... Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’s edge.However,the complexity of model conversion techniques,diverse inference mechanisms,and varied learning strategies make designing and deploying these models challenging.Additionally,deploying TinyML models on resource-constrained hardware with specific software frameworks has broadened EdgeML’s applications across various sectors.These factors underscore the necessity for a comprehensive literature review,as current reviews do not systematically encompass the most recent findings on these topics.Consequently,it provides a comprehensive overview of state-of-the-art techniques in model conversion,inference mechanisms,learning strategies within EdgeML,and deploying these models on resource-constrained edge devices using TinyML.It identifies 90 research articles published between 2018 and 2025,categorizing them into two main areas:(1)model conversion,inference,and learning strategies in EdgeML and(2)deploying TinyML models on resource-constrained hardware using specific software frameworks.In the first category,the synthesis of selected research articles compares and critically reviews various model conversion techniques,inference mechanisms,and learning strategies.In the second category,the synthesis identifies and elaborates on major development boards,software frameworks,sensors,and algorithms used in various applications across six major sectors.As a result,this article provides valuable insights for researchers,practitioners,and developers.It assists them in choosing suitable model conversion techniques,inference mechanisms,learning strategies,hardware development boards,software frameworks,sensors,and algorithms tailored to their specific needs and applications across various sectors. 展开更多
关键词 Edge machine learning tiny machine learning model compression INFERENCE learning algorithms
在线阅读 下载PDF
Exploring the Effectiveness of Machine Learning and Deep Learning Algorithms for Sentiment Analysis:A Systematic Literature Review
3
作者 Jungpil Shin Wahidur Rahman +5 位作者 Tanvir Ahmed Bakhtiar Mazrur Md.Mohsin Mia Romana Idress Ekfa Md.Sajib Rana Pankoo Kim 《Computers, Materials & Continua》 2025年第9期4105-4153,共49页
Sentiment Analysis,a significant domain within Natural Language Processing(NLP),focuses on extracting and interpreting subjective information-such as emotions,opinions,and attitudes-from textual data.With the increasi... Sentiment Analysis,a significant domain within Natural Language Processing(NLP),focuses on extracting and interpreting subjective information-such as emotions,opinions,and attitudes-from textual data.With the increasing volume of user-generated content on social media and digital platforms,sentiment analysis has become essential for deriving actionable insights across various sectors.This study presents a systematic literature review of sentiment analysis methodologies,encompassing traditional machine learning algorithms,lexicon-based approaches,and recent advancements in deep learning techniques.The review follows a structured protocol comprising three phases:planning,execution,and analysis/reporting.During the execution phase,67 peer-reviewed articles were initially retrieved,with 25 meeting predefined inclusion and exclusion criteria.The analysis phase involved a detailed examination of each study’s methodology,experimental setup,and key contributions.Among the deep learning models evaluated,Long Short-Term Memory(LSTM)networks were identified as the most frequently adopted architecture for sentiment classification tasks.This review highlights current trends,technical challenges,and emerging opportunities in the field,providing valuable guidance for future research and development in applications such as market analysis,public health monitoring,financial forecasting,and crisis management. 展开更多
关键词 Natural Language Processing(NLP) Machine learning(ml) sentiment analysis deep learning textual data
在线阅读 下载PDF
Methodology for Detecting Non-Technical Energy Losses Using an Ensemble of Machine Learning Algorithms
4
作者 Irbek Morgoev Roman Klyuev Angelika Morgoeva 《Computer Modeling in Engineering & Sciences》 2025年第5期1381-1399,共19页
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of... Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry. 展开更多
关键词 Non-technical losses smart grid machine learning electricity theft FRAUD ensemble algorithm hybrid method forecasting classification supervised learning
在线阅读 下载PDF
Neuromorphic devices assisted by machine learning algorithms
5
作者 Ziwei Huo Qijun Sun +4 位作者 Jinran Yu Yichen Wei Yifei Wang Jeong Ho Cho Zhong Lin Wang 《International Journal of Extreme Manufacturing》 2025年第4期178-215,共38页
Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decisio... Neuromorphic computing extends beyond sequential processing modalities and outperforms traditional von Neumann architectures in implementing more complicated tasks,e.g.,pattern processing,image recognition,and decision making.It features parallel interconnected neural networks,high fault tolerance,robustness,autonomous learning capability,and ultralow energy dissipation.The algorithms of artificial neural network(ANN)have also been widely used because of their facile self-organization and self-learning capabilities,which mimic those of the human brain.To some extent,ANN reflects several basic functions of the human brain and can be efficiently integrated into neuromorphic devices to perform neuromorphic computations.This review highlights recent advances in neuromorphic devices assisted by machine learning algorithms.First,the basic structure of simple neuron models inspired by biological neurons and the information processing in simple neural networks are particularly discussed.Second,the fabrication and research progress of neuromorphic devices are presented regarding to materials and structures.Furthermore,the fabrication of neuromorphic devices,including stand-alone neuromorphic devices,neuromorphic device arrays,and integrated neuromorphic systems,is discussed and demonstrated with reference to some respective studies.The applications of neuromorphic devices assisted by machine learning algorithms in different fields are categorized and investigated.Finally,perspectives,suggestions,and potential solutions to the current challenges of neuromorphic devices are provided. 展开更多
关键词 neuromorphic devices machine learning algorithms artificial synapses MEMRISTORS field-effect transistors
在线阅读 下载PDF
A Comparison among Different Machine Learning Algorithms in Land Cover Classification Based on the Google Earth Engine Platform: The Case Study of Hung Yen Province, Vietnam
6
作者 Le Thi Lan Tran Quoc Vinh Phạm Quy Giang 《Journal of Environmental & Earth Sciences》 2025年第1期132-139,共8页
Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status ... Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status of land covers in Hung Yen province of Vietnam using Landsat 8 OLI satellite images,a free data source with reasonable spatial and temporal resolution.The results of the study show that all three algorithms presented good classification for five basic types of land cover including Rice land,Water bodies,Perennial vegetation,Annual vegetation,Built-up areas as their overall accuracy and Kappa coefficient were greater than 80%and 0.8,respectively.Among the three algorithms,SVM achieved the highest accuracy as its overall accuracy was 86%and the Kappa coefficient was 0.88.Land cover classification based on the SVM algorithm shows that Built-up areas cover the largest area with nearly 31,495 ha,accounting for more than 33.8%of the total natural area,followed by Rice land and Perennial vegetation which cover an area of over 30,767 ha(33%)and 15,637 ha(16.8%),respectively.Water bodies and Annual vegetation cover the smallest areas with 8,820(9.5%)ha and 6,302 ha(6.8%),respectively.The results of this study can be used for land use management and planning as well as other natural resource and environmental management purposes in the province. 展开更多
关键词 Google Earth Engine Land Cover LANDSAT Machine learning Algorithm
在线阅读 下载PDF
Reaction process optimization based on interpretable machine learning and metaheuristic optimization algorithms
7
作者 Dian Zhang Bo Ouyang Zheng-Hong Luo 《Chinese Journal of Chemical Engineering》 2025年第8期77-85,共9页
The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and u... The optimization of reaction processes is crucial for the green, efficient, and sustainable development of the chemical industry. However, how to address the problems posed by multiple variables, nonlinearities, and uncertainties during optimization remains a formidable challenge. In this study, a strategy combining interpretable machine learning with metaheuristic optimization algorithms is employed to optimize the reaction process. First, experimental data from a biodiesel production process are collected to establish a database. These data are then used to construct a predictive model based on artificial neural network (ANN) models. Subsequently, interpretable machine learning techniques are applied for quantitative analysis and verification of the model. Finally, four metaheuristic optimization algorithms are coupled with the ANN model to achieve the desired optimization. The research results show that the methanol: palm fatty acid distillate (PFAD) molar ratio contributes the most to the reaction outcome, accounting for 41%. The ANN-simulated annealing (SA) hybrid method is more suitable for this optimization, and the optimal process parameters are a catalyst concentration of 3.00% (mass), a methanol: PFAD molar ratio of 8.67, and a reaction time of 30 min. This study provides deeper insights into reaction process optimization, which will facilitate future applications in various reaction optimization processes. 展开更多
关键词 Reaction process optimization Interpretable machine learning Metaheuristic optimization algorithm BIODIESEL
在线阅读 下载PDF
玻尔兹曼优化Q-learning的高速铁路越区切换控制算法 被引量:4
8
作者 陈永 康婕 《控制理论与应用》 北大核心 2025年第4期688-694,共7页
针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误... 针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误码率等构建Q-learning算法回报函数;然后,提出玻尔兹曼搜索策略优化动作选择,以提高切换算法收敛性能;最后,综合考虑基站同频干扰的影响进行Q表更新,得到切换判决参数,从而控制切换执行.仿真结果表明:改进算法在不同运行速度和不同运行场景下,较传统算法能有效提高切换成功率,且满足无线通信服务质量QoS的要求. 展开更多
关键词 越区切换 5G-R Q-learning算法 玻尔兹曼优化策略
在线阅读 下载PDF
Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir Region,Saudi Arabia 被引量:19
9
作者 Ahmed Mohamed Youssef Hamid Reza Pourghasemi 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第2期639-655,共17页
The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artifici... The current study aimed at evaluating the capabilities of seven advanced machine learning techniques(MLTs),including,Support Vector Machine(SVM),Random Forest(RF),Multivariate Adaptive Regression Spline(MARS),Artificial Neural Network(ANN),Quadratic Discriminant Analysis(QDA),Linear Discriminant Analysis(LDA),and Naive Bayes(NB),for landslide susceptibility modeling and comparison of their performances.Coupling machine learning algorithms with spatial data types for landslide susceptibility mapping is a vitally important issue.This study was carried out using GIS and R open source software at Abha Basin,Asir Region,Saudi Arabia.First,a total of 243 landslide locations were identified at Abha Basin to prepare the landslide inventory map using different data sources.All the landslide areas were randomly separated into two groups with a ratio of 70%for training and 30%for validating purposes.Twelve landslide-variables were generated for landslide susceptibility modeling,which include altitude,lithology,distance to faults,normalized difference vegetation index(NDVI),landuse/landcover(LULC),distance to roads,slope angle,distance to streams,profile curvature,plan curvature,slope length(LS),and slope-aspect.The area under curve(AUC-ROC)approach has been applied to evaluate,validate,and compare the MLTs performance.The results indicated that AUC values for seven MLTs range from 89.0%for QDA to 95.1%for RF.Our findings showed that the RF(AUC=95.1%)and LDA(AUC=941.7%)have produced the best performances in comparison to other MLTs.The outcome of this study and the landslide susceptibility maps would be useful for environmental protection. 展开更多
关键词 Landslide susceptibility Machine learning algorithms Variables importance Saudi Arabia
在线阅读 下载PDF
Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms 被引量:8
10
作者 Pin Zhang Zhen-Yu Yin +2 位作者 Yin-Fu Jin Tommy HTChan Fu-Ping Gao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期441-452,共12页
Compression index Ccis an essential parameter in geotechnical design for which the effectiveness of correlation is still a challenge.This paper suggests a novel modelling approach using machine learning(ML)technique.T... Compression index Ccis an essential parameter in geotechnical design for which the effectiveness of correlation is still a challenge.This paper suggests a novel modelling approach using machine learning(ML)technique.The performance of five commonly used machine learning(ML)algorithms,i.e.back-propagation neural network(BPNN),extreme learning machine(ELM),support vector machine(SVM),random forest(RF)and evolutionary polynomial regression(EPR)in predicting Cc is comprehensively investigated.A database with a total number of 311 datasets including three input variables,i.e.initial void ratio e0,liquid limit water content wL,plasticity index Ip,and one output variable Cc is first established.Genetic algorithm(GA)is used to optimize the hyper-parameters in five ML algorithms,and the average prediction error for the 10-fold cross-validation(CV)sets is set as thefitness function in the GA for enhancing the robustness of ML models.The results indicate that ML models outperform empirical prediction formulations with lower prediction error.RF yields the lowest error followed by BPNN,ELM,EPR and SVM.If the ranges of input variables in the database are large enough,BPNN and RF models are recommended to predict Cc.Furthermore,if the distribution of input variables is continuous,RF model is the best one.Otherwise,EPR model is recommended if the ranges of input variables are small.The predicted correlations between input and output variables using five ML models show great agreement with the physical explanation. 展开更多
关键词 COMPRESSIBILITY Clays Machine learning Optimization Random forest Genetic algorithm
在线阅读 下载PDF
Use of machine learning algorithms to assess the state of rockburst hazard in underground coal mine openings 被引量:10
11
作者 Lukasz Wojtecki Sebastian Iwaszenko +2 位作者 Derek B.Apel Mirosawa Bukowska Janusz Makówka 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期703-713,共11页
