期刊文献+
共找到1,238篇文章
< 1 2 62 >
每页显示 20 50 100
Dominance of rock exposure and soil depth in leaf trait networks outweighs soil quality in karst limestone and dolomite habitats
1
作者 Min Jiao Jiawei Yan +3 位作者 Ying Zhao Tingting Xia Kaiping Shen Yuejun He 《Forest Ecosystems》 SCIE CSCD 2024年第5期632-641,共10页
Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential comm... Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat. 展开更多
关键词 leaf trait networks Functional traits Woody plant community KARST DOLOMITE LIMESTONE
在线阅读 下载PDF
Unveiling the adaptation strategies of woody plants in remnant forest patches to spatiotemporal urban expansion through leaf trait networks
2
作者 Mengping Jian Jingyi Yang 《Forest Ecosystems》 SCIE CSCD 2024年第2期247-254,共8页
Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion... Background:With the expansion of urban areas,the remnants of forested areas play a crucial role in preserving biodiversity in urban environments.This study aimed to explore the impact of spatiotemporal urban expansion on the networks of leaf traits in woody plants within remnant forest patches,thereby enhancing our understanding of plant adaptive strategies and contributing to the conservation of urban biodiversity.Methods:Our study examined woody plants within 120 sample plots across 15 remnant forest patches in Guiyang,China.We constructed leaf trait networks (LTNs) based on 26 anatomical,structural,and compositional leaf traits and assessed the effects of the spatiotemporal dynamics of urban expansion on these LTNs.Results and conclusions:Our results indicate that shrubs within these patches have greater average path lengths and diameters than trees.With increasing urban expansion intensity,we observed a rise in the edge density of the LTN-shrubs.Additionally,modularity within the networks of shrubs decreased as road density and urban expansion intensity increased,and increases in the average path length and average clustering coefficient for shrubs were observed with a rise in the composite terrain complexity index.Notably,patches subjected to‘leapfrog’expansion exhibited greater average patch length and diameter than those experiencing edge growth.Stomatal traits were found to have high degree centrality within these networks,signifying their substantial contribution to multiple functions.In urban remnant forests,shrubs bolster their resilience to variable environmental pressures by augmenting the complexity of their leaf trait networks. 展开更多
关键词 Urban remnant forest patch Woody plant leaf trait network Plant adaptation strategy Spatiotemporal urban expansion
在线阅读 下载PDF
Elevation gradient distribution of indices of tree population in a montane forest:The role of leaf traits and the environment 被引量:6
3
作者 Zuhua Wang Rong Zheng +3 位作者 Lilin Yang Tinghong Tan Haibo Li Min Liu 《Forest Ecosystems》 SCIE CSCD 2022年第1期124-130,共7页
Background:To disentangle the controls on species distribution in the context of climate change is a central element in proposed strategies to maintain species diversity.However,previous studies have focused mainly on... Background:To disentangle the controls on species distribution in the context of climate change is a central element in proposed strategies to maintain species diversity.However,previous studies have focused mainly on the roles of abiotic factors(e.g.,climate and soil properties),with much less attention given to the roles of biotic factors such as functional traits.Here,we measured eight leaf traits for 240 individual trees of 53 species and analyzed the variation in traits and population composition indices and their relationships with soil properties,climate factors,and leaf traits.Results:The tree density,frequency and species importance values of the overall species and saplings significantly increased with increasing elevation,while the same indices(except for species frequency)of adults did not significantly change.The largest percentage of variation of species importance value(greater than 50%)was explained by climate,but leaf traits played a critical role in driving elevation distribution patterns of both saplings and adults;the abundance of saplings significantly increased with elevation,with increased leaf carbon contents,while the abundance of adults did not change in accordance with a nutrient conservation strategy associated with the leaf economic spectrum.Conclusions:Our results suggest that the elevation gradient distribution of woody plant species is dependent on tree size and that local atmospheric humidity and leaf traits cause considerable variation in species distribution along subtropical mountain elevations.We provide evidence of which leaf traits play a key role in the elevation gradient distribution of different sizes of woody tree species. 展开更多
关键词 Elevation gradient Species distribution leaf traits Climate change leaf economic spectrum Mt.Fanjingshan
在线阅读 下载PDF
Leaf Traits and Antioxidant Defense for Drought Tolerance During Early Growth Stage in Some Popular Traditional Rice Landraces from Koraput, India 被引量:3
4
作者 Swati Sakambari MISHRA Debabrata PANDA 《Rice science》 SCIE CSCD 2017年第4期207-217,共11页
Three popular traditional rice landraces, namely Kalajeera, Machakanta and Haladichudi, from Koraput, India were used to analyse the leaf traits and antioxidant defence for drought tolerance. When rice plants were exp... Three popular traditional rice landraces, namely Kalajeera, Machakanta and Haladichudi, from Koraput, India were used to analyse the leaf traits and antioxidant defence for drought tolerance. When rice plants were exposed to different levels of drought stress by varying concentrations of polyethylene glycol (PEG) 6000, seed germination and growth parameters were significantly declined in all the rice landraces compared to the control. Drought stress also altered the leaf phenotypic traits based on chlorophyll fluorescence parameters and chlorophyll index, with more significant differences in susceptible variety IR64 than in traditional landraces. Furthermore, activities of antioxidative enzymes and proline and protein contents overtly increased under drought stress. The traditional rice landraces showed higher relative ratios for different parameters compared to the susceptible variety IR64. Taken together, the traditional landraces had superior leaf physiological efficiency compared to the susceptible and tolerant check varieties under drought stress. 展开更多
关键词 antioxidant enzyme drought stress LANDRACE PHENOTYPE rice leaf trait polyethylene glycol
在线阅读 下载PDF
Assessing Adaptability of Planted Trees Using Leaf Traits: A Case Study with Robinia pseudoacacia L. in the Loess Plateau, China 被引量:3
5
作者 JIN Tiantian LIU Guohua +2 位作者 FU Bojie DING Xiaohui YANG Lei 《Chinese Geographical Science》 SCIE CSCD 2011年第3期290-303,共14页
Leaf trait patterns and their variations with climate are interpreted as an adaptive adjustment to environment.This study assessed the adaptability of planted black locust (Robinia pseudoacacia L.) based on the analys... Leaf trait patterns and their variations with climate are interpreted as an adaptive adjustment to environment.This study assessed the adaptability of planted black locust (Robinia pseudoacacia L.) based on the analysis of leaf traits and the comparison of its leaf traits with inter-specific ones existing in the same area.We measured some water and N use related leaf traits: leaf dry mass per unit area (LMA) and N,P and K concentrations based on both leaf area (Narea,Parea and Karea) and leaf mass (Nmass,Pmass and Kmass) of R.pseudoacacia at 31 sites along a water stress gradient in North Shaanxi Province,China.The results show that leaves of R.pseudoacacia have high Nmass and low LMA in the study area.High Nmass and low LMA are usually representative of luxurious resource use,and will advance plant resource competitiveness in high-resource conditions.As a whole,LMA-nutrient relationships of R.pseudoacacia display patterns that are fairly similar to the inter-specific relationships in both direction and intensity.The tendency for LMA and Narea to increase with decreasing water availability and the positive correlation between LMA and Narea reflect the trend for R.pseudoacacia to enhance water use efficiency (WUE) at the expense of down-regulated photosynthetic N use efficiency (PNUE) and high construction cost in dry conditions.However,the positive relationship between LMA and Narea in high mean annual precipitation (MAP) area is either unremarkable or reversed with decreasing water availability.This implies a lower photosynthetic capacity and a higher construction cost for high-LMA leaves.The inter-specific relationship between LMA and Narea is positive and does not change with water availability.This difference between inter-species and intra-species may be due to more diversified anatomies and more specialised structures for inter-species than intra-species.The failure of R.pseudoacacia adaption to dry conditions reflected by LMA-Narea relationship may be partially responsible for the emergence of rampike and dwarf forms found frequently in dry conditions.Incorporating intrinsic characteristics of planted trees into vegetation restoration project will be instructive and meaningful for species selection. 展开更多
关键词 water stress planted tree leaf trait Robinia pseudoacacia L. TRADEOFF Loess Plateau
在线阅读 下载PDF
Geographical differences of leaf traits of the endangered plant Litsea coreana Levl.var.sinensis and its relationship with climate 被引量:3
6
作者 Gangyi Yuan Qiqiang Guo +3 位作者 Yaqin Zhang Qin Gui Na Xie Siqiong Luo 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期125-135,共11页
Seventeen morphological and anatomical characteristics of the leaves were selected from five natural populations to explore the variation in leaf traits of Lits ea core ana var.sinensis and the effects of geographical... Seventeen morphological and anatomical characteristics of the leaves were selected from five natural populations to explore the variation in leaf traits of Lits ea core ana var.sinensis and the effects of geographical environment on these variations.Nested analysis of variance,multiple comparisons,principal component analysis(PCA),and correlation analysis were conducted to explore the variations within and between populations and their correlation with geographical and climatic factors.Significant differences in the 17 leaf traits were observed within and among populations.On average,the relative contribution of within population variation to total variation was 24.8%,which was lower than among population variation(54.6%).The average differentiation coefficient of the traits was 65.8%,and the average coefficient of variation 11.8%,ranging from6.7%for main vein thickness to 21.4%for petiole length.The PC A results showed that morphological characteristics were divided into two categories,and the level of variation was greater than that of leaf anatomy.Most of the leaf traits were significantly correlated with geography and climate and showed a gradual variation with longitude,latitude,and altitude.In areas with high temperatures,less rainfall,and strong seasonal rainfall,the leaves are larger,longer and thicker.This study shows that variations in leaf traits of L.coreana var.sinensis mainly come from variations among populations.The level of trait differentiation among populations is high and the level of variation within populations low.These findings help further understand leaf morphological characteristics of this species and can provide a valuable reference for the protection and sustainable utilization of this natural resource. 展开更多
关键词 Litsea coreana var.sinensis CLIMATE leaf trait variations Natural populations Endangered species
在线阅读 下载PDF
Age-related changes of leaf traits and stoichiometry in an alpine shrub(Rhododendron agglutinatum) along altitudinal gradient 被引量:11
7
作者 WANG Meng LIU Guo-hu +4 位作者 JIN Tian-tian LI Zong-shan GONG Li WANG Hao YE Xin 《Journal of Mountain Science》 SCIE CSCD 2017年第1期106-118,共13页
Leaf morphological and stoichiometric characteristics are considered to represent both the interior inheritable characters in the plant and its adaptations to specific exterior environments. Rhododendron agglutinatum,... Leaf morphological and stoichiometric characteristics are considered to represent both the interior inheritable characters in the plant and its adaptations to specific exterior environments. Rhododendron agglutinatum,an evergreen alpine shrub species,occupies a wide range of habitats above timberline in the Miyaluo Natural Reserve,southwestern China. Along an altitudinal gradient ranging from 3700 to 4150 m,we measured leaf morphological characters including leaf dry matter content(LDMC),leaf dry mass per unit area(LMA),and one leaf area(OLA),as well as carbon(C) and nutrient(N,P) contents in leaves of three different age groups(juvenile leaves,mature leaves and senescent leaves). We also calculated the stoichiometric relationships among carbon and nutrients(C/N,C/P and N/P). Results showed thatboth age and altitude affected the leaf morphological and stoichiometric properties of R. agglutinatum. Mature leaves possessed the highest LDMC,LMA and C contents both on a dry mass basis and on a unit area basis. Younger leaves possessed higher contents of nutrients. OLA as well as ratios between carbon and nutrients(C/N,C/P) increased with ages. Juvenile leaves possessed lowest ratio between nitrogen and phosphorus. In juvenile leaves,nutrients increased with altitudinal elevation,whereas other traits decreased. In mature leaves,nutrients and their ratios with carbon showed consistent trends with juvenile leaves along increasing altitude,whereas LMA and carbon on a unit area basis showed opposite trends with juvenile leaves along increasing altitude. In senescent leaves,only content of phosphorus on a unit area basis and N/P were found linearly correlated with altitude. Our results demonstrated a clear pattern of nutrient distribution with aging process inleaves and indicated that a high possibility of N limitation in this region. We also concluded that younger leaves could be more sensitive to climate changes due to a greater altitudinal influence on the leaf traits in younger leaves than those in elder leaves. 展开更多
关键词 leaf traits Stoichiometry Rhododendron agglutinatum Altitude Age Alpine Shrub
原文传递
Responses of Gardenia jasminoides Ellis Leaf Traits and Anatomical Structures to Drought Stress in Purple Soil 被引量:1
8
作者 Yan YANG Lei LI +3 位作者 Jie TANG Yuxi TANG Yongjin LI Mengrong LUO 《Agricultural Biotechnology》 CAS 2021年第5期93-97,共5页
[Objectives]This study was conducted to investigate the response of Gardenia to purple soil drought stress,hoping to provide a reference for the selection of plants for vegetation restoration in purple soil regions.[M... [Objectives]This study was conducted to investigate the response of Gardenia to purple soil drought stress,hoping to provide a reference for the selection of plants for vegetation restoration in purple soil regions.[Methods]The pot-weighing water control method was used to apply different degrees of drought stress to Gardenia seedlings in purple soil,and the effects of drought stress on the electrical conductivity,chlorophyll content,leaf morphology and structure of Gardenia leaves were explored.[Results]The leaf electrical conductivity increased with the increase of drought stress intensity,and the leaf electrical conductivity under severe drought stress increased by 59.93%compared with the control;the chlorophyll content of Gardenia showed a single-peak changing trend that increased and then decreased with the development of drought stress,and it was the highest in each stress stage under severe drought stress;the leaf thickness,palisade tissue thickness and sponge tissue thickness of Gardenia were reduced with the stress degree increasing,and showed the largest decreases under severe stress;the stomatal length,stomatal width and stomatal opening of Gardenia gradually decreased with the increase of stress,while the stomatal density gradually increased.[Conclusions]This study provides a technical and resource basis for vegetation restoration in purple soil. 展开更多
关键词 Purple soil Drought stress Gardenia jasminoides Ellis Anatomical structