期刊文献+
共找到249,089篇文章
< 1 2 250 >
每页显示 20 50 100
A Literature Review on Model Conversion, Inference, and Learning Strategies in EdgeML with TinyML Deployment
1
作者 Muhammad Arif Muhammad Rashid 《Computers, Materials & Continua》 2025年第4期13-64,共52页
Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’... Edge Machine Learning(EdgeML)and Tiny Machine Learning(TinyML)are fast-growing fields that bring machine learning to resource-constrained devices,allowing real-time data processing and decision-making at the network’s edge.However,the complexity of model conversion techniques,diverse inference mechanisms,and varied learning strategies make designing and deploying these models challenging.Additionally,deploying TinyML models on resource-constrained hardware with specific software frameworks has broadened EdgeML’s applications across various sectors.These factors underscore the necessity for a comprehensive literature review,as current reviews do not systematically encompass the most recent findings on these topics.Consequently,it provides a comprehensive overview of state-of-the-art techniques in model conversion,inference mechanisms,learning strategies within EdgeML,and deploying these models on resource-constrained edge devices using TinyML.It identifies 90 research articles published between 2018 and 2025,categorizing them into two main areas:(1)model conversion,inference,and learning strategies in EdgeML and(2)deploying TinyML models on resource-constrained hardware using specific software frameworks.In the first category,the synthesis of selected research articles compares and critically reviews various model conversion techniques,inference mechanisms,and learning strategies.In the second category,the synthesis identifies and elaborates on major development boards,software frameworks,sensors,and algorithms used in various applications across six major sectors.As a result,this article provides valuable insights for researchers,practitioners,and developers.It assists them in choosing suitable model conversion techniques,inference mechanisms,learning strategies,hardware development boards,software frameworks,sensors,and algorithms tailored to their specific needs and applications across various sectors. 展开更多
关键词 Edge machine learning tiny machine learning model compression INFERENCE learning algorithms
在线阅读 下载PDF
Streamlining heart failure patient care with machine learning of thoracic cavity sound data
2
作者 Rony Marethianto Santoso Wilbert Huang +4 位作者 Ser Wee Bambang Budi Siswanto Amiliana Mardiani Soesanto Wisnu Jatmiko Aria Kekalih 《World Journal of Cardiology》 2025年第9期33-42,共10页
Together,the heart and lung sound comprise the thoracic cavity sound,which provides informative details that reflect patient conditions,particularly heart failure(HF)patients.However,due to the limitations of human he... Together,the heart and lung sound comprise the thoracic cavity sound,which provides informative details that reflect patient conditions,particularly heart failure(HF)patients.However,due to the limitations of human hearing,a limited amount of information can be auscultated from thoracic cavity sounds.With the aid of artificial intelligence–machine learning,these features can