期刊文献+
共找到338,968篇文章
< 1 2 250 >
每页显示 20 50 100
Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring
1
作者 Kusum Sharma Kousik Bhunia +5 位作者 Subhajit Chatterjee Muthukumar Perumalsamy Anandhan Ayyappan Saj Theophilus Bhatti Yung‑Cheol Byun Sang-Jae Kim 《Nano-Micro Letters》 2026年第2期644-663,共20页
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,... Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech. 展开更多
关键词 Wearable ORGANOGEL deep learning Pressure sensor Bio-mechanical motion
在线阅读 下载PDF
Automated Pipe Defect Identification in Underwater Robot Imagery with Deep Learning
2
作者 Mansour Taheri Andani Farhad Ameri 《哈尔滨工程大学学报(英文版)》 2026年第1期197-215,共19页
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng... Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments. 展开更多
关键词 YOLO8 Underwater robot Object detection Underwater pipelines Remotely operated vehicle deep learning
在线阅读 下载PDF
A novel deep learning-based framework for forecasting
3
作者 Congqi Cao Ze Sun +2 位作者 Lanshu Hu Liujie Pan Yanning Zhang 《Atmospheric and Oceanic Science Letters》 2026年第1期22-26,共5页
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep... Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance. 展开更多
关键词 Weather forecasting deep learning Semantic segmentation models Learnable Gaussian noise Cascade prediction
在线阅读 下载PDF
Research on the visualization method of lithology intelligent recognition based on deep learning using mine tunnel images
4
作者 Aiai Wang Shuai Cao +1 位作者 Erol Yilmaz Hui Cao 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期141-152,共12页
An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction... An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects. 展开更多
关键词 rock picture recognition convolutional neural network intelligent support for roadways deep learning lithology determination
在线阅读 下载PDF
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
5
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
Early identification of stroke through deep learning with multi-modal human speech and movement data 被引量:4
6
作者 Zijun Ou Haitao Wang +9 位作者 Bin Zhang Haobang Liang Bei Hu Longlong Ren Yanjuan Liu Yuhu Zhang Chengbo Dai Hejun Wu Weifeng Li Xin Li 《Neural Regeneration Research》 SCIE CAS 2025年第1期234-241,共8页
Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are... Early identification and treatment of stroke can greatly improve patient outcomes and quality of life.Although clinical tests such as the Cincinnati Pre-hospital Stroke Scale(CPSS)and the Face Arm Speech Test(FAST)are commonly used for stroke screening,accurate administration is dependent on specialized training.In this study,we proposed a novel multimodal deep learning approach,based on the FAST,for assessing suspected stroke patients exhibiting symptoms such as limb weakness,facial paresis,and speech disorders in acute settings.We collected a dataset comprising videos and audio recordings of emergency room patients performing designated limb movements,facial expressions,and speech tests based on the FAST.We compared the constructed deep learning model,which was designed to process multi-modal datasets,with six prior models that achieved good action classification performance,including the I3D,SlowFast,X3D,TPN,TimeSformer,and MViT.We found that the findings of our deep learning model had a higher clinical value compared with the other approaches.Moreover,the multi-modal model outperformed its single-module variants,highlighting the benefit of utilizing multiple types of patient data,such as action videos and speech audio.These results indicate that a multi-modal deep learning model combined with the FAST could greatly improve the accuracy and sensitivity of early stroke identification of stroke,thus providing a practical and powerful tool for assessing stroke patients in an emergency clinical setting. 展开更多
关键词 artificial intelligence deep learning DIAGNOSIS early detection FAST SCREENING STROKE
在线阅读 下载PDF
DEEP NEURAL NETWORKS COMBINING MULTI-TASK LEARNING FOR SOLVING DELAY INTEGRO-DIFFERENTIAL EQUATIONS 被引量:1
7
作者 WANG Chen-yao SHI Feng 《数学杂志》 2025年第1期13-38,共26页
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di... Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data. 展开更多
关键词 Delay integro-differential equation Multi-task learning parameter sharing structure deep neural network sequential training scheme
在线阅读 下载PDF
Ensemble Deep Learning Approaches in Health Care:A Review 被引量:1
8
作者 Aziz Alotaibi 《Computers, Materials & Continua》 2025年第3期3741-3771,共31页
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensem... Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed. 展开更多
关键词 deep learning ensemble learning deep ensemble learning deep learning approaches for health care health care
