期刊文献+
共找到256,340篇文章
< 1 2 250 >
每页显示 20 50 100
RankXLAN:An explainable ensemble-based machine learning framework for biomarker detection,therapeutic target identification,and classification using transcriptomic and epigenomic stomach cancer data
1
作者 Kasmika Borah Himanish Shekhar Das +1 位作者 Mudassir Khan Saurav Mallik 《Medical Data Mining》 2026年第1期13-31,共19页
Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-through... Background:Stomach cancer(SC)is one of the most lethal malignancies worldwide due to late-stage diagnosis and limited treatment.The transcriptomic,epigenomic,and proteomic,etc.,omics datasets generated by high-throughput sequencing technology have become prominent in biomedical research,and they reveal molecular aspects of cancer diagnosis and therapy.Despite the development of advanced sequencing technology,the presence of high-dimensionality in multi-omics data makes it challenging to interpret the data.Methods:In this study,we introduce RankXLAN,an explainable ensemble-based multi-omics framework that integrates feature selection(FS),ensemble learning,bioinformatics,and in-silico validation for robust biomarker detection,potential therapeutic drug-repurposing candidates’identification,and classification of SC.To enhance the interpretability of the model,we incorporated explainable artificial intelligence(SHapley Additive exPlanations analysis),as well as accuracy,precision,F1-score,recall,cross-validation,specificity,likelihood ratio(LR)+,LR−,and Youden index results.Results:The experimental results showed that the top four FS algorithms achieved improved results when applied to the ensemble learning classification model.The proposed ensemble model produced an area under the curve(AUC)score of 0.994 for gene expression,0.97 for methylation,and 0.96 for miRNA expression data.Through the integration of bioinformatics and ML approach of the transcriptomic and epigenomic multi-omics dataset,we identified potential marker genes,namely,UBE2D2,HPCAL4,IGHA1,DPT,and FN3K.In-silico molecular docking revealed a strong binding affinity between ANKRD13C and the FDA-approved drug Everolimus(binding affinity−10.1 kcal/mol),identifying ANKRD13C as a potential therapeutic drug-repurposing target for SC.Conclusion:The proposed framework RankXLAN outperforms other existing frameworks for serum biomarker identification,therapeutic target identification,and SC classification with multi-omics datasets. 展开更多
关键词 stomach cancer BIOINFORMATICS ensemble learning classifier BIOMARKER targets
在线阅读 下载PDF
Enhanced semi-supervised learning for top gas flow state classification to optimize emission and production in blast ironmaking furnaces
2
作者 Song Liu Qiqi Li +3 位作者 Qing Ye Zhiwei Zhao Dianyu E Shibo Kuang 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期204-216,共13页
Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate ... Automated classification of gas flow states in blast furnaces using top-camera imagery typically demands a large volume of labeled data,whose manual annotation is both labor-intensive and cost-prohibitive.To mitigate this challenge,we present an enhanced semi-supervised learning approach based on the Mean Teacher framework,incorporating a novel feature loss module to maximize classification performance with limited labeled samples.The model studies show that the proposed model surpasses both the baseline Mean Teacher model and fully supervised method in accuracy.Specifically,for datasets with 20%,30%,and 40%label ratios,using a single training iteration,the model yields accuracies of 78.61%,82.21%,and 85.2%,respectively,while multiple-cycle training iterations achieves 82.09%,81.97%,and 81.59%,respectively.Furthermore,scenario-specific training schemes are introduced to support diverse deployment need.These findings highlight the potential of the proposed technique in minimizing labeling requirements and advancing intelligent blast furnace diagnostics. 展开更多
关键词 blast furnace gas flow state semi-supervised learning mean teacher feature loss
在线阅读 下载PDF
Beyond the Cloud: Federated Learning and Edge AI for the Next Decade 被引量:1
3
作者 Sooraj George Thomas Praveen Kumar Myakala 《Journal of Computer and Communications》 2025年第2期37-50,共14页
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by... As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems. 展开更多
关键词 Federated learning Edge AI Decentralized Computing Privacy-Preserving AI Blockchain Quantum AI
在线阅读 下载PDF
Deep Learning and Artificial Intelligence-Driven Advanced Methods for Acute Lymphoblastic Leukemia Identification and Classification: A Systematic Review 被引量:1
4
作者 Syed Ijaz Ur Rahman Naveed Abbas +5 位作者 Sikandar Ali Muhammad Salman Ahmed Alkhayat Jawad Khan Dildar Hussain Yeong Hyeon Gu 《Computer Modeling in Engineering & Sciences》 2025年第2期1199-1231,共33页
Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide ... Automatic detection of Leukemia or blood cancer is one of the most challenging tasks that need to be addressed in the healthcare system.Analysis of white blood cells(WBCs)in the blood or bone marrow microscopic slide images play a crucial part in early identification to facilitate medical experts.For Acute Lymphocytic Leukemia(ALL),the most preferred part of the blood or marrow is to be analyzed by the experts before it spreads in the whole body and the condition becomes worse.The researchers have done a lot of work in this field,to demonstrate a comprehensive analysis few literature reviews have been published focusing on various artificial intelligence-based techniques like machine and deep learning detection of ALL.The systematic review has been done in this article under the PRISMA guidelines which presents the most recent advancements in this field.Different image segmentation techniques were broadly studied and categorized from various online databases like Google Scholar,Science Direct,and PubMed as image processing-based,traditional machine and deep learning-based,and advanced deep learning-based models were presented.Convolutional Neural Networks(CNN)based on traditional models and then the recent advancements in CNN used for the classification of ALL into its subtypes.A critical analysis of the existing methods is provided to offer clarity on the current state of the field.Finally,the paper concludes with insights and suggestions for future research,aiming to guide new researchers in the development of advanced automated systems for detecting life-threatening diseases. 展开更多
关键词 Acute lymphoblastic bone marrow SEGMENTATION clASSIFICATION machine learning deep learning convolutional neural network
暂未订购
Design of a Private Cloud Platform for Distributed Logging Big Data Based on a Unified Learning Model of Physics and Data 被引量:1
5
作者 Cheng Xi Fu Haicheng Tursyngazy Mahabbat 《Applied Geophysics》 2025年第2期499-510,560,共13页
Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of th... Well logging technology has accumulated a large amount of historical data through four generations of technological development,which forms the basis of well logging big data and digital assets.However,the value of these data has not been well stored,managed and mined.With the development of cloud computing technology,it provides a rare development opportunity for logging big data private cloud.The traditional petrophysical evaluation and interpretation model has encountered great challenges in the face of new evaluation objects.The solution research of logging big data distributed storage,processing and learning functions integrated in logging big data private cloud has not been carried out yet.To establish a distributed logging big-data private cloud platform centered on a unifi ed learning model,which achieves the distributed storage and processing of logging big data and facilitates the learning of novel knowledge patterns via the unifi ed logging learning model integrating physical simulation and data models in a large-scale functional space,thus resolving the geo-engineering evaluation problem of geothermal fi elds.Based on the research idea of“logging big data cloud platform-unifi ed logging learning model-large function space-knowledge learning&discovery-application”,the theoretical foundation of unified learning model,cloud platform architecture,data storage and learning algorithm,arithmetic power allocation and platform monitoring,platform stability,data security,etc.have been carried on analysis.The designed logging big data cloud platform realizes parallel distributed storage and processing of data and learning algorithms.The feasibility of constructing a well logging big data cloud platform based on a unifi ed learning model of physics and data is analyzed in terms of the structure,ecology,management and security of the cloud platform.The case study shows that the logging big data cloud platform has obvious technical advantages over traditional logging evaluation methods in terms of knowledge discovery method,data software and results sharing,accuracy,speed and complexity. 展开更多
