The story of a man in China who had to have his left eyeball removed because of an infection caused by him swatting an insect on his face has trended on social media.The man,surnamed Wu,from Shenzhen in the southern p...The story of a man in China who had to have his left eyeball removed because of an infection caused by him swatting an insect on his face has trended on social media.The man,surnamed Wu,from Shenzhen in the southern province of Guangdong,killed the fly that was buzzing around him after it landed on him,according to the report.展开更多
Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(F...Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed.展开更多
Insects live in most places in the world,and there are billions of them.There are about 1.4 billion insects for every person on our planet!They are very important for nature.Bees and butterflies help plants grow by mo...Insects live in most places in the world,and there are billions of them.There are about 1.4 billion insects for every person on our planet!They are very important for nature.Bees and butterflies help plants grow by moving Dollen from one flower to another.Ants clean up by eating dead plants and animals.And butterflies are beautiful.They make us happy when we see them.Even though insects are small,they help keep the world healthy and full of life.展开更多
Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilizat...Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilization mechanism has captured the interest of biologists and engineers,driving the exploration of flapping-wing flight control systems and their potential applications in bioinspired flying robots.While many control models have been developed within a rigorous mathematical framework using linear feedback systems,such as proportional(P),integral(I),and derivative(D)-based controllers,the exact mechanisms by which insects achieve the fastest stabilization-despite constraints such as passive aerodynamic damping and feedback delay-remain unclear.In this study,we demonstrate that flying insects employ a novel strategy for fast flight stabilization by minimizing the restoration time under external perturbations.We introduce a versatile PD-based control model that solves the closed-loop dynamics of insect flight and optimizes flight stabilization within a mathematical framework.Our findings reveal that passive aerodynamic damping plays a crucial role in stabilizing flight,acting as derivative feedback without delay,whereas feedback delay hinders stabilization.Additionally,we show that minimizing the restoring time leads to the fastest flight stabilization.Hovering flight analyses of fruit flies,honeybees,hawkmoths,and hummingbirds suggest that restoring time minimization through dynamic oscillatory modes rather than closed-loop time constants is a common strategy among small bioflies for effective maneuvering against disturbances.This strategy,which spans a broad range of Reynolds numbers(on the order of 102 to 104),could offer valuable insights for designing flight controllers in bioinspired flying robots.展开更多
[Objective The aim was to study species and pollinating characters of Astragalus membranaceus(Ficsh)Bunge pollinating insects and lay a theory foundation for the breeding of Astragalus membranaceus(Ficsh)Bunge.[Method...[Objective The aim was to study species and pollinating characters of Astragalus membranaceus(Ficsh)Bunge pollinating insects and lay a theory foundation for the breeding of Astragalus membranaceus(Ficsh)Bunge.[Method] With Astragalus membranaceus(Ficsh)Bunge as research object,the species of pollinating insect and pollination behavior were investigated.[Result] There were 16 pollinating insect species,among which,Bombus ignitus,Bombus lucoru,Apis sp.,Betasyrphus serarius(wiedemann)and Colias erate(Esper)we...展开更多
Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-...Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-rotor un- manned sprayer. The effects on rice injury, lodging, and rehabilitation were conclud- ed and drug uniform distribution, sedimentation and prevention effects were ana- lyzed. The results showed that the self-propelled boom sprayer is characterized by high degree of automation, convenient operation, high adaptability, and high work efficiency. What's more, the sprayed fog quality is better, and fog distribution is more uniform. During the work process, fog loss would be diminished substantially, improving work efficiency and cutting down drug and water. It is notable that the underpart of the sprayer can be widely applied to plant protection in large-scale ar- eas in Jiangsu Province, significantly advancing whole-process mechanization of rice production.展开更多
[Objective]This study aimed to investigate the community structure, species and quantities of flower-visiting insects of seed lotus in main producing ar-eas of Jiangxi, Hunan and Hubei provinces. [Method] Using sample...