The Lean Blowout(LBO)limit is crucial for the aircraft engines.The semi-empirical(such as Lefebvre’s LBO model and Flame Volume(FV)model),numerical and hybrid methods are widely utilized for the LBO limit quick predi...The Lean Blowout(LBO)limit is crucial for the aircraft engines.The semi-empirical(such as Lefebvre’s LBO model and Flame Volume(FV)model),numerical and hybrid methods are widely utilized for the LBO limit quick prediction.An innovative hybrid method based on the FV concept is proposed.This method can be classified as a semi-empirical/physical based hybrid prediction method.In this hybrid method,it is assumed that the flame volume varies nearly linearly with the fuel/air ratio near the LBO.The flame volume is obtained directly by the numerical simulation using the threshold value of the visible flame boundary as 900 K.Then the final LBO limits is determined by the FV model.On the premise of keeping the good generality of prediction,the hybrid method based on the FV concept can further improve the prediction accuracy.The comparison with the prediction of the existing available methods on fifteen combustors shows that the hybrid method based on the FV concept achieves better prediction accuracy.The prediction uncertainties between the experimental results and the predicted values by the hybrid method based on the FV concept are within about±10%.展开更多
The occurrence of Lean Blowout(LBO)is a disadvantage that endangers a stable operation of gas turbines.A determination of LBO limits is essential in the design of gas turbine combustors.A semiempirical model is one of...The occurrence of Lean Blowout(LBO)is a disadvantage that endangers a stable operation of gas turbines.A determination of LBO limits is essential in the design of gas turbine combustors.A semiempirical model is one of the most widely used methods to predict LBO limits.Among the existing semiempirical models for predicting LBO limits,Lefebvre’s LBO model and the Flame Volume(FV)model are particularly suitable for gas turbine combustors.On the basis of Lefebvre’s and FV models,the concept of effective evaporation efficiency is introduced in this paper,and a Flame Volume-Evaporation Efficiency(FV-EE)model is derived and validated.LBO experiments are carried out in a model combustor with 23 different structures and 10 different sprays.The prediction uncertainty of the FV-EE model is less than±13%for all of these 33 structures and sprays,compared with±50%for the FV model and±60%for Lefebvre’s model.Furthermore,the prediction uncertainty of the FV-EE model is also less than±13%for other combustors from available literature.展开更多
The reignition of aero-engine combustors at high altitudes poses significant challenges due to the low-temperature and low-pressure environment.A novel Long Pulse-Width Plasma Ignition(LPWPI)system has been developed ...The reignition of aero-engine combustors at high altitudes poses significant challenges due to the low-temperature and low-pressure environment.A novel Long Pulse-Width Plasma Ignition(LPWPI)system has been developed to enhance ignition performance.The LPWPI system can effectively prolong the discharge duration time,improve ignition efficacy,and increase the plasma penetration depth.Experimental comparisons with the traditional Spark Ignition(SI)system demonstrate that the LPWPI increased discharge duration to 2.03 ms,which is 45 times longer than that of the SI system,while also doubling the spark penetration depth to 24.1 mm.The LPWPI system achieved a discharge efficiency of 61.1%,significantly surpassing the SI system's efficiency of23.3%.These advancements facilitated an extension of the lean ignition boundary by approximately 22.7%to 39.3%.High-speed camera recordings reveal that the spark duration of the LPWPI system was extended to 2.1 ms,compared to 0.6 ms in the SI system.Ignition progress with LPWPI shows a sustained spark kernel without the flame residence stage observed in the SI system.The impressive performance of the LPWPI system suggests that it is a promising alternative for aero-engine ignition systems.展开更多
基金co-supported by National Science and Technology Major Project(No.2017-III-0007-0032)Key Laboratory Fund(No.6142702180306)。
文摘The Lean Blowout(LBO)limit is crucial for the aircraft engines.The semi-empirical(such as Lefebvre’s LBO model and Flame Volume(FV)model),numerical and hybrid methods are widely utilized for the LBO limit quick prediction.An innovative hybrid method based on the FV concept is proposed.This method can be classified as a semi-empirical/physical based hybrid prediction method.In this hybrid method,it is assumed that the flame volume varies nearly linearly with the fuel/air ratio near the LBO.The flame volume is obtained directly by the numerical simulation using the threshold value of the visible flame boundary as 900 K.Then the final LBO limits is determined by the FV model.On the premise of keeping the good generality of prediction,the hybrid method based on the FV concept can further improve the prediction accuracy.The comparison with the prediction of the existing available methods on fifteen combustors shows that the hybrid method based on the FV concept achieves better prediction accuracy.The prediction uncertainties between the experimental results and the predicted values by the hybrid method based on the FV concept are within about±10%.
基金co-supported by the National Science and Technology Major Project,China(No.2017-III-0007-0032)the Key Laboratory Fund,China(No.6142702180306).
文摘The occurrence of Lean Blowout(LBO)is a disadvantage that endangers a stable operation of gas turbines.A determination of LBO limits is essential in the design of gas turbine combustors.A semiempirical model is one of the most widely used methods to predict LBO limits.Among the existing semiempirical models for predicting LBO limits,Lefebvre’s LBO model and the Flame Volume(FV)model are particularly suitable for gas turbine combustors.On the basis of Lefebvre’s and FV models,the concept of effective evaporation efficiency is introduced in this paper,and a Flame Volume-Evaporation Efficiency(FV-EE)model is derived and validated.LBO experiments are carried out in a model combustor with 23 different structures and 10 different sprays.The prediction uncertainty of the FV-EE model is less than±13%for all of these 33 structures and sprays,compared with±50%for the FV model and±60%for Lefebvre’s model.Furthermore,the prediction uncertainty of the FV-EE model is also less than±13%for other combustors from available literature.
基金co-supported by the National Natural Science Foundation of China(Nos.52376138 and 52025064)the Science Center for Gas Turbine Project,China(No.P2022B-Ⅱ-018-001)the Foundation Research Project,China(No.1002TJA22010)。
文摘The reignition of aero-engine combustors at high altitudes poses significant challenges due to the low-temperature and low-pressure environment.A novel Long Pulse-Width Plasma Ignition(LPWPI)system has been developed to enhance ignition performance.The LPWPI system can effectively prolong the discharge duration time,improve ignition efficacy,and increase the plasma penetration depth.Experimental comparisons with the traditional Spark Ignition(SI)system demonstrate that the LPWPI increased discharge duration to 2.03 ms,which is 45 times longer than that of the SI system,while also doubling the spark penetration depth to 24.1 mm.The LPWPI system achieved a discharge efficiency of 61.1%,significantly surpassing the SI system's efficiency of23.3%.These advancements facilitated an extension of the lean ignition boundary by approximately 22.7%to 39.3%.High-speed camera recordings reveal that the spark duration of the LPWPI system was extended to 2.1 ms,compared to 0.6 ms in the SI system.Ignition progress with LPWPI shows a sustained spark kernel without the flame residence stage observed in the SI system.The impressive performance of the LPWPI system suggests that it is a promising alternative for aero-engine ignition systems.