be analyzed and aid in the care of HF patients.Machine learning of thoracic cavity sound data involves sound data pre-processing by denoising,resampling,segmentation,and normalization.Afterwards,the most crucial step is feature extraction and se-lection where relevant features are selected to train the model.The next step is classification and model performance evaluation.This review summarizes the currently available studies that utilized different machine learning models,different feature extraction and selection methods,and different classifiers to generate the desired output.Most studies have analyzed the heart sound component of thoracic cavity sound to distinguish between normal and HF patients.Additionally,some studies have aimed to classify HF patients based on thoracic cavity sounds in their entirety,while others have focused on risk strati-fication and prognostic evaluation of HF patients using thoracic cavity sounds.Overall,the results from these studies demonstrate a promisingly high level of accuracy.Therefore,future prospective studies should incorporate these machine learning models to expedite their integration into daily clinical practice for managing HF patients. 展开更多
关键词 Machine learning Heart failure Sound data Artificial intelligence Deep learning
暂未订购
Advanced driver assistance system(ADAS)and machine learning(ML):The dynamic duo revolutionizing the automotive industry
3
作者 Harsh SHAH Karan SHAH +2 位作者 Kushagra DARJI Adit SHAH Manan SHAH 《虚拟现实与智能硬件(中英文)》 2025年第3期203-236,共34页
The advanced driver assistance system(ADAS)primarily serves to assist drivers in monitoring the speed of the car and helps them make the right decision,which leads to fewer fatal accidents and ensures higher safety.In... The advanced driver assistance system(ADAS)primarily serves to assist drivers in monitoring the speed of the car and helps them make the right decision,which leads to fewer fatal accidents and ensures higher safety.In the artificial Intelligence domain,machine learning(ML)was developed to make inferences with a degree of accuracy similar to that of humans;however,enormous amounts of data are required.Machine learning enhances the accuracy of the decisions taken by ADAS,by evaluating all the data received from various vehicle sensors.This study summarizes all the critical algorithms used in ADAS technologies and presents the evolution of ADAS technology.Initially,ADAS technology is introduced,along with its evolution,to understand the objectives of developing this technology.Subsequently,the critical algorithms used in ADAS technology,which include face detection,head-pose estimation,gaze estimation,and link detection are discussed.A further discussion follows on the impact of ML on each algorithm in different environments,leading to increased accuracy at the expense of additional computing,to increase efficiency.The aim of this study was to evaluate all the methods with or without ML for each algorithm. 展开更多
关键词 Machine learning Face detection Advanced driver system
在线阅读 下载PDF
Online transfer learning with an MLP-assisted graph convolutional network for traffic flow prediction:a solution for edge intelligent devices
4
