Leaf is one of the most important organs of soybean. The modeling of soybean leaf structure is useful to research of leaf function. The paper discussed it from two aspects that were distilling method of leaf profile a...Leaf is one of the most important organs of soybean. The modeling of soybean leaf structure is useful to research of leaf function. The paper discussed it from two aspects that were distilling method of leaf profile and establishing method of leaf simulation model. It put forward basic method of soybean leaf digital process, and successfully established simulation model of soybean leaf structure based on L-system. It also solved a critical problem in the process of establishing soybean growth simulation model. And the research had guiding significance to establishment of soybean plant model.展开更多
This article applied the self-similarity of fractal theory to the soybean leaf with the aid of powerful iterative computation ability of computer,analyzed the generation principle of IFS code in the iterated function ...This article applied the self-similarity of fractal theory to the soybean leaf with the aid of powerful iterative computation ability of computer,analyzed the generation principle of IFS code in the iterated function system,calculated the IFS code of the simulation soybean leaf.It basically realized the visualization simulation of soybean leaf and laid a foundation for the visualization simulation of the whole soybean plant.展开更多
Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of...Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of soybean, least absolute shrinkage and selection operator(LASSO) regression and stepwise regression were combined, and a genomic selection model was established for 40 002 SNP markers covering soybean genome and relative lesion area of soybean FLS. As a result, 68 molecular markers controlling soybean FLS were detected accurately, and the phenotypic contribution rate of these markers reached 82.45%. In this study, a model was established, which could be used directly to evaluate the resistance of soybean FLS and to select excellent offspring. This research method could also provide ideas and methods for other plants to breeding in disease resistance.展开更多
A rate model, which considers axial dispersion, external mass transfer, intraparticle diffusion and nonlinear isotherms, and ports periodic switching is adopted to simulate the simulated moving bed (SMB) process. Th...A rate model, which considers axial dispersion, external mass transfer, intraparticle diffusion and nonlinear isotherms, and ports periodic switching is adopted to simulate the simulated moving bed (SMB) process. The effects of flow rate in Sections 2 and 3 and switching time on the operating performance parameters: purity, recovery, productivity and dcsorbent consumption are studied. A simulation approach is applied to simulate the operation and performance of the SMB. The model predicts the performance of the transient and cyclic steady state behavior to a reasonably good extent, and provides guidance operation condition of the SMB process.展开更多
Different crop models including MAIZE Ceres, STICS and other approaches have been used to simulate leaf area index (LAI) in maize (Zea mays L.). These modeling tools require genotype-specific calibration procedures. S...Different crop models including MAIZE Ceres, STICS and other approaches have been used to simulate leaf area index (LAI) in maize (Zea mays L.). These modeling tools require genotype-specific calibration procedures. Studies on modeling LAI dynamics under optimal growth conditions with yields close to the yield potential have remained scarce. In the present study, logistic and exponential approaches have been developed and evaluated for the simulation of LAI in maize in a savannah region of the DR-Congo. Data for the development and the evaluation of the model were collected manually by non-destructive method from small farmers’ field. The rate of expansion of the leaf surface and the rate of change of leaf senescence were also simulated. There were measurable variations among sites and varieties for the simulated height of maize plants. At all sites, the varieties with short plants were associated with expected superior performance based on simulation data. In general, the model underestimates the LAI based on observed values. LAI values for the genetically improved maize varieties (Salongo 2, MUS and AK) were greater than those of the unimproved local variety (Local). There were significant differences for K, b, Ti, LAI, Tf, and parameters among models and varieties. In all sites and for all varieties, the growth rate (b) was higher, while the rate of senescence (a) was lower compared to STICS estimates.展开更多