关键词 Unified logging learning model logging big data private cloud machine learning
在线阅读 下载PDF
FedCPS:A Dual Optimization Model for Federated Learning Based on Clustering and Personalization Strategy 被引量:1
6
作者 Zhen Yang Yifan Liu +2 位作者 Fan Feng Yi Liu Zhenpeng Liu 《Computers, Materials & Continua》 2025年第4期357-380,共24页
Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients a... Federated learning is a machine learning framework designed to protect privacy by keeping training data on clients’devices without sharing private data.It trains a global model through collaboration between clients and the server.However,the presence of data heterogeneity can lead to inefficient model training and even reduce the final model’s accuracy and generalization capability.Meanwhile,data scarcity can result in suboptimal cluster distributions for few-shot clients in centralized clustering tasks,and standalone personalization tasks may cause severe overfitting issues.To address these limitations,we introduce a federated learning dual optimization model based on clustering and personalization strategy(FedCPS).FedCPS adopts a decentralized approach,where clients identify their cluster membership locally without relying on a centralized clustering algorithm.Building on this,FedCPS introduces personalized training tasks locally,adding a regularization term to control deviations between local and cluster models.This improves the generalization ability of the final model while mitigating overfitting.The use of weight-sharing techniques also reduces the computational cost of central machines.Experimental results on MNIST,FMNIST,CIFAR10,and CIFAR100 datasets demonstrate that our method achieves better personalization effects compared to other personalized federated learning methods,with an average test accuracy improvement of 0.81%–2.96%.Meanwhile,we adjusted the proportion of few-shot clients to evaluate the impact on accuracy across different methods.The experiments show that FedCPS reduces accuracy by only 0.2%–3.7%,compared to 2.1%–10%for existing methods.Our method demonstrates its advantages across diverse data environments. 展开更多
关键词 Federated learning clUSTER PERSONALIZATION OVERFITTING
在线阅读 下载PDF
ACtriplet:An improved deep learning model for activity cliffs prediction by integrating triplet loss and pre-training 被引量:1
7
作者 Xinxin Yu Yimeng Wang +3 位作者 Long Chen Weihua Li Yun Tang Guixia Liu 《Journal of Pharmaceutical Analysis》 2025年第8期1837-1847,共11页
Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial... Activity cliffs(ACs)are generally defined as pairs of similar compounds that only differ by a minor structural modification but exhibit a large difference in their binding affinity for a given target.ACs offer crucial insights that aid medicinal chemists in optimizing molecular structures.Nonetheless,they also form a major source of prediction error in structure-activity relationship(SAR)models.To date,several studies have demonstrated that deep neural networks based on molecular images or graphs might need to be improved further in predicting the potency of ACs.In this paper,we integrated the triplet loss in face recognition with pre-training strategy to develop a prediction model ACtriplet,tailored for ACs.Through extensive comparison with multiple baseline models on 30 benchmark datasets,the results showed that ACtriplet was significantly better than those deep learning(DL)models without pretraining.In addition,we explored the effect of pre-training on data representation.Finally,the case study demonstrated that our model's interpretability module could explain the prediction results reasonably.In the dilemma that the amount of data could not be increased rapidly,this innovative framework would better make use of the existing data,which would propel the potential of DL in the early stage of drug discovery and optimization. 展开更多
关键词 Activity cliff Triplet loss Deep learning Pre-training
暂未订购
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
8
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Prediction of radionuclide diffusion enabled by missing data imputation and ensemble machine learning 被引量:1
9
作者 Jun-Lei Tian Jia-Xing Feng +4 位作者 Jia-Cong Shen Lei Yao Jing-Yan Wang Tao Wu Yao-Lin Zhao 《Nuclear Science and Techniques》 2025年第10期47-61,共15页
Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine learning(ML)models.In this study,regression-based missing data imputation method using a light grad... Missing values in radionuclide diffusion datasets can undermine the predictive accuracy and robustness of the machine learning(ML)models.In this study,regression-based missing data imputation method using a light gradient boosting machine(LGBM)algorithm was employed to impute more than 60%of the missing data,establishing a radionuclide diffusion dataset containing 16 input features and 813 instances.The effective diffusion coefficient(D_(e))was predicted using ten ML models.The predictive accuracy of the ensemble meta-models,namely LGBM-extreme gradient boosting(XGB)and LGBM-categorical boosting(CatB),surpassed that of the other ML models,with R^(2)values of 0.94.The models were applied to predict the D_(e)values of EuEDTA^(−)and HCrO_(4)^(−)in saturated compacted bentonites at compactions ranging from 1200 to 1800 kg/m^(3),which were measured using a through-diffusion method.The generalization ability of the LGBM-XGB model surpassed that of LGB-CatB in predicting the D_(e)of HCrO_(4)^(−).Shapley additive explanations identified total porosity as the most significant influencing factor.Additionally,the partial dependence plot analysis technique yielded clearer results in the univariate correlation analysis.This study provides a regression imputation technique to refine radionuclide diffusion datasets,offering deeper insights into analyzing the diffusion mechanism of radionuclides and supporting the safety assessment of the geological disposal of high-level radioactive waste. 展开更多
关键词 Machine learning Radionuclide diffusion BENTONITE Regression imputation Missing data Diffusion experiments
在线阅读 下载PDF
Classification of superconducting radio-frequency cavity faults of CAFE2 using machine learning 被引量:1
10
作者 Li-Juan Yang Jia-Yi Peng +16 位作者 Feng Qiu Yuan He Jin-Ying Ma Zong-Heng Xue Tian-Cai Jiang Zheng-Long Zhu Qi Chen Cheng-Ye Xu Jing-Wei Yu Zhen Ma Di-Di Luo Zi-Qin Yang Zheng Gao Lie-Peng Sun Zhou-Li Zhang Gui-Rong Huang Zhi-Jun Wang 《Nuclear Science and Techniques》 2025年第6期37-55,共19页
Superconducting radio-frequency(SRF)cavities are the core components of SRF linear accelerators,making their stable operation considerably important.However,the operational experience from different accelerator labora... Superconducting radio-frequency(SRF)cavities are the core components of SRF linear accelerators,making their stable operation considerably important.However,the operational experience from different accelerator laboratories has revealed that SRF faults are the leading cause of short machine downtime trips.When a cavity fault occurs,system experts analyze the time-series data recorded by low-level RF systems and identify the fault type.However,this requires expertise and intuition,posing a major challenge for control-room operators.Here,we propose an expert feature-based machine learning model for automating SRF cavity fault recognition.The main challenge in converting the"expert reasoning"process for SRF faults into a"model inference"process lies in feature extraction,which is attributed to the associated multidimensional and complex time-series waveforms.Existing autoregression-based feature-extraction methods require the signal to be stable and autocorrelated,resulting in difficulty in capturing the abrupt features that exist in several SRF failure patterns.To address these issues,we introduce expertise into the classification model through reasonable feature engineering.We demonstrate the feasibility of this method using the SRF cavity of the China accelerator facility for superheavy elements(CAFE2).Although specific faults in SRF cavities may vary across different accelerators,similarities exist in the RF signals.Therefore,this study provides valuable guidance for fault analysis of the entire SRF community. 展开更多
关键词 Superconducting radio-frequency cavity Fault recognition Machine learning Feature engineering Particle accelerator
在线阅读 下载PDF
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
11
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS clASSIFICATION AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
在线阅读 下载PDF
Hybrid Deep Learning Approach for Automating App Review Classification:Advancing Usability Metrics Classification with an Aspect-Based Sentiment Analysis Framework
12
作者 Nahed Alsaleh Reem Alnanih Nahed Alowidi 《Computers, Materials & Continua》 SCIE EI 2025年第1期949-976,共28页
App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While t... App reviews are crucial in influencing user decisions and providing essential feedback for developers to improve their products.Automating the analysis of these reviews is vital for efficient review management.While traditional machine learning(ML)models rely on basic word-based feature extraction,deep learning(DL)methods,enhanced with advanced word embeddings,have shown superior performance.This research introduces a novel aspectbased sentiment analysis(ABSA)framework to classify app reviews based on key non-functional requirements,focusing on usability factors:effectiveness,efficiency,and satisfaction.We propose a hybrid DL model,combining BERT(Bidirectional Encoder Representations from Transformers)with BiLSTM(Bidirectional Long Short-Term Memory)and CNN(Convolutional Neural Networks)layers,to enhance classification accuracy.Comparative analysis against state-of-the-art models demonstrates that our BERT-BiLSTM-CNN model achieves exceptional performance,with precision,recall,F1-score,and accuracy of 96%,87%,91%,and 94%,respectively.Thesignificant contributions of this work include a refined ABSA-based relabeling framework,the development of a highperformance classifier,and the comprehensive relabeling of the Instagram App Reviews dataset.These advancements provide valuable insights for software developers to enhance usability and drive user-centric application development. 展开更多
关键词 Requirements Engineering(RE) app review analysis usabilitymetrics hybrid deep learning BERT-BiLSTM-CNN
在线阅读 下载PDF
Machine Learning-Based Online Monitoring and Closed-Loop Controlling for 3D Printing of Continuous Fiber-Reinforced Composites 被引量:1
13
作者 Xinyun Chi Jiacheng Xue +6 位作者 Lei Jia Jiaqi Yao Huihui Miao Lingling Wu Tengfei Liu Xiaoyong Tian Dichen Li 《Additive Manufacturing Frontiers》 2025年第2期90-96,共7页
Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exa... Ensuring the consistent mechanical performance of three-dimensional(3D)-printed continuous fiber-reinforced composites is a significant challenge in additive manufacturing.The current reliance on manual monitoring exacerbates this challenge by rendering the process vulnerable to environmental changes and unexpected factors,resulting in defects and inconsistent product quality,particularly in unmanned long-term operations or printing in extreme environments.To address these issues,we developed a process monitoring and closed-loop feedback control strategy for the 3D printing process.Real-time printing image data were captured and analyzed using a well-trained neural network model,and a real-time control module-enabled closed-loop feedback control of the flow rate was developed.The neural network model,which was based on image processing and artificial intelligence,enabled the recognition of flow rate values with an accuracy of 94.70%.The experimental results showed significant improvements in both the surface performance and mechanical properties of printed composites,with three to six times improvement in tensile strength and elastic modulus,demonstrating the effectiveness of the strategy.This study provides a generalized process monitoring and feedback control method for the 3D printing of continuous fiber-reinforced composites,and offers a potential solution for remote online monitoring and closed-loop adjustment in unmanned or extreme space environments. 展开更多
关键词 Continuous fiber-reinforced composites 3D printing Computer vision Machine learning Defect detection Feedback control
在线阅读 下载PDF
Fault-observer-based iterative learning model predictive controller for trajectory tracking of hypersonic vehicles 被引量:2
14
作者 CUI Peng GAO Changsheng AN Ruoming 《Journal of Systems Engineering and Electronics》 2025年第3期803-813,共11页
This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hype... This work proposes the application of an iterative learning model predictive control(ILMPC)approach based on an adaptive fault observer(FOBILMPC)for fault-tolerant control and trajectory tracking in air-breathing hypersonic vehicles.In order to increase the control amount,this online control legislation makes use of model predictive control(MPC)that is based on the concept of iterative learning control(ILC).By using offline data to decrease the linearized model’s faults,the strategy may effectively increase the robustness of the control system and guarantee that disturbances can be suppressed.An adaptive fault observer is created based on the suggested ILMPC approach in order to enhance overall fault tolerance by estimating and compensating for actuator disturbance and fault degree.During the derivation process,a linearized model of longitudinal dynamics is established.The suggested ILMPC approach is likely to be used in the design of hypersonic vehicle control systems since numerical simulations have demonstrated that it can decrease tracking error and speed up convergence when compared to the offline controller. 展开更多
关键词 hypersonic vehicle actuator fault tracking control iterative learning control(ILC) model predictive control(MPC) fault observer
在线阅读 下载PDF
DeepSeek vs.ChatGPT vs.Claude:A comparative study for scientific computing and scientific machine learning tasks 被引量:1
15
作者 Qile Jiang Zhiwei Gao George Em Karniadakis 《Theoretical & Applied Mechanics Letters》 2025年第3期194-206,共13页
Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different ... Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed. 展开更多
关键词 Large language models(LLM) Scientific computing Scientific machine learning Physics-informed neural network
在线阅读 下载PDF
High-throughput screening of CO_(2) cycloaddition MOF catalyst with an explainable machine learning model
16
作者 Xuefeng Bai Yi Li +3 位作者 Yabo Xie Qiancheng Chen Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CAS 2025年第1期132-138,共7页
The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF str... The high porosity and tunable chemical functionality of metal-organic frameworks(MOFs)make it a promising catalyst design platform.High-throughput screening of catalytic performance is feasible since the large MOF structure database is available.In this study,we report a machine learning model for high-throughput screening of MOF catalysts for the CO_(2) cycloaddition reaction.The descriptors for model training were judiciously chosen according to the reaction mechanism,which leads to high accuracy up to 97%for the 75%quantile of the training set as the classification criterion.The feature contribution was further evaluated with SHAP and PDP analysis to provide a certain physical understanding.12,415 hypothetical MOF structures and 100 reported MOFs were evaluated under 100℃ and 1 bar within one day using the model,and 239 potentially efficient catalysts were discovered.Among them,MOF-76(Y)achieved the top performance experimentally among reported MOFs,in good agreement with the prediction. 展开更多
关键词 Metal-organic frameworks High-throughput screening Machine learning Explainable model CO_(2)cycloaddition
在线阅读 下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
17
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
在线阅读 下载PDF
Deep reinforcement learning based integrated evasion and impact hierarchical intelligent policy of exo-atmospheric vehicles 被引量:1
18
作者 Leliang REN Weilin GUO +3 位作者 Yong XIAN Zhenyu LIU Daqiao ZHANG Shaopeng LI 《Chinese Journal of Aeronautics》 2025年第1期409-426,共18页
Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision u... Exo-atmospheric vehicles are constrained by limited maneuverability,which leads to the contradiction between evasive maneuver and precision strike.To address the problem of Integrated Evasion and Impact(IEI)decision under multi-constraint conditions,a hierarchical intelligent decision-making method based on Deep Reinforcement Learning(DRL)was proposed.First,an intelligent decision-making framework of“DRL evasion decision”+“impact prediction guidance decision”was established:it takes the impact point deviation correction ability as the constraint and the maximum miss distance as the objective,and effectively solves the problem of poor decisionmaking effect caused by the large IEI decision space.Second,to solve the sparse reward problem faced by evasion decision-making,a hierarchical decision-making method consisting of maneuver timing decision and maneuver duration decision was proposed,and the corresponding Markov Decision Process(MDP)was designed.A detailed simulation experiment was designed to analyze the advantages and computational complexity of the proposed method.Simulation results show that the proposed model has good performance and low computational resource requirement.The minimum miss distance is 21.3 m under the condition of guaranteeing the impact point accuracy,and the single decision-making time is 4.086 ms on an STM32F407 single-chip microcomputer,which has engineering application value. 展开更多
关键词 Exo-atmospheric vehicle Integrated evasion and impact Deep reinforcement learning Hierarchical intelligent policy Single-chip microcomputer Miss distance
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部