作者 Jingru SUN Chendingying LU +2 位作者 Yichuang SUN Hongbo JIANG Zhu XIAO 《Frontiers of Information Technology & Electronic Engineering》 2025年第9期1692-1710,共19页
Trafic fow prediction is crucial for intelligent transportation and aids in route planning and navigation.However,existing studies often focus on prediction accuracy improvement,while neglecting external influences an... Trafic fow prediction is crucial for intelligent transportation and aids in route planning and navigation.However,existing studies often focus on prediction accuracy improvement,while neglecting external influences and practical issues like resource constraints and data sparsity on edge devices.We propose an online transfer learning(OTL)framework with a multi-layer perceptron(MLP)-assisted graph convolutional network(GCN),termed OTL-GM,which consists of two parts:transferring source-domain features to edge devices and using online learning to bridge domain gaps.Experiments on four data sets demonstrate OTL's effectiveness;in a comparison with models not using OTL,the reduction in the convergence time of the OTL models ranges from 24.77% to 95.32%. 展开更多
关键词 Online transfer learning Traffic prediction Intelligent edge devices
原文传递
Machine Learning on Blockchain (MLOB): A New Paradigm for Computational Security in Engineering
5
作者 Zhiming Dong Weisheng Lu 《Engineering》 2025年第4期250-263,共14页
Machine learning(ML)has been increasingly adopted to solve engineering problems with performance gauged by accuracy,efficiency,and security.Notably,blockchain technology(BT)has been added to ML when security is a part... Machine learning(ML)has been increasingly adopted to solve engineering problems with performance gauged by accuracy,efficiency,and security.Notably,blockchain technology(BT)has been added to ML when security is a particular concern.Nevertheless,there is a research gap that prevailing solutions focus primarily on data security using blockchain but ignore computational security,making the traditional ML process vulnerable to off-chain risks.Therefore,the research objective is to develop a novel ML on blockchain(MLOB)framework to ensure both the data and computational process security.The central tenet is to place them both on the blockchain,execute them as blockchain smart contracts,and protect the execution records on-chain.The framework is established by developing a prototype and further calibrated using a case study of industrial inspection.It is shown that the MLOB framework,compared with existing ML and BT isolated solutions,is superior in terms of security(successfully defending against corruption on six designed attack scenario),maintaining accuracy(0.01%difference with baseline),albeit with a slightly compromised efficiency(0.231 second latency increased).The key finding is MLOB can significantly enhances the computational security of engineering computing without increasing computing power demands.This finding can alleviate concerns regarding the computational resource requirements of ML-BT integration.With proper adaption,the MLOB framework can inform various novel solutions to achieve computational security in broader engineering challenges. 展开更多
关键词 Engineering computing Machine learning Blockchain Blockchain smart contract Deployable framework