[Objective]This study aimed to investigate the community structure, species and quantities of flower-visiting insects of seed lotus in main producing ar-eas of Jiangxi, Hunan and Hubei provinces. [Method] Using sample area survey and netting method in the fixed points to investigate species and quantities of Asian sacred lotus, the species diversity of different locations was evaluated by diversity indices (H′), evenness indices (J) and dominant concentration indices (C). [Result] Apis mel ifera, Apis cerana cerana, Xylocopa (Koptortosoma) sinensis, Xylocopa (s.str.) valga and Xylocopa (Al oxylocopa) appendiculata, al of which belong to order Hy-menoptera were the main pol inators of lotus. Temperature was the main factor which influenced the foraging behaviors of flower-visiting insects. The daily activities of X. (s.str.) valga and X. (Al oxylocopa) appendiculata were bimodal, and that of A. mel-lifera, A. cerana cerana and X. (s.str.) valga were unimodal. The percentage of wild pol inators in Linxiang of Hunan Province and Xianning of Hubei Province were only 20.59% and 3.90% respectively, and there were six species of flower-visiting insects in Linxiang and three in Xianning. The percentages of wild pol inators in Shicheng of Jiangxi Province and the lotus garden in Huazhong Agricultural University were 55.61% and 90.40% respectively, and the flower-visiting insects belonged to 13 and 12 species respectively. The diversity index (H′) and evenness index (J) were listed here in a decreasing order: Shicheng of Jiangxi >lotus garden in Huazhong Agricul-tural University>Linxiang of Hunan >Xianning of Hubei. The sequence of dominant concentration indices (C) was Shicheng of Jiangxi <the lotus garden in Huazhong Agricultural University<Linxiang of Hunan<Xianning of Hubei. The diversity indices (H′), evenness indices (J) and dominant concentration indices (C) of each sample location were consistent. [Conclusion] The species and quantities of Asian sacred lotus vary in different ecological areas. The species and quantities of Linxiang in Hunan Province and Xianning in Hubei Province are rare. The increase of lotus production must depend on bee pol ination.展开更多
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored...[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.展开更多
The investigation result of grassland predators Carabidae in southwest of Guizhou was reported. Taxonomic status, morphological characteristics of 5 genera and 13 species of insect predators were described, their livi...The investigation result of grassland predators Carabidae in southwest of Guizhou was reported. Taxonomic status, morphological characteristics of 5 genera and 13 species of insect predators were described, their living habits and incidence were outlined.展开更多
[Objective] This study aimed to understand the species and behaviors of flower-visiting insects on Mussaenda pubescens Ait.f.in the Mount Emei National Nature Reserve.[Method] The species,visiting frequency,visiting t...[Objective] This study aimed to understand the species and behaviors of flower-visiting insects on Mussaenda pubescens Ait.f.in the Mount Emei National Nature Reserve.[Method] The species,visiting frequency,visiting time and behaviors of flower-visiting insects on M.pubescens were studied by collection,identification and image capture.[Result] The flower-visiting insects on M.pubescens in the Mount Emei covered total 26 species with 21 species from Lepidoptera,2 species from Hymenoptera,and 3 species from Diptera.Thus,Lepidoptera were the main group of pollinators for c in the Mount Emei National Nature Reserve.The daily activity rhythms of Lepidoptera,Hymenoptera and Diptera showed different characteristics,and they were characterized by single-peak type and double-peak type.[Conclusion] This study will provide certain theoretical basis for studies on the diversity of flower-visiting insects on plants in the Mount Emei National Nature Reserve.展开更多
The recent progress on the proteins in edible insects was summarized, in- cluding the nutritional value, healthy value, food safety, extraction and content mea- surement of the proteins in edible insects, as well as t...The recent progress on the proteins in edible insects was summarized, in- cluding the nutritional value, healthy value, food safety, extraction and content mea- surement of the proteins in edible insects, as well as the main development direc- tion of edible insect proteins. And we also pointed out the bottlenecks that restricted the development and utilization of proteins in edible insects, and proposed the prospect of the research, development and utilization of edible insects proteins.展开更多
The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudin...The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the "rigid body" assumption is tested and how differences in size and wing kinematics influence the applicability of the "rigid body" assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the "rigid body" assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the "rigid body" assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.展开更多
ASocial insect colonies and the workers comprising them, each exhibit consistent individual differences in behavior, also known as 'personalities'. Because the behavior of social insect colonies emerges from the act...ASocial insect colonies and the workers comprising them, each exhibit consistent individual differences in behavior, also known as 'personalities'. Because the behavior of social insect colonies emerges from the actions of their workers, individual variation among workers' personality may be important in determining the variation we observe among colonies. The reproduc- tive unit of social insects, on which natural selection acts, is the colony, not individual workers. Therefore, it is important to un- derstand what mechanisms govern the observed variation among colonies. Here I propose three hypotheses that address how con- sistent individual differences in the behavior of workers may lead to consistent individual differences in the behavior of colonies: 1. Colonies differ consistently in their average of worker personality; 2. The distribution but not the average of worker personali- ties varies consistently among colonies; and 3. Colony personality does not emerge from its worker personality composition but from consistent external constraints. I review evidence supporting each of these hypotheses and suggest methods to further inves-tigate them. The study of how colony personality emerges from the personalities of the workers comprising them may shed light on the mechanisms underlying consistent individual differences in the behavior of other animals .展开更多