在线阅读 下载PDF
Crack-Net:A Deep Learning Approach to Predict Crack Propagation and Stress–Strain Curves in Particulate Composites 被引量:2
9
作者 Hao Xu Wei Fan +3 位作者 Lecheng Ruan Rundong Shi Ambrose C.Taylor Dongxiao Zhang 《Engineering》 2025年第6期149-163,共15页
Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evo... Computational solid mechanics has become an indispensable approach in engineering,and numerical investigation of fracturing in composites is essential,as composites are widely used in structural applications.Crack evolution in composites is the path to elucidating the relationship between microstructures and fracture performance,but crack-based finite-element methods are computationally expensive and time-consuming,which limits their application in computation-intensive scenarios.Consequently,this study proposes a deep learning framework called Crack-Net for instant prediction of the dynamic crack growth process,as well as its strain-stress curve.Specifically,Crack-Net introduces an implicit constraint technique,which incorporates the relationship between crack evolution and stress response into the network architecture.This technique substantially reduces data requirements while improving predictive accuracy.The transfer learning technique enables Crack-Net to handle composite materials with reinforcements of different strengths.Trained on high-accuracy fracture development datasets from phase field simulations,the proposed framework is capable of tackling intricate scenarios,involving materials with diverse interfaces,varying initial conditions,and the intricate elastoplastic fracture process.The proposed Crack-Net holds great promise for practical applications in engineering and materials science,in which accurate and efficient fracture prediction is crucial for optimizing material performance and microstructural design. 展开更多
关键词 Fracture of composites Crack evolution deep learning Modeling
在线阅读 下载PDF
Enhancing mineral processing with deep learning: Automated quartz identification using thin section images 被引量:1
10
作者 Gökhan Külekçi Kemal Hacıefendioğlu Hasan Basri Başağa 《International Journal of Minerals,Metallurgy and Materials》 2025年第4期802-816,共15页
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor... The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis. 展开更多
关键词 quartz mineral identification deep learning hyperspectral imaging deep learning in geology
在线阅读 下载PDF
Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review 被引量:1
11
作者 Syed Ijaz Ur Rahman Naveed Abbas +5 位作者 Sikandar Ali Muhammad Salman Ahmed Alkhayat Jawad Khan Dildar Hussain Yeong Hyeon Gu 《Computer Modeling in Engineering & Sciences》 2025年第2期1199-1231,共33页
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide ... Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases. 展开更多
关键词 Acute lymphoblastic bone marrow SEGMENTATION CLASSIFICATION machine learning deep learning convolutional neural network
暂未订购
A deep transfer learning model for the deformation of braced excavations with limited monitoring data 被引量:1
12
作者 Yuanqin Tao Shaoxiang Zeng +3 位作者 Tiantian Ying Honglei Sun Sunjuexu Pan Yuanqiang Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1555-1568,共14页
The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To addres... The current deep learning models for braced excavation cannot predict deformation from the beginning of excavation due to the need for a substantial corpus of sufficient historical data for training purposes.To address this issue,this study proposes a transfer learning model based on a sequence-to-sequence twodimensional(2D)convolutional long short-term memory neural network(S2SCL2D).The model can use the existing data from other adjacent similar excavations to achieve wall deflection prediction once a limited amount of monitoring data from the target excavation has been recorded.In the absence of adjacent excavation data,numerical simulation data from the target project can be employed instead.A weight update strategy is proposed to improve the prediction accuracy by integrating the stochastic gradient masking with an early stopping mechanism.To illustrate the proposed methodology,an excavation project in Hangzhou,China is adopted.The proposed deep transfer learning model,which uses either adjacent excavation data or numerical simulation data as the source domain,shows a significant improvement in performance when compared to the non-transfer learning model.Using the simulation data from the target project even leads to better prediction performance than using the actual monitoring data from other adjacent excavations.The results demonstrate that the proposed model can reasonably predict the deformation with limited data from the target project. 展开更多