在线阅读 下载PDF
玻尔兹曼优化Q-learning的高速铁路越区切换控制算法 被引量:3
6
作者 陈永 康婕 《控制理论与应用》 北大核心 2025年第4期688-694,共7页
针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误... 针对5G-R高速铁路越区切换使用固定切换阈值,且忽略了同频干扰、乒乓切换等的影响,导致越区切换成功率低的问题,提出了一种玻尔兹曼优化Q-learning的越区切换控制算法.首先,设计了以列车位置–动作为索引的Q表,并综合考虑乒乓切换、误码率等构建Q-learning算法回报函数;然后,提出玻尔兹曼搜索策略优化动作选择,以提高切换算法收敛性能;最后,综合考虑基站同频干扰的影响进行Q表更新,得到切换判决参数,从而控制切换执行.仿真结果表明:改进算法在不同运行速度和不同运行场景下,较传统算法能有效提高切换成功率,且满足无线通信服务质量QoS的要求. 展开更多
关键词 越区切换 5G-R Q-learning算法 玻尔兹曼优化策略
在线阅读 下载PDF
Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis:Evidence from Shimla district of North-west Indian Himalayan region 被引量:2
7
作者 SHARMA Aastha SAJJAD Haroon +2 位作者 RAHAMAN Md Hibjur SAHA Tamal Kanti BHUYAN Nirsobha 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2368-2393,共26页
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ... The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics. 展开更多
关键词 Landslide susceptibility Site-specific factors Machine learning models Hybrid ensemble learning Geospatial techniques Himalayan region
原文传递
融合MAML和对比学习的小样本加密流量分类模型
8
作者 金彦亮 方洁 高塬 《上海大学学报(自然科学版)》 北大核心 2025年第4期719-734,共16页
为了应对当前有标签加密流量数量有限的挑战,同时迅速适应新兴流量的分类任务,提出了一种融合模型无关元学习(model-agnostic meta-learning,MAML)和对比学习的小样本加密流量分类模型.具体来说,通过引入监督对比损失来改进MAML的内层优... 为了应对当前有标签加密流量数量有限的挑战,同时迅速适应新兴流量的分类任务,提出了一种融合模型无关元学习(model-agnostic meta-learning,MAML)和对比学习的小样本加密流量分类模型.具体来说,通过引入监督对比损失来改进MAML的内层优化,使得会话流经过特征编码网络生成的嵌入表示在标签空间更易区分,从而获得跨多个任务的通用的元知识.借助元知识,新任务适应阶段只需少量标记数据,即可在目标任务上快速学习并获得出色性能.在公有数据集ISCXVPN-NonVPN2016和一个私有数据集上的实验结果表明,所提方法超越了已有的小样本分类方法.在2way-10shot任务中,所提方法在公有数据集上达到97.46%的准确率和97.12%的F1分数;在私有数据集上达到95.19%的准确率和94.96%的F1分数.此外,所提出的模型能够缓解MAML难以应对的类间相似性和类内差异性问题.在公有数据集的5way-10shot任务中,所提出模型的准确率和F1分数相较于MAML分别提升了3.62%和3.70%. 展开更多
关键词 加密流量分类 小样本 MAml 元学习 对比学习
在线阅读 下载PDF
红火蚁SiMLs免疫响应不同病原物的表达模式分析
9
作者 康泽泓 朱展鹏 +5 位作者 蔺良杰 吴洪鑫 李昂 陆永跃 金丰良 许小霞 《环境昆虫学报》 北大核心 2025年第3期870-882,共13页
相关脂质识别蛋白由一类具有ML(Myeloid differentiation factor-2 related lipid recognition protein)单结构域的蛋白质组成,在脂类识别和天然免疫信号传导途径中起重要作用。ML蛋白家族成员在节肢动物中众多,功能复杂,ML蛋白研究聚... 相关脂质识别蛋白由一类具有ML(Myeloid differentiation factor-2 related lipid recognition protein)单结构域的蛋白质组成,在脂类识别和天然免疫信号传导途径中起重要作用。ML蛋白家族成员在节肢动物中众多,功能复杂,ML蛋白研究聚焦于宿主与病毒之间的互作,但是对于ML蛋白在入侵昆虫中的功能研究未见报道。本研究以入侵昆虫红火蚁Solenopsis invicta为研究对象,基于红火蚁基因组和转录组数据,筛选鉴定获得5个ML基因(SiML1~5),生物信息学分析表明SiMLs家族包含一个信号肽和一个典型ML结构域,其中ML结构域几乎覆盖了SiML1(25~151 aa)、SiML2(23~150 aa)、SiML3(24~145 aa)、SiML4(21~150 aa)和SiML5(58~175 aa)蛋白的整个编码区,并含有6个保守的半胱氨酸残基。系统进化分析显示红火蚁SiML1,SiML2,SiML3和SiML4在同一个分支,与紫苑叶蝉Macrosteles quadrilineatus(MqML)亲缘关系较近;而红火蚁SiML5与中红侧沟茧蜂Microplitis mediator(MmML3)在同一个分支上。荧光定量PCR检测显示红火蚁SiMLs家族基因在红火蚁6个组织中均有转录,在脂肪体中表达量最高;SiMLs家族基因在整个发育历期都有表达,在卵、幼虫、蛹和成虫变态期间均有差异表达,主要是上调表达,表明ML蛋白可能参与红火蚁的变态发育过程。用细菌和真菌病原菌通过喷洒或浸泡红火蚁大型工蚁进行免疫诱导,RT-qPCR结果显示火蚁大型工蚁SiMLs家族成员在大肠杆菌诱导3~48 h后均显著上调表达,在金龟子绿僵菌和白僵菌菌诱导后,早期(3~12 h)SiMLs家族成员表达升高,后期(24~48 h)表达受到抑制。本研究表明红火蚁SiMLs能够响应病原菌的入侵,且针对不同病原体有不同的表达模式,这些发现为SiMLs蛋白的功能研究奠定了基础。 展开更多
关键词 ml家族成员 红火蚁 病原物 表达模式 免疫反应
在线阅读 下载PDF
Model Agnostic Meta-Learning(MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks 被引量:1
10
作者 Yasir Maqsood Syed Muhammad Usman +3 位作者 Musaed Alhussein Khursheed Aurangzeb Shehzad Khalid Muhammad Zubair 《Computers, Materials & Continua》 SCIE EI 2024年第5期2795-2811,共17页
Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly di... Wheat is a critical crop,extensively consumed worldwide,and its production enhancement is essential to meet escalating demand.The presence of diseases like stem rust,leaf rust,yellow rust,and tan spot significantly diminishes wheat yield,making the early and precise identification of these diseases vital for effective disease management.With advancements in deep learning algorithms,researchers have proposed many methods for the automated detection of disease pathogens;however,accurately detectingmultiple disease pathogens simultaneously remains a challenge.This challenge arises due to the scarcity of RGB images for multiple diseases,class imbalance in existing public datasets,and the difficulty in extracting features that discriminate between multiple classes of disease pathogens.In this research,a novel method is proposed based on Transfer Generative Adversarial Networks for augmenting existing data,thereby overcoming the problems of class imbalance and data scarcity.This study proposes a customized architecture of Vision Transformers(ViT),where the feature vector is obtained by concatenating features extracted from the custom ViT and Graph Neural Networks.This paper also proposes a Model AgnosticMeta Learning(MAML)based ensemble classifier for accurate classification.The proposedmodel,validated on public datasets for wheat disease pathogen classification,achieved a test accuracy of 99.20%and an F1-score of 97.95%.Compared with existing state-of-the-art methods,this proposed model outperforms in terms of accuracy,F1-score,and the number of disease pathogens detection.In future,more diseases can be included for detection along with some other modalities like pests and weed. 展开更多
关键词 Wheat disease detection deep learning vision transformer graph neural network model agnostic meta learning
在线阅读 下载PDF
整合集成预测约束与错误预测熵最大化的MLS点云分类方法
11
作者 雷相达 管海燕 董震 《遥感学报》 北大核心 2025年第1期329-340,共12页
许多深度学习点云分类方法通过增加点云特征聚合模块,增强点云特征的表达能力,但该类方法往往会带来训练参数增加以及模型过拟合的问题。针对该问题,本文提出了一个整合集成预测约束与错误预测熵最大化的深度学习方法用于移动激光扫描ML... 许多深度学习点云分类方法通过增加点云特征聚合模块,增强点云特征的表达能力,但该类方法往往会带来训练参数增加以及模型过拟合的问题。针对该问题,本文提出了一个整合集成预测约束与错误预测熵最大化的深度学习方法用于移动激光扫描MLS(Mobile Laser Scanning)点云分类。方法通过集成预测约束分支以及错误预测熵最大化分支可以在不增加训练参数的情况下,增强基线网络的点云特征表达,提高模型泛化能力。其中集成预测约束分支首先通过记录点云在训练过程中的预测值,生成集成预测值,然后采用一致性约束增强模型的点云特征表达。错误预测熵最大化分支鼓励模型对错误预测点进行熵值最大化,增加该点的不确定性,提高模型的泛化能力。所提方法在多个公开MLS点云数据集上进行验证,结果表明所提方法可以在不增加训练参数的情况下,提高基线方法的分类性能。与对比方法相比,所提方法在Toronto3D、WHU-MLS、Paris数据集上获得了最优的平均交并比(83.68%、65.85%、44.19%),表明了方法的有效性。 展开更多
关键词 遥感 mlS点云分类 深度学习 集成预测约束 错误预测熵最大化
原文传递
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
12
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
13
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 Federated learning Internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
基于MDP和Q-learning的绿色移动边缘计算任务卸载策略
14
作者 赵宏伟 吕盛凱 +2 位作者 庞芷茜 马子涵 李雨 《河南理工大学学报(自然科学版)》 北大核心 2025年第5期9-16,共8页