Aggression is a common behavioral trait shared in many animals, including both vertebrates and invertebrates. However, the type and intensity of agonistic encounters and displays can vary widely both across and within...Aggression is a common behavioral trait shared in many animals, including both vertebrates and invertebrates. However, the type and intensity of agonistic encounters and displays can vary widely both across and within species, resulting in complicated or subjective interpretations that create difficulties in developing theoretical models that can be widely applied. The need to easily and objectively identify quantifiable behaviors and their associated morphologies becomes especially important when attempting to decipher the neurological mechanisms underlying this complex behavior. Monoamines, neuropeptides, and pheromones have been implicated as important neuromodulators for agonistic displays in both invertebrates and vertebrates. Ad- ditionally, recent breakthroughs in insect research have revealed exciting proximate mechanisms important in aggression that may be broadly relevant, due to the relatively high conservation of these neurochemical systems across animal taxa. In this review, we present the latest research demonstrating the importance of monoamines, neuropeptides, and pheromones as neuromodulators for aggression across a variety of insect species. Additionally, we describe the stalk-eyed fly as a model system for studying aggres- sion, which integrates physiological, morphological, and neurochemical approaches in exploring detailed mechanisms responsible for this common yet complex behavior. We conclude with our perspective on the most promising lines of future research aimed at understanding the proximate and ultimate mechanisms underlying aggressive behaviors .展开更多
The ceo-geographical division of forest insects in China is generally divided into 4 levels: region, subrcgion, area and province. The region is formed by isolation of ocean, high mountain and desert etc. The division...The ceo-geographical division of forest insects in China is generally divided into 4 levels: region, subrcgion, area and province. The region is formed by isolation of ocean, high mountain and desert etc. The division of subrcgion is on the basis of resistance of extreme temperature humidity in winter. The division of area or province is on the basis of landform, type of vegetation in forest zone and temperature zone.展开更多
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ...In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.展开更多
Field experiments to evaluate four different colored sticky cards for trapping non-target insects were conducted in an organic maize field in the Heinigou region of China. Yellow, blue, green, and red sticky cards wer...Field experiments to evaluate four different colored sticky cards for trapping non-target insects were conducted in an organic maize field in the Heinigou region of China. Yellow, blue, green, and red sticky cards were used to trap insects in the field. The total number of insects species caught was 54, with 3,862 individuals recorded. Over half of the specimens caught were non-target insects, including phytophagous insects, particularly dipteran species(including many mosquitoes)(50.3%), followed by target pests(37.0%), and beneficial insects(12.7%). Statistical analysis revealed a significant difference in attraction to target pests, non-target pests, and beneficial insects among treatment groups. The results showed that higher numbers of target pests(Myzus persicae Sulzer, Empoasca flavescens Fabricius, Nysius ericaecshinly Schilling) were caught on yellow sticky card traps compared with blue, green, or red sticky card traps, indicating that yellow was the best trap color for target pests, with green and blue being progressively less attractive. For non-target insects, including phytophagous insects, flies, and mosquitoes,higher numbers of were caught on blue sticky card traps compared with yellow,green, or red sticky card traps. Our study indicated that blue was the most attractive color for flies, especially for the housefly, Musca domestica Linnaeus. Our study also showed that most beneficial insects exhibited preferences to particular trap color characteristics: yellow was the most attractive color for parasitic wasps and lady beetles; blue was the most attractive color for hoverflies and honeybees. In contrast,green and red had no significant attraction to beneficial insects.展开更多