The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as ... The risk of rockbursts is one of the main threats in hard coal mines. Compared to other underground mines, the number of factors contributing to the rockburst at underground coal mines is much greater.Factors such as the coal seam tendency to rockbursts, the thickness of the coal seam, and the stress level in the seam have to be considered, but also the entire coal seam-surrounding rock system has to be evaluated when trying to predict the rockbursts. However, in hard coal mines, there are stroke or stress-stroke rockbursts in which the fracture of a thick layer of sandstone plays an essential role in predicting rockbursts. The occurrence of rockbursts in coal mines is complex, and their prediction is even more difficult than in other mines. In recent years, the interest in machine learning algorithms for solving complex nonlinear problems has increased, which also applies to geosciences. This study attempts to use machine learning algorithms, i.e. neural network, decision tree, random forest, gradient boosting, and extreme gradient boosting(XGB), to assess the rockburst hazard of an active hard coal mine in the Upper Silesian Coal Basin. The rock mass bursting tendency index WTGthat describes the tendency of the seam-surrounding rock system to rockbursts and the anomaly of the vertical stress component were applied for this purpose. Especially, the decision tree and neural network models were proved to be effective in correctly distinguishing rockbursts from tremors, after which the excavation was not damaged. On average, these models correctly classified about 80% of the rockbursts in the testing datasets. 展开更多
关键词 Hard coal mining Rockburst hazard Machine learning algorithms
在线阅读 下载PDF
Gully erosion spatial modelling: Role of machine learning algorithms in selection of the best controlling factors and modelling process 被引量:6
12
作者 Hamid Reza Pourghasemi Nitheshnirmal Sadhasivam +1 位作者 Narges Kariminejad Adrian L.Collins 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期2207-2219,共13页
This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linea... This investigation assessed the efficacy of 10 widely used machine learning algorithms(MLA)comprising the least absolute shrinkage and selection operator(LASSO),generalized linear model(GLM),stepwise generalized linear model(SGLM),elastic net(ENET),partial least square(PLS),ridge regression,support vector machine(SVM),classification and regression trees(CART),bagged CART,and random forest(RF)for gully erosion susceptibility mapping(GESM)in Iran.The location of 462 previously existing gully erosion sites were mapped through widespread field investigations,of which 70%(323)and 30%(139)of observations were arbitrarily divided for algorithm calibration and validation.Twelve controlling factors for gully erosion,namely,soil texture,annual mean rainfall,digital elevation model(DEM),drainage density,slope,lithology,topographic wetness index(TWI),distance from rivers,aspect,distance from roads,plan curvature,and profile curvature were ranked in terms of their importance using each MLA.The MLA were compared using a training dataset for gully erosion and statistical measures such as RMSE(root mean square error),MAE(mean absolute error),and R-squared.Based on the comparisons among MLA,the RF algorithm exhibited the minimum RMSE and MAE and the maximum value of R-squared,and was therefore selected as the best model.The variable importance evaluation using the RF model revealed that distance from rivers had the highest significance in influencing the occurrence of gully erosion whereas plan curvature had the least importance.According to the GESM generated using RF,most of the study area is predicted to have a low(53.72%)or moderate(29.65%)susceptibility to gully erosion,whereas only a small area is identified to have a high(12.56%)or very high(4.07%)susceptibility.The outcome generated by RF model is validated using the ROC(Receiver Operating Characteristics)curve approach,which returned an area under the curve(AUC)of 0.985,proving the excellent forecasting ability of the model.The GESM prepared using the RF algorithm can aid decision-makers in targeting remedial actions for minimizing the damage caused by gully erosion. 展开更多
关键词 Machine learning algorithm Gully erosion Random forest Controlling factors Variable importance
在线阅读 下载PDF
基于IMLZC和SOA-ELM的轴承损伤识别方法 被引量:1
13
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
An Overview and Experimental Study of Learning-Based Optimization Algorithms for the Vehicle Routing Problem 被引量:8
14
作者 Bingjie Li Guohua Wu +2 位作者 Yongming He Mingfeng Fan Witold Pedrycz 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1115-1138,共24页
The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contribute... The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms. 展开更多
关键词 End-to-end approaches learning-based optimization(LBO)algorithms reinforcement learning step-by-step approaches vehicle routing problem(VRP)
在线阅读 下载PDF
Deep Learning and Holt-Trend Algorithms for Predicting Covid-19 Pandemic 被引量:3
15
作者 Theyazn H.H.Aldhyani Melfi Alrasheed +3 位作者 Mosleh Hmoud Al-Adaileh Ahmed Abdullah Alqarni Mohammed Y.Alzahrani Ahmed H.Alahmadi 《Computers, Materials & Continua》 SCIE EI 2021年第5期2141-2160,共20页
The Covid-19 epidemic poses a serious public health threat to the world,where people with little or no pre-existing human immunity can be more vulnerable to its effects.Thus,developing surveillance systems for predict... The Covid-19 epidemic poses a serious public health threat to the world,where people with little or no pre-existing human immunity can be more vulnerable to its effects.Thus,developing surveillance systems for predicting the Covid-19 pandemic at an early stage could save millions of lives.In this study,a deep learning algorithm and a Holt-trend model are proposed to predict the coronavirus.The Long-Short Term Memory(LSTM)and Holttrend algorithms were applied to predict confirmed numbers and death cases.The real time data used has been collected from theWorld Health Organization(WHO).In the proposed research,we have considered three countries to test the proposed model,namely Saudi Arabia,Spain and Italy.The results suggest that the LSTM models show better performance in predicting the cases of coronavirus patients.Standard measure performance Mean squared Error(MSE),Root Mean Squared Error(RMSE),Mean error and correlation are employed to estimate the results of the proposed models.The empirical results of the LSTM,using the correlation metrics,are 99.94%,99.94%and 99.91%in predicting the number of confirmed cases in the three countries.As far as the results of the LSTM model in predicting the number of death of Covid-19,they are 99.86%,98.876%and 99.16%with respect to Saudi Arabia,Italy and Spain respectively.Similarly,the experiment’s results of the Holt-Trend model in predicting the number of confirmed cases of Covid-19,using the correlation metrics,are 99.06%,99.96%and 99.94%,whereas the results of the Holt-Trend model in predicting the number of death cases are 99.80%,99.96%and 99.94%with respect to the Saudi Arabia,Italy and Spain respectively.The empirical results indicate the efficient performance of the presented model in predicting the number of confirmed and death cases of Covid-19 in these countries.Such findings provide better insights regarding the future of Covid-19 this pandemic in general.The results were obtained by applying time series models,which need to be considered for the sake of saving the lives of many people. 展开更多
关键词 Deep learning algorithm holt-trend prediction Covid-19 machine learning
在线阅读 下载PDF
Predicting the daily return direction of the stock market using hybrid machine learning algorithms 被引量:10
16
作者 Xiao Zhong David Enke 《Financial Innovation》 2019年第1期435-454,共20页
Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on f... Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks. 展开更多
关键词 Daily stock return forecasting Return direction classification Data representation Hybrid machine learning algorithms Deep neural networks(DNNs) Trading strategies
在线阅读 下载PDF
Discrimination of periodontal pathogens using Raman spectroscopy combined with machine learning algorithms 被引量:2
17
作者 Juan Zhang Yiping Liu +6 位作者 Hongxiao Li Shisheng Cao Xin Li Huijuan Yin Ying Li Xiaoxi Dong Xu Zhang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第3期23-35,共13页
Periodontitis is closely related to many systemic diseases linked by different periodontal pathogens.To unravel the relationship between periodontitis and systemic diseases,it is very important to correctly discrimina... Periodontitis is closely related to many systemic diseases linked by different periodontal pathogens.To unravel the relationship between periodontitis and systemic diseases,it is very important to correctly discriminate major periodontal pathogens.To realize convenient,effcient,and high-accuracy bacterial species classification,the authors use Raman spectroscopy combined with machine learning algorithms to distinguish three major periodontal pathogens Porphyromonas gingivalis(Pg),Fusobacterium nucleatum(Fn),and Aggregatibacter actinomycetemcomitans(Aa).The result shows that this novel method can successfully discriminate the three abovementioned periodontal pathogens.Moreover,the classification accuracies for the three categories of the original data were 94.7%at the sample level and 93.9%at the spectrum level by the machine learning algorithm extra trees.This study provides a fast,simple,and accurate method which is very beneficial to differentiate periodontal pathogens. 展开更多
关键词 Raman spectroscopy periodontal pathogen machine learning algorithm DISCRIMINATION
原文传递
Recent innovation in benchmark rates (BMR):evidence from influential factors on Turkish Lira Overnight Reference Interest Rate with machine learning algorithms 被引量:2
18
作者 Öer Depren Mustafa Tevfik Kartal Serpil KılıçDepren 《Financial Innovation》 2021年第1期942-961,共20页
Some countries have announced national benchmark rates,while others have been working on the recent trend in which the London Interbank Offered Rate will be retired at the end of 2021.Considering that Turkey announced... Some countries have announced national benchmark rates,while others have been working on the recent trend in which the London Interbank Offered Rate will be retired at the end of 2021.Considering that Turkey announced the Turkish Lira Overnight Reference Interest Rate(TLREF),this study examines the determinants of TLREF.In this context,three global determinants,five country-level macroeconomic determinants,and the COVID-19 pandemic are considered by using daily data between December 28,2018,and December 31,2020,by performing machine learning algorithms and Ordinary Least Square.The empirical results show that(1)the most significant determinant is the amount of securities bought by Central Banks;(2)country-level macroeconomic factors have a higher impact whereas global factors are less important,and the pandemic does not have a significant effect;(3)Random Forest is the most accurate prediction model.Taking action by considering the study’s findings can help support economic growth by achieving low-level benchmark rates. 展开更多
关键词 Benchmark rate Determinants Machine learning algorithms TURKEY
在线阅读 下载PDF
Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 被引量:2
19
作者 Sridhar Dutta Sukumar Bandopadhyay +1 位作者 Rajive Ganguli Debasmita Misra 《Journal of Intelligent Learning Systems and Applications》 2010年第2期86-96,共11页
Traditional geostatistical estimation techniques have been used predominantly by the mining industry for ore reserve estimation. Determination of mineral reserve has posed considerable challenge to mining engineers du... Traditional geostatistical estimation techniques have been used predominantly by the mining industry for ore reserve estimation. Determination of mineral reserve has posed considerable challenge to mining engineers due to the geological complexities of ore body formation. Extensive research over the years has resulted in the development of several state-of-the-art methods for predictive spatial mapping, which could be used for ore reserve estimation;and recent advances in the use of machine learning algorithms (MLA) have provided a new approach for solving the prob-lem of ore reserve estimation. The focus of the present study was on the use of two MLA for estimating ore reserve: namely, neural networks (NN) and support vector machines (SVM). Application of MLA and the various issues involved with using them for reserve estimation have been elaborated with the help of a complex drill-hole dataset that exhibits the typical properties of sparseness and impreciseness that might be associated with a mining dataset. To investigate the accuracy and applicability of MLA for ore reserve estimation, the generalization ability of NN and SVM was compared with the geostatistical ordinary kriging (OK) method. 展开更多
关键词 MACHINE learning algorithms Neural Networks Support VECTOR MACHINE GENETIC algorithms Supervised
暂未订购
Improved prediction of clay soil expansion using machine learning algorithms and meta-heuristic dichotomous ensemble classifiers 被引量:1
20
作者 E.U.Eyo S.J.Abbey +1 位作者 T.T.Lawrence F.K.Tetteh 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期268-284,共17页
Soil swelling-related disaster is considered as one of the most devastating geo-hazards in modern history.Hence,proper determination of a soil’s ability to expand is very vital for achieving a secure and safe ground ... Soil swelling-related disaster is considered as one of the most devastating geo-hazards in modern history.Hence,proper determination of a soil’s ability to expand is very vital for achieving a secure and safe ground for infrastructures.Accordingly,this study has provided a novel and intelligent approach that enables an improved estimation of swelling by using kernelised machines(Bayesian linear regression(BLR)&bayes point machine(BPM)support vector machine(SVM)and deep-support vector machine(D-SVM));(multiple linear regressor(REG),logistic regressor(LR)and artificial neural network(ANN)),tree-based algorithms such as decision forest(RDF)&boosted trees(BDT).Also,and for the first time,meta-heuristic classifiers incorporating the techniques of voting(VE)and stacking(SE)were utilised.Different independent scenarios of explanatory features’combination that influence soil behaviour in swelling were investigated.Preliminary results indicated BLR as possessing the highest amount of deviation from the predictor variable(the actual swell-strain).REG and BLR performed slightly better than ANN while the meta-heuristic learners(VE and SE)produced the best overall performance(greatest R2 value of 0.94 and RMSE of 0.06%exhibited by VE).CEC,plasticity index and moisture content were the features considered to have the highest level of importance.Kernelized binary classifiers(SVM,D-SVM and BPM)gave better accuracy(average accuracy and recall rate of 0.93 and 0.60)compared to ANN,LR and RDF.Sensitivity-driven diagnostic test indicated that the meta-heuristic models’best performance occurred when ML training was conducted using k-fold validation technique.Finally,it is recommended that the concepts developed herein be deployed during the preliminary phases of a geotechnical or geological site characterisation by using the best performing meta-heuristic models via their background coding resource. 展开更多
关键词 Artificial neural networks Machine learning Clays Algorithm Soil swelling Soil plasticity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部