目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process... 目的为了在汽车、空调等制造类工业互联网企业中实现碳中和,利用边缘计算任务卸载技术处理生产设备的任务卸载问题,以减少服务器的中心负载,减少数据中心的能源消耗和碳排放。方法提出一种基于马尔可夫决策过程(Markov decision process,MDP)和Q-learning的绿色边缘计算任务卸载策略,该策略考虑了计算频率、传输功率、碳排放等约束,基于云边端协同计算模型,将碳排放优化问题转化为混合整数线性规划模型,通过MDP和Q-learning求解模型,并对比随机分配算法、Q-learning算法、SARSA(state action reward state action)算法的收敛性能、碳排放与总时延。结果与已有的计算卸载策略相比,新策略对应的任务调度算法收敛比SARSA算法、Q-learning算法分别提高了5%,2%,收敛性更好;系统碳排放成本比Q-learning算法、SARSA算法分别减少了8%,22%;考虑终端数量多少,新策略比Q-learning算法、SARSA算法终端数量分别减少了6%,7%;系统总计算时延上,新策略明显低于其他算法,比随机分配算法、Q-learning算法、SARSA算法分别减少了27%,14%,22%。结论该策略能够合理优化卸载计算任务和资源分配,权衡时延、能耗,减少系统碳排放量。 展开更多
关键词 碳排放 边缘计算 强化学习 马尔可夫决策过程 任务卸载
在线阅读 下载PDF
SensFL:Privacy-Preserving Vertical Federated Learning with Sensitive Regularization 被引量:1
15
作者 Chongzhen Zhang Zhichen Liu +4 位作者 Xiangrui Xu Fuqiang Hu Jiao Dai Baigen Cai Wei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期385-404,共20页
In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach... In the realm of Intelligent Railway Transportation Systems,effective multi-party collaboration is crucial due to concerns over privacy and data silos.Vertical Federated Learning(VFL)has emerged as a promising approach to facilitate such collaboration,allowing diverse entities to collectively enhance machine learning models without the need to share sensitive training data.However,existing works have highlighted VFL’s susceptibility to privacy inference attacks,where an honest but curious server could potentially reconstruct a client’s raw data from embeddings uploaded by the client.This vulnerability poses a significant threat to VFL-based intelligent railway transportation systems.In this paper,we introduce SensFL,a novel privacy-enhancing method to against privacy inference attacks in VFL.Specifically,SensFL integrates regularization of the sensitivity of embeddings to the original data into the model training process,effectively limiting the information contained in shared embeddings.By reducing the sensitivity of embeddings to the original data,SensFL can effectively resist reverse privacy attacks and prevent the reconstruction of the original data from the embeddings.Extensive experiments were conducted on four distinct datasets and three different models to demonstrate the efficacy of SensFL.Experiment results show that SensFL can effectively mitigate privacy inference attacks while maintaining the accuracy of the primary learning task.These results underscore SensFL’s potential to advance privacy protection technologies within VFL-based intelligent railway systems,addressing critical security concerns in collaborative learning environments. 展开更多
关键词 Vertical federated learning PRIVACY DEFENSES
在线阅读 下载PDF
全自动智能静脉用药调配机器人ML300在静脉用药调配中心的开发与应用 被引量:2
16
作者 王冠元 李文莉 +1 位作者 刘婧琳 张洁 《中国组织工程研究》 北大核心 2025年第34期7362-7368,共7页
目的:探讨全自动智能静脉用药调配机器人ML300在静脉用药调配中心中的开发与应用。方法:抽取2024-06-01/30天津医科大学肿瘤医院静脉用药调配中心含有注射用奥美拉唑钠、维生素C注射液、异甘草酸镁3种药物的配置医嘱处方各100份,按处方... 目的:探讨全自动智能静脉用药调配机器人ML300在静脉用药调配中心中的开发与应用。方法:抽取2024-06-01/30天津医科大学肿瘤医院静脉用药调配中心含有注射用奥美拉唑钠、维生素C注射液、异甘草酸镁3种药物的配置医嘱处方各100份,按处方配置方法分为对照组(n=100)、实验组(n=100),对照组应用人工模拟临床工作模式配置上述3种药物,操作由若干人员完成;实验组应用全自动智能智能静脉用药调配机器人ML300配置上述3种药物,操作由一人完成。对比两组配置上述3种药物的配药效率、药物残留量、不溶性微粒合格率、微生物检出率。结果与结论:实验组3种药物配药效率与不溶性微粒合格率均高于对照组(P<0.001),3种药物残留量与微生物检出率均低于对照组(P<0.001)。以注射用奥美拉唑钠、维生素C注射液、异甘草酸镁3种药物为例,全自动智能静脉用药调配机器人ML300可提高静脉用药调配中心工作人员的配药效率、优化配药质量。 展开更多
关键词 ml300 静脉用药调配中心 药物配置 开发 应用 工程化材料
暂未订购
GP‐FMLNet:A feature matrix learning network enhanced by glyph and phonetic information for Chinese sentiment analysis