Sufficient food production for a growing human population has become an issue of global concern. Almost all of the world’s fertile land is currently in use and arable land areas cannot be expanded significantly. The ...Sufficient food production for a growing human population has become an issue of global concern. Almost all of the world’s fertile land is currently in use and arable land areas cannot be expanded significantly. The global challenge is to secure high and quality yields and to make agricultural production environmentally compatible. Insects have been hugely successful in terms of both species richness and abundance. Insects make up the most numerous group of organisms on earth, around 66% of all animal species, and being good dispersers and exploiters of virtually all types of organic matter, can be found almost everywhere, forming an important part of every ecosystem and are vital within our food supply chains performing valuable ecosystem services. Insects have been predominantly perceived as competitors in the race for survival. Herbivorous insects damage 18% of world agricultural production. Despite this damage less than 0.5 percentage of the total number of the known insect species are considered pests. Insect pests are created through the manipulation of habitats by humans, where crops are selected for larger size, higher yields, nutritious value, and are cultivated in monocultures for maximum production. This provides a highly favourable environment for the population increase of herbivorous insects. To ensure stable crop yields we need to change the management strategies of agroecosystems. We need to manage these systems in such a way that insects performing valuable ecosystem services are also incorporated into the system. This will ensure stable, resilient and sustainable systems in a constantly changing environment and will go a long way to ensure future food security. This paper examines the important role that insects generally play in ecosystems and how the services that insects provide can improve agricultural ecosystems.展开更多
文摘The story of a man in China who had to have his left eyeball removed because of an infection caused by him swatting an insect on his face has trended on social media.The man,surnamed Wu,from Shenzhen in the southern province of Guangdong,killed the fly that was buzzing around him after it landed on him,according to the report.
基金supported by the National Natural Science Foundation of China(grant numbers 52305321 and 62273246)The Natural Science Foundation of Jiangsu Province(BK20230496)+3 种基金China Postdoctoral Science Foundation Funded Project(2023M732536 and 2024T170630)Jiangsu Province Excellence Postdoctoral Program(2023ZB218)The National Key R&D Program of China(2022YFB4702202)The Jiangsu Provincial Key Technology R&D Program(BE2021009-02).
文摘Micro aerial vehicles(MAVs)have flexibility and maneuverability,which can offer vast potential for applications in both civilian and military domains.Compared to Fixed-wing/Rotor-wing MAVs,Flapping Wing Micro Robots(FWMRs)have garnered widespread attention among scientists due to their superior miniaturized aerodynamic theory,reduced noise,and enhanced resistance to disturbances in complex and diverse environments.Flying insects,it not only has remarkable flapping flight ability(wings),but also takeoff and landing habitat ability(legs).If the various functions of flying insects can be imitated,efficient biomimetic FWMRs can be produced.This paper provides a review of the flight kinematics,aerodynamics,and wing structural parameters of insects.Then,the traditional wings and folding wings of insect-inspired FWMRs were compared.The research progress in takeoff and landing of FWMRs was also summarized,and the future developments and challenges for insect-inspired FWMRs were discussed.
文摘Insects live in most places in the world,and there are billions of them.There are about 1.4 billion insects for every person on our planet!They are very important for nature.Bees and butterflies help plants grow by moving Dollen from one flower to another.Ants clean up by eating dead plants and animals.And butterflies are beautiful.They make us happy when we see them.Even though insects are small,they help keep the world healthy and full of life.
基金supported by the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (Grant Nos. 19H02060 , 23H01373 , and 23K26068)the Excellent International Student Scholarship provided by Chiba University
文摘Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilization mechanism has captured the interest of biologists and engineers,driving the exploration of flapping-wing flight control systems and their potential applications in bioinspired flying robots.While many control models have been developed within a rigorous mathematical framework using linear feedback systems,such as proportional(P),integral(I),and derivative(D)-based controllers,the exact mechanisms by which insects achieve the fastest stabilization-despite constraints such as passive aerodynamic damping and feedback delay-remain unclear.In this study,we demonstrate that flying insects employ a novel strategy for fast flight stabilization by minimizing the restoration time under external perturbations.We introduce a versatile PD-based control model that solves the closed-loop dynamics of insect flight and optimizes flight stabilization within a mathematical framework.Our findings reveal that passive aerodynamic damping plays a crucial role in stabilizing flight,acting as derivative feedback without delay,whereas feedback delay hinders stabilization.Additionally,we show that minimizing the restoring time leads to the fastest flight stabilization.Hovering flight analyses of fruit flies,honeybees,hawkmoths,and hummingbirds suggest that restoring time minimization through dynamic oscillatory modes rather than closed-loop time constants is a common strategy among small bioflies for effective maneuvering against disturbances.This strategy,which spans a broad range of Reynolds numbers(on the order of 102 to 104),could offer valuable insights for designing flight controllers in bioinspired flying robots.