Logistic and exponential approaches have been used to simulate plant growth and leaf area index (LAI) in different growing conditions. The objective of the present study was to develop and evaluate an approach to simu...Logistic and exponential approaches have been used to simulate plant growth and leaf area index (LAI) in different growing conditions. The objective of the present study was to develop and evaluate an approach to simulate maize LAI that expresses key physiological and phonological processes using a minimum entry requirement for Quality Protein maize (QPM) varieties grown in the southwestern region of the DR-Congo. Data for the development and testing of the model were collected manually in experimental plots using a non-destructive method. Simulation results revealed measurable variations between crop seasons (long season A and short season B) and between the two varieties (Mudishi-1 and Mudishi-3) for height, number of visible leaves, and LAI. For both seasons, Mudishi-3, a short stature variety was associated with expected stable yield based on simulation data. In general, the model simulated reliably all the parameters including the LAI. The LAI value for mudishi-1 was higher than that of Mudishi-3. There were significant differences among the model parameters (K, Ti, a, b, Tf) and between the two varieties. In all crop conditions studied and for the two varieties, the senescence rate (a) was higher, while the growth rate (b) was lower compared to the estimates based on the STICS model.展开更多
中国东南丘陵地区茶园的快速扩张对地区碳循环产生显著影响。Biome-BGC模型常被用于碳通量定量研究,但其对人工管理过程刻画不足。本研究结合实测与遥感叶面积指数(LAI)数据,改进了Biome-BGC模型,以增强其对茶园人工管理过程的模拟能力...中国东南丘陵地区茶园的快速扩张对地区碳循环产生显著影响。Biome-BGC模型常被用于碳通量定量研究,但其对人工管理过程刻画不足。本研究结合实测与遥感叶面积指数(LAI)数据,改进了Biome-BGC模型,以增强其对茶园人工管理过程的模拟能力。结果表明:LAI是Biome-BGC模型中关键的中间变量,对LAI的准确模拟是提升模型对茶园碳通量模拟精度的关键。改进后的模型显著提升了对总初级生产力(GPP)和生态系统呼吸(RE)的模拟精度,5年平均GPP和RE值分别为1.26、1.19 kg C·m^(-2),日尺度R^(2)分别达到0.55和0.80,较改进前分别提升44.5%和降低0.9%,均方根误差(RMSE)分别为0.887和1.030 g C·m^(-2)·d^(-1),较改进前分别降低50.3%和68.4%,月尺度的模拟效果更佳,显著改善了原始模型因未充分刻画人工修剪导致的碳通量高估问题。改进后的模型能够动态刻画修剪引起的LAI波动对碳循环的影响,并验证了其在不同时间尺度下的适用性,为存在高强度人工管理的茶园生态系统碳循环定量研究提供了技术支撑。展开更多
根据光温对作物叶面积的影响,提出了辐热积(product of the rma leffectiveness and PAR,TEP)的概念。根据试验资料构建了利用辐热积模拟番茄(Lycopersicon esculentum Mill)叶面积动态的数学模型,并将其与已有的光合作用和干物质生产...根据光温对作物叶面积的影响,提出了辐热积(product of the rma leffectiveness and PAR,TEP)的概念。根据试验资料构建了利用辐热积模拟番茄(Lycopersicon esculentum Mill)叶面积动态的数学模型,并将其与已有的光合作用和干物质生产模拟模型相结合,构建了温室番茄干物质生产动态模型。利用不同品种、基质和地点的试验资料对模型进行了检验。结果表明,与传统的比叶面积法和有效积温法相比,辐热积法显著提高了温室番茄叶面积的预测精度,提高了光合作用和干物质生产的模拟精度。辐热积法对番茄叶面积的预测结果与1:1直线之间的决定系数R2和统计回归标准误差RMSE分别为0.9743和0.0515m2·株-1,对植株总干物质量的预测结果与1:1直线之间的R2和RMSE分别为0.9360和522.7104kg·ha-1;采用辐热积法对植株总干物质量的预测精度比有效积温法和比叶面积法分别提高56%和72%。展开更多
基金Supported by the Key Laboratory of Soybean Biology of Ministry of Education(SB05D01)Heilongjiang Province Science and Technology Key Project(GC04B712)
文摘Leaf is one of the most important organs of soybean. The modeling of soybean leaf structure is useful to research of leaf function. The paper discussed it from two aspects that were distilling method of leaf profile and establishing method of leaf simulation model. It put forward basic method of soybean leaf digital process, and successfully established simulation model of soybean leaf structure based on L-system. It also solved a critical problem in the process of establishing soybean growth simulation model. And the research had guiding significance to establishment of soybean plant model.
基金Supported by Heilongjiang Natural Science Foundation of China(#C200607)Program for Innovative Research Team of Northeast Agricultural University,"IRTNEAU"
文摘This article applied the self-similarity of fractal theory to the soybean leaf with the aid of powerful iterative computation ability of computer,analyzed the generation principle of IFS code in the iterated function system,calculated the IFS code of the simulation soybean leaf.It basically realized the visualization simulation of soybean leaf and laid a foundation for the visualization simulation of the whole soybean plant.
基金Supported by the National Key Research and Development Program of China(2021YFD1201103-01-05)。
文摘Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of soybean, least absolute shrinkage and selection operator(LASSO) regression and stepwise regression were combined, and a genomic selection model was established for 40 002 SNP markers covering soybean genome and relative lesion area of soybean FLS. As a result, 68 molecular markers controlling soybean FLS were detected accurately, and the phenotypic contribution rate of these markers reached 82.45%. In this study, a model was established, which could be used directly to evaluate the resistance of soybean FLS and to select excellent offspring. This research method could also provide ideas and methods for other plants to breeding in disease resistance.
基金Supported by the Doctoral Program Foundation of the Institution of Higher Education of China (No.20040335045).