关键词 Braced excavation Wall deflections Transfer learning deep learning Finite element simulation
在线阅读 下载PDF
ACtriplet:An improved deep learning model for activity cliffs prediction by integrating triplet loss and pre-training 被引量:1
13
作者 Xinxin Yu Yimeng Wang +3 位作者 Long Chen Weihua Li Yun Tang Guixia Liu 《Journal of Pharmaceutical Analysis》 2025年第8期1837-1847,共11页
Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial... Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pretraining.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization. 展开更多
关键词 Activity cliff Triplet loss deep learning Pre-training
暂未订购
Forecasting landslide deformation by integrating domain knowledge into interpretable deep learning considering spatiotemporal correlations 被引量:1
14
作者 Zhengjing Ma Gang Mei 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期960-982,共23页
Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predict... Forecasting landslide deformation is challenging due to influence of various internal and external factors on the occurrence of systemic and localized heterogeneities.Despite the potential to improve landslide predictability,deep learning has yet to be sufficiently explored for complex deformation patterns associated with landslides and is inherently opaque.Herein,we developed a holistic landslide deformation forecasting method that considers spatiotemporal correlations of landslide deformation by integrating domain knowledge into interpretable deep learning.By spatially capturing the interconnections between multiple deformations from different observation points,our method contributes to the understanding and forecasting of landslide systematic behavior.By integrating specific domain knowledge relevant to each observation point and merging internal properties with external variables,the local heterogeneity is considered in our method,identifying deformation temporal patterns in different landslide zones.Case studies involving reservoir-induced landslides and creeping landslides demonstrated that our approach(1)enhances the accuracy of landslide deformation forecasting,(2)identifies significant contributing factors and their influence on spatiotemporal deformation characteristics,and(3)demonstrates how identifying these factors and patterns facilitates landslide forecasting.Our research offers a promising and pragmatic pathway toward a deeper understanding and forecasting of complex landslide behaviors. 展开更多
关键词 GEOHAZARDS Landslide deformation forecasting Landslide predictability Knowledge infused deep learning interpretable machine learning Attention mechanism Transformer
在线阅读 下载PDF
A Systematic Review of Deep Learning-Based Object Detection in Agriculture: Methods, Challenges, and Future Directions 被引量:1
15
作者 Mukesh Dalal Payal Mittal 《Computers, Materials & Continua》 2025年第7期57-91,共35页
Deep learning-based object detection has revolutionized various fields,including agriculture.This paper presents a systematic review based on the PRISMA 2020 approach for object detection techniques in agriculture by ... Deep learning-based object detection has revolutionized various fields,including agriculture.This paper presents a systematic review based on the PRISMA 2020 approach for object detection techniques in agriculture by exploring the evolution of different methods and applications over the past three years,highlighting the shift from conventional computer vision to deep learning-based methodologies owing to their enhanced efficacy in real time.The review emphasizes the integration of advanced models,such as You Only Look Once(YOLO)v9,v10,EfficientDet,Transformer-based models,and hybrid frameworks that improve the precision,accuracy,and scalability for crop monitoring and disease detection.The review also highlights benchmark datasets and evaluation metrics.It addresses limitations,like domain adaptation challenges,dataset heterogeneity,and occlusion,while offering insights into prospective research avenues,such as multimodal learning,explainable AI,and federated learning.Furthermore,the main aim of this paper is to serve as a thorough resource guide for scientists,researchers,and stakeholders for implementing deep learning-based object detection methods for the development of intelligent,robust,and sustainable agricultural systems. 展开更多
关键词 Artificial intelligence object detection computer vision AGRICULTURE deep learning
在线阅读 下载PDF
Research on Bearing Fault Diagnosis Method Based on Deep Learning 被引量:1
16
作者 Ting Zheng 《Journal of Electronic Research and Application》 2025年第1期1-6,共6页
Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial i... Bearing is an indispensable key component in mechanical equipment,and its working state is directly related to the stability and safety of the whole equipment.In recent years,with the rapid development of artificial intelligence technology,especially the breakthrough of deep learning technology,it provides a new idea for bearing fault diagnosis.Deep learning can automatically learn features from a large amount of data,has a strong nonlinear modeling ability,and can effectively solve the problems existing in traditional methods.Aiming at the key problems in bearing fault diagnosis,this paper studies the fault diagnosis method based on deep learning,which not only provides a new solution for bearing fault diagnosis but also provides a reference for the application of deep learning in other mechanical fault diagnosis fields. 展开更多
关键词 deep learning Bearing failure Diagnostic methods
在线阅读 下载PDF
Comprehensive Review and Analysis on Facial Emotion Recognition:Performance Insights into Deep and Traditional Learning with Current Updates and Challenges
17
作者 Amjad Rehman Muhammad Mujahid +2 位作者 Alex Elyassih Bayan AlGhofaily Saeed Ali Omer Bahaj 《Computers, Materials & Continua》 SCIE EI 2025年第1期41-72,共32页
In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fi... In computer vision and artificial intelligence,automatic facial expression-based emotion identification of humans has become a popular research and industry problem.Recent demonstrations and applications in several fields,including computer games,smart homes,expression analysis,gesture recognition,surveillance films,depression therapy,patientmonitoring,anxiety,and others,have brought attention to its significant academic and commercial importance.This study emphasizes research that has only employed facial images for face expression recognition(FER),because facial expressions are a basic way that people communicate meaning to each other.The immense achievement of deep learning has resulted in a growing use of its much architecture to enhance efficiency.This review is on machine learning,deep learning,and hybrid methods’use of preprocessing,augmentation techniques,and feature extraction for temporal properties of successive frames of data.The following section gives a brief summary of assessment criteria that are accessible to the public and then compares them with benchmark results the most trustworthy way to assess FER-related research topics statistically.In this review,a brief synopsis of the subject matter may be beneficial for novices in the field of FER as well as seasoned scholars seeking fruitful avenues for further investigation.The information conveys fundamental knowledge and provides a comprehensive understanding of the most recent state-of-the-art research. 展开更多
关键词 Face emotion recognition deep learning hybrid learning CK+ facial images machine learning technological development
在线阅读 下载PDF
A Deep Learning-Aided Method for Precise Identification of Microporosity:A Case Study from the Marine Hydrocarbon Reservoirs in the South China Sea 被引量:1
18
作者 GUO Dingrui GOLSANAMI Naser +10 位作者 ZHANG Zhi GYIMAH Emmanuel BAKHSHI Elham AHMAD Qazi Adnan BEHNIA Mahmoud SABERALI Behzad YAN Weichao DONG Huaimin SHENDY Saeid Ahmadizadeh JAYASURIYA Madusanka N FERNANDO Shanilka G 《Journal of Ocean University of China》 2025年第6期1450-1468,共19页
The accurate identification of microporosity is crucial for the characterization of hydrocarbon reservoir permeability and production.Scanning electron microscopy(SEM)is among the limited number of methods available t... The accurate identification of microporosity is crucial for the characterization of hydrocarbon reservoir permeability and production.Scanning electron microscopy(SEM)is among the limited number of methods available to directly observe the microscopic structure of the hydrocarbon reservoir rocks.Nevertheless,precise segmentation of microscopic pores at different depths in SEM images remains an unsolved challenge,known as the‘depth-related resolution loss'problem.Therefore,in this study,a 3D reconstruction technique for regions of interest(ROI)was developed for in-depth pixel analysis and differentiation among various depths of SEM images.The processed SEM images,together with the processing outcomes of this technique,were used as the input database to train a stochastic depth with multi-channel residual pathways(SdstMcrp)deep learning model programmed in Python to develop a tool for segmenting the microscopic pore spaces in SEM images obtained from the Beibuwan Basin.The more accurate segmentation helped to detect an average of 1.2 times more microporosity in SEM images,accounting for about 1.6 times more pixels and 1.2 times more pore surface area.Finally,the impact of the accurate segmentation on the calculation of permeability,a significant reservoir production property,was investigated using fractal geometry models and sensitivity analysis.The results showed that the obtained permeability values would vary by a factor of 6,which represents a considerable difference.These findings demonstrate that the proposed models can effectively identify features across a wide range of grayscale values in SEM images. 展开更多