基金Supported by International Fund for Agriculture Development"Construction of Fine Variety Breeding Center of Northern Local Chinese Medicinal Materials"~~
文摘[Objective The aim was to study species and pollinating characters of Astragalus membranaceus(Ficsh)Bunge pollinating insects and lay a theory foundation for the breeding of Astragalus membranaceus(Ficsh)Bunge.[Method] With Astragalus membranaceus(Ficsh)Bunge as research object,the species of pollinating insect and pollination behavior were investigated.[Result] There were 16 pollinating insect species,among which,Bombus ignitus,Bombus lucoru,Apis sp.,Betasyrphus serarius(wiedemann)and Colias erate(Esper)we...
基金Supported by National Natural Science Foundation of China(31401296)Independent Innovation Foundation of Science and Technology in Jiangsu Province(CX(14)2101)
文摘Comparisons were performed between self-propelled boom sprayer and traditional mechanis, such as knapsack sprayer and sprayer-duster, stretcher-type powered sprayer, as well as single rotor unmanned sprayer and multi-rotor un- manned sprayer. The effects on rice injury, lodging, and rehabilitation were conclud- ed and drug uniform distribution, sedimentation and prevention effects were ana- lyzed. The results showed that the self-propelled boom sprayer is characterized by high degree of automation, convenient operation, high adaptability, and high work efficiency. What's more, the sprayed fog quality is better, and fog distribution is more uniform. During the work process, fog loss would be diminished substantially, improving work efficiency and cutting down drug and water. It is notable that the underpart of the sprayer can be widely applied to plant protection in large-scale ar- eas in Jiangsu Province, significantly advancing whole-process mechanization of rice production.
基金Supported by Special Fund for National Bee Industrial Technology System(CARS-45KXJ5)Special Fund for Agro-scientific Research in the Public Interest(201203080)~~
文摘[Objective]This study aimed to investigate the community structure, species and quantities of flower-visiting insects of seed lotus in main producing ar-eas of Jiangxi, Hunan and Hubei provinces. [Method] Using sample area survey and netting method in the fixed points to investigate species and quantities of Asian sacred lotus, the species diversity of different locations was evaluated by diversity indices (H′), evenness indices (J) and dominant concentration indices (C). [Result] Apis mel ifera, Apis cerana cerana, Xylocopa (Koptortosoma) sinensis, Xylocopa (s.str.) valga and Xylocopa (Al oxylocopa) appendiculata, al of which belong to order Hy-menoptera were the main pol inators of lotus. Temperature was the main factor which influenced the foraging behaviors of flower-visiting insects. The daily activities of X. (s.str.) valga and X. (Al oxylocopa) appendiculata were bimodal, and that of A. mel-lifera, A. cerana cerana and X. (s.str.) valga were unimodal. The percentage of wild pol inators in Linxiang of Hunan Province and Xianning of Hubei Province were only 20.59% and 3.90% respectively, and there were six species of flower-visiting insects in Linxiang and three in Xianning. The percentages of wild pol inators in Shicheng of Jiangxi Province and the lotus garden in Huazhong Agricultural University were 55.61% and 90.40% respectively, and the flower-visiting insects belonged to 13 and 12 species respectively. The diversity index (H′) and evenness index (J) were listed here in a decreasing order: Shicheng of Jiangxi >lotus garden in Huazhong Agricul-tural University>Linxiang of Hunan >Xianning of Hubei. The sequence of dominant concentration indices (C) was Shicheng of Jiangxi <the lotus garden in Huazhong Agricultural University<Linxiang of Hunan<Xianning of Hubei. The diversity indices (H′), evenness indices (J) and dominant concentration indices (C) of each sample location were consistent. [Conclusion] The species and quantities of Asian sacred lotus vary in different ecological areas. The species and quantities of Linxiang in Hunan Province and Xianning in Hubei Province are rare. The increase of lotus production must depend on bee pol ination.
基金Supported by the National Natural Science Foundation of China(31101085)the Program for Young Core Teachers of Colleges in Henan(2011GGJS-094)the Scientific Research Project for the High Level Talents,North China University of Water Conservancy and Hydroelectric Power~~
文摘[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible.