17
作者 Jing Li Dezheng Zhang +2 位作者 Yonghong Xie Aziguli Wulamu Yao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期960-972,共13页
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin... Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms. 展开更多
关键词 aspect‐level sentiment analysis deep learning feature extraction glyph and phonetic feature matrix compound learning
在线阅读 下载PDF
一种基于ML-PMRF的复杂仿真系统可信度智能分配方法
18
作者 张欢 李伟 +2 位作者 张冰 马萍 杨明 《系统工程与电子技术》 北大核心 2025年第5期1516-1524,共9页
为保证复杂仿真系统达到可信度要求和缩短开发周期,应在构建复杂仿真系统之初确定各个仿真子系统的可信度。为此,提出一种复杂仿真系统可信度智能分配方法,在明确复杂仿真系统总体可信度的情况下获取各仿真子系统的可信度分配结果。根... 为保证复杂仿真系统达到可信度要求和缩短开发周期,应在构建复杂仿真系统之初确定各个仿真子系统的可信度。为此,提出一种复杂仿真系统可信度智能分配方法,在明确复杂仿真系统总体可信度的情况下获取各仿真子系统的可信度分配结果。根据复杂仿真系统的组成和结构,提出基于多层成对马尔可夫随机场(multi-layer pairwise Markov random field,ML-PMRF)的复杂仿真系统可信度分配模型构建方法。基于最大后验推理和离散萤火虫群优化,提出一种面向ML-PMRF的智能推理方法。通过实例应用及对比实验,验证了所提方法的有效性和合理性。 展开更多
关键词 复杂仿真系统 可信度分配 多层成对马尔可夫随机场 智能推理
在线阅读 下载PDF
A Comprehensive Survey on Federated Learning Applications in Computational Mental Healthcare 被引量:1
19
作者 Vajratiya Vajrobol Geetika Jain Saxena +6 位作者 Amit Pundir Sanjeev Singh Akshat Gaurav Savi Bansal Razaz Waheeb Attar Mosiur Rahman Brij B.Gupta 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期49-90,共42页
Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Num... Mental health is a significant issue worldwide,and the utilization of technology to assist mental health has seen a growing trend.This aims to alleviate the workload on healthcare professionals and aid individuals.Numerous applications have been developed to support the challenges in intelligent healthcare systems.However,because mental health data is sensitive,privacy concerns have emerged.Federated learning has gotten some attention.This research reviews the studies on federated learning and mental health related to solving the issue of intelligent healthcare systems.It explores various dimensions of federated learning in mental health,such as datasets(their types and sources),applications categorized based on mental health symptoms,federated mental health frameworks,federated machine learning,federated deep learning,and the benefits of federated learning in mental health applications.This research conducts surveys to evaluate the current state of mental health applications,mainly focusing on the role of Federated Learning(FL)and related privacy and data security concerns.The survey provides valuable insights into how these applications are emerging and evolving,specifically emphasizing FL’s impact. 展开更多
关键词 DEPRESSION emotional recognition intelligent healthcare systems mental health federated learning stress detection sleep behaviour
在线阅读 下载PDF
基于PBL(Problem-based Learning)的初中英语读写整合教学 被引量:1
20
作者 刘桂蓉 钱小芳 《英语学习(中英文)》 2025年第8期70-77,共8页
初中英语读写整合教学中常存在目标模糊、内容脱节的问题,导致学生的阅读停留于浅层,写作时缺乏读者意识,且难以结合生活实际进行表达。本文结合九年级读写整合教学课例,重点探讨以PBL(Problem-based Learning)为导向的读写整合教学策略... 初中英语读写整合教学中常存在目标模糊、内容脱节的问题,导致学生的阅读停留于浅层,写作时缺乏读者意识,且难以结合生活实际进行表达。本文结合九年级读写整合教学课例,重点探讨以PBL(Problem-based Learning)为导向的读写整合教学策略,包括:基于写作意义明确阅读意图;基于写作要点选择阅读内容;基于写作功能优化阅读策略。实践表明,这一教学策略能够有序、有度、有效地推进读写整合教学,提升学生的读写素养和问题解决能力,同时促进学生语言能力与思维能力的协同发展。 展开更多
关键词 Problem-based learning 基于问题探究的教学 初中英语 读写整合教学
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部