关键词 SEM depth of field resolution loss PERMEABILITY deep learning fractal dimension
在线阅读 下载PDF
Biparametric magnetic resonance imaging-based radiomic and deep learning models for predicting Ki-67 risk stratification in hepatocellular carcinoma 被引量:1
19
作者 Xue-Yong Zuo Hai-Feng Liu 《World Journal of Hepatology》 2025年第8期244-256,共13页
BACKGROUND Hepatocellular carcinoma(HCC)is a prevalent and life-threatening cancer with increasing incidence worldwide.High Ki-67 risk stratification is closely associated with higher recurrence rates and worse outcom... BACKGROUND Hepatocellular carcinoma(HCC)is a prevalent and life-threatening cancer with increasing incidence worldwide.High Ki-67 risk stratification is closely associated with higher recurrence rates and worse outcomes following curative therapies in patients with HCC.However,the performance of radiomic and deep transfer learning(DTL)models derived from biparametric magnetic resonance imaging(bpMRI)in predicting Ki-67 risk stratification and recurrence-free survival(RFS)in patients with HCC remains limited.AIM To develop a nomogram model integrating bpMRI-based radiomic and DTL signatures for predicting Ki-67 risk stratification and RFS in patients with HCC.METHODS This study included 198 patients with histopathologically confirmed HCC who underwent preoperative bpMRI.Ki-67 risk stratification was categorized as high(>20%)or low(≤20%)according to immunohistochemical staining.Radiomic and DTL signatures were extracted from the T2-weighted and arterial-phase images and combined through a random forest algorithm to establish radiomic and DTL models,respectively.Multivariate regression analysis identified clinical risk factors for high Ki-67 risk stratification,and a predictive nomogram model was developed.RESULTS A nonsmooth margin and the absence of an enhanced capsule were independent factors for high Ki-67 risk stratification.The area under the curve(AUC)of the clinical model was 0.77,while those of the radiomic and DTL models were 0.81 and 0.87,respectively,for the prediction of high Ki-67 risk stratification,and the nomogram model achieved a better AUC of 0.92.The median RFS times for patients with high and low Ki-67 risk stratification were 33.00 months and 66.73 months,respectively(P<0.001).Additionally,patients who were predicted to have high Ki-67 risk stratification by the nomogram model had a lower median RFS than those who were predicted to have low Ki-67 risk stratification(33.53 vs 66.74 months,P=0.007).CONCLUSION Our developed nomogram model demonstrated good performance in predicting Ki-67 risk stratification and predicting survival outcomes in patients with HCC. 展开更多
关键词 Hepatocellular carcinoma KI-67 Radiomics deep transfer learning Recurrence-free survival
暂未订购
Enrichment Analysis and Deep Learning in Biomedical Ontology:Applications and Advancements 被引量:1
20
作者 Hong-Yu Fu Yang-Yang Liu +1 位作者 Mei-Yi Zhang Hai-Xiu Yang 《Chinese Medical Sciences Journal》 2025年第1期45-56,I0006,共13页
Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in relat... Biomedical big data,characterized by its massive scale,multi-dimensionality,and heterogeneity,offers novel perspectives for disease research,elucidates biological principles,and simultaneously prompts changes in related research methodologies.Biomedical ontology,as a shared formal conceptual system,not only offers standardized terms for multi-source biomedical data but also provides a solid data foundation and framework for biomedical research.In this review,we summarize enrichment analysis and deep learning for biomedical ontology based on its structure and semantic annotation properties,highlighting how technological advancements are enabling the more comprehensive use of ontology information.Enrichment analysis represents an important application of ontology to elucidate the potential biological significance for a particular molecular list.Deep learning,on the other hand,represents an increasingly powerful analytical tool that can be more widely combined with ontology for analysis and prediction.With the continuous evolution of big data technologies,the integration of these technologies with biomedical ontologies is opening up exciting new possibilities for advancing biomedical research. 展开更多
关键词 biomedical ontology enrichment analysis deep learning ontology hierarchy ontology annotation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部