基金Supported by Science and Technology Department of Guizhou Province(LKS[2009]No.2085)GSW Technology Project(Agriculture2009-20)~~
文摘The investigation result of grassland predators Carabidae in southwest of Guizhou was reported. Taxonomic status, morphological characteristics of 5 genera and 13 species of insect predators were described, their living habits and incidence were outlined.
文摘[Objective] This study aimed to understand the species and behaviors of flower-visiting insects on Mussaenda pubescens Ait.f.in the Mount Emei National Nature Reserve.[Method] The species,visiting frequency,visiting time and behaviors of flower-visiting insects on M.pubescens were studied by collection,identification and image capture.[Result] The flower-visiting insects on M.pubescens in the Mount Emei covered total 26 species with 21 species from Lepidoptera,2 species from Hymenoptera,and 3 species from Diptera.Thus,Lepidoptera were the main group of pollinators for c in the Mount Emei National Nature Reserve.The daily activity rhythms of Lepidoptera,Hymenoptera and Diptera showed different characteristics,and they were characterized by single-peak type and double-peak type.[Conclusion] This study will provide certain theoretical basis for studies on the diversity of flower-visiting insects on plants in the Mount Emei National Nature Reserve.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest(200904025)the Natural Science Foundation of Beijing(6122024)+1 种基金the Surface Project of the Science and Technology Development Program of Beijing Municipal Education Commission(KM200900005002)the Project for the Agricultural Science and Technology of Beijing(20110115)~~
文摘The recent progress on the proteins in edible insects was summarized, in- cluding the nutritional value, healthy value, food safety, extraction and content mea- surement of the proteins in edible insects, as well as the main development direc- tion of edible insect proteins. And we also pointed out the bottlenecks that restricted the development and utilization of proteins in edible insects, and proposed the prospect of the research, development and utilization of edible insects proteins.
基金The project supported by the National Natural Science Foundation of China(10232010 and 10472008)
文摘The equations of motion of an insect with flapping wings are derived and then simplified to that of a flying body using the "rigid body" assumption. On the basis of the simplified equations of motion, the longitudinal dynamic flight stability of four insects (hoverfly, cranefly, dronefly and hawkmoth) in hovering flight is studied (the mass of the insects ranging from 11 to 1,648 mg and wingbeat frequency from 26 to 157Hz). The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are used to solve the equations of motion. The validity of the "rigid body" assumption is tested and how differences in size and wing kinematics influence the applicability of the "rigid body" assumption is investigated. The primary findings are: (1) For insects considered in the present study and those with relatively high wingbeat frequency (hoverfly, drone fly and bumblebee), the "rigid body" assumption is reasonable, and for those with relatively low wingbeat frequency (cranefly and howkmoth), the applicability of the "rigid body" assumption is questionable. (2) The same three natural modes of motion as those reported recently for a bumblebee are identified, i.e., one unstable oscillatory mode, one stable fast subsidence mode and one stable slow subsidence mode. (3) Approximate analytical expressions of the eigenvalues, which give physical insight into the genesis of the natural modes of motion, are derived. The expressions identify the speed derivative Mu (pitching moment produced by unit horizontal speed) as the primary source of the unstable oscillatory mode and the stable fast subsidence mode and Zw (vertical force produced by unit vertical speed) as the primary source of the stable slow subsidence mode.
文摘ASocial insect colonies and the workers comprising them, each exhibit consistent individual differences in behavior, also known as 'personalities'. Because the behavior of social insect colonies emerges from the actions of their workers, individual variation among workers' personality may be important in determining the variation we observe among colonies. The reproduc- tive unit of social insects, on which natural selection acts, is the colony, not individual workers. Therefore, it is important to un- derstand what mechanisms govern the observed variation among colonies. Here I propose three hypotheses that address how con- sistent individual differences in the behavior of workers may lead to consistent individual differences in the behavior of colonies: 1. Colonies differ consistently in their average of worker personality; 2. The distribution but not the average of worker personali- ties varies consistently among colonies; and 3. Colony personality does not emerge from its worker personality composition but from consistent external constraints. I review evidence supporting each of these hypotheses and suggest methods to further inves-tigate them. The study of how colony personality emerges from the personalities of the workers comprising them may shed light on the mechanisms underlying consistent individual differences in the behavior of other animals .