文摘A rate model, which considers axial dispersion, external mass transfer, intraparticle diffusion and nonlinear isotherms, and ports periodic switching is adopted to simulate the simulated moving bed (SMB) process. The effects of flow rate in Sections 2 and 3 and switching time on the operating performance parameters: purity, recovery, productivity and dcsorbent consumption are studied. A simulation approach is applied to simulate the operation and performance of the SMB. The model predicts the performance of the transient and cyclic steady state behavior to a reasonably good extent, and provides guidance operation condition of the SMB process.
基金grateful to the Canadian International Devel-opment agency(CIDA)for financial support.
文摘Different crop models including MAIZE Ceres, STICS and other approaches have been used to simulate leaf area index (LAI) in maize (Zea mays L.). These modeling tools require genotype-specific calibration procedures. Studies on modeling LAI dynamics under optimal growth conditions with yields close to the yield potential have remained scarce. In the present study, logistic and exponential approaches have been developed and evaluated for the simulation of LAI in maize in a savannah region of the DR-Congo. Data for the development and the evaluation of the model were collected manually by non-destructive method from small farmers’ field. The rate of expansion of the leaf surface and the rate of change of leaf senescence were also simulated. There were measurable variations among sites and varieties for the simulated height of maize plants. At all sites, the varieties with short plants were associated with expected superior performance based on simulation data. In general, the model underestimates the LAI based on observed values. LAI values for the genetically improved maize varieties (Salongo 2, MUS and AK) were greater than those of the unimproved local variety (Local). There were significant differences for K, b, Ti, LAI, Tf, and parameters among models and varieties. In all sites and for all varieties, the growth rate (b) was higher, while the rate of senescence (a) was lower compared to STICS estimates.
文摘Logistic and exponential approaches have been used to simulate plant growth and leaf area index (LAI) in different growing conditions. The objective of the present study was to develop and evaluate an approach to simulate maize LAI that expresses key physiological and phonological processes using a minimum entry requirement for Quality Protein maize (QPM) varieties grown in the southwestern region of the DR-Congo. Data for the development and testing of the model were collected manually in experimental plots using a non-destructive method. Simulation results revealed measurable variations between crop seasons (long season A and short season B) and between the two varieties (Mudishi-1 and Mudishi-3) for height, number of visible leaves, and LAI. For both seasons, Mudishi-3, a short stature variety was associated with expected stable yield based on simulation data. In general, the model simulated reliably all the parameters including the LAI. The LAI value for mudishi-1 was higher than that of Mudishi-3. There were significant differences among the model parameters (K, Ti, a, b, Tf) and between the two varieties. In all crop conditions studied and for the two varieties, the senescence rate (a) was higher, while the growth rate (b) was lower compared to the estimates based on the STICS model.
文摘中国东南丘陵地区茶园的快速扩张对地区碳循环产生显著影响。Biome-BGC模型常被用于碳通量定量研究,但其对人工管理过程刻画不足。本研究结合实测与遥感叶面积指数(LAI)数据,改进了Biome-BGC模型,以增强其对茶园人工管理过程的模拟能力。结果表明:LAI是Biome-BGC模型中关键的中间变量,对LAI的准确模拟是提升模型对茶园碳通量模拟精度的关键。改进后的模型显著提升了对总初级生产力(GPP)和生态系统呼吸(RE)的模拟精度,5年平均GPP和RE值分别为1.26、1.19 kg C·m^(-2),日尺度R^(2)分别达到0.55和0.80,较改进前分别提升44.5%和降低0.9%,均方根误差(RMSE)分别为0.887和1.030 g C·m^(-2)·d^(-1),较改进前分别降低50.3%和68.4%,月尺度的模拟效果更佳,显著改善了原始模型因未充分刻画人工修剪导致的碳通量高估问题。改进后的模型能够动态刻画修剪引起的LAI波动对碳循环的影响,并验证了其在不同时间尺度下的适用性,为存在高强度人工管理的茶园生态系统碳循环定量研究提供了技术支撑。
文摘根据光温对作物叶面积的影响,提出了辐热积(product of the rma leffectiveness and PAR,TEP)的概念。根据试验资料构建了利用辐热积模拟番茄(Lycopersicon esculentum Mill)叶面积动态的数学模型,并将其与已有的光合作用和干物质生产模拟模型相结合,构建了温室番茄干物质生产动态模型。利用不同品种、基质和地点的试验资料对模型进行了检验。结果表明,与传统的比叶面积法和有效积温法相比,辐热积法显著提高了温室番茄叶面积的预测精度,提高了光合作用和干物质生产的模拟精度。辐热积法对番茄叶面积的预测结果与1:1直线之间的决定系数R2和统计回归标准误差RMSE分别为0.9743和0.0515m2·株-1,对植株总干物质量的预测结果与1:1直线之间的R2和RMSE分别为0.9360和522.7104kg·ha-1;采用辐热积法对植株总干物质量的预测精度比有效积温法和比叶面积法分别提高56%和72%。