文摘Aggression is a common behavioral trait shared in many animals, including both vertebrates and invertebrates. However, the type and intensity of agonistic encounters and displays can vary widely both across and within species, resulting in complicated or subjective interpretations that create difficulties in developing theoretical models that can be widely applied. The need to easily and objectively identify quantifiable behaviors and their associated morphologies becomes especially important when attempting to decipher the neurological mechanisms underlying this complex behavior. Monoamines, neuropeptides, and pheromones have been implicated as important neuromodulators for agonistic displays in both invertebrates and vertebrates. Ad- ditionally, recent breakthroughs in insect research have revealed exciting proximate mechanisms important in aggression that may be broadly relevant, due to the relatively high conservation of these neurochemical systems across animal taxa. In this review, we present the latest research demonstrating the importance of monoamines, neuropeptides, and pheromones as neuromodulators for aggression across a variety of insect species. Additionally, we describe the stalk-eyed fly as a model system for studying aggres- sion, which integrates physiological, morphological, and neurochemical approaches in exploring detailed mechanisms responsible for this common yet complex behavior. We conclude with our perspective on the most promising lines of future research aimed at understanding the proximate and ultimate mechanisms underlying aggressive behaviors .
文摘The ceo-geographical division of forest insects in China is generally divided into 4 levels: region, subrcgion, area and province. The region is formed by isolation of ocean, high mountain and desert etc. The division of subrcgion is on the basis of resistance of extreme temperature humidity in winter. The division of area or province is on the basis of landform, type of vegetation in forest zone and temperature zone.
基金supported by the National Natural Science Foundation of China (10732030) and the 111 Project (B07009)
文摘In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects.
基金Supported by the Misereor Foundation(grant ref:335-031-1028 Z)
文摘Field experiments to evaluate four different colored sticky cards for trapping non-target insects were conducted in an organic maize field in the Heinigou region of China. Yellow, blue, green, and red sticky cards were used to trap insects in the field. The total number of insects species caught was 54, with 3,862 individuals recorded. Over half of the specimens caught were non-target insects, including phytophagous insects, particularly dipteran species(including many mosquitoes)(50.3%), followed by target pests(37.0%), and beneficial insects(12.7%). Statistical analysis revealed a significant difference in attraction to target pests, non-target pests, and beneficial insects among treatment groups. The results showed that higher numbers of target pests(Myzus persicae Sulzer, Empoasca flavescens Fabricius, Nysius ericaecshinly Schilling) were caught on yellow sticky card traps compared with blue, green, or red sticky card traps, indicating that yellow was the best trap color for target pests, with green and blue being progressively less attractive. For non-target insects, including phytophagous insects, flies, and mosquitoes,higher numbers of were caught on blue sticky card traps compared with yellow,green, or red sticky card traps. Our study indicated that blue was the most attractive color for flies, especially for the housefly, Musca domestica Linnaeus. Our study also showed that most beneficial insects exhibited preferences to particular trap color characteristics: yellow was the most attractive color for parasitic wasps and lady beetles; blue was the most attractive color for hoverflies and honeybees. In contrast,green and red had no significant attraction to beneficial insects.
文摘Sufficient food production for a growing human population has become an issue of global concern. Almost all of the world’s fertile land is currently in use and arable land areas cannot be expanded significantly. The global challenge is to secure high and quality yields and to make agricultural production environmentally compatible. Insects have been hugely successful in terms of both species richness and abundance. Insects make up the most numerous group of organisms on earth, around 66% of all animal species, and being good dispersers and exploiters of virtually all types of organic matter, can be found almost everywhere, forming an important part of every ecosystem and are vital within our food supply chains performing valuable ecosystem services. Insects have been predominantly perceived as competitors in the race for survival. Herbivorous insects damage 18% of world agricultural production. Despite this damage less than 0.5 percentage of the total number of the known insect species are considered pests. Insect pests are created through the manipulation of habitats by humans, where crops are selected for larger size, higher yields, nutritious value, and are cultivated in monocultures for maximum production. This provides a highly favourable environment for the population increase of herbivorous insects. To ensure stable crop yields we need to change the management strategies of agroecosystems. We need to manage these systems in such a way that insects performing valuable ecosystem services are also incorporated into the system. This will ensure stable, resilient and sustainable systems in a constantly changing environment and will go a long way to ensure future food security. This paper examines the important role that insects generally play in ecosystems and how the services that insects provide can improve agricultural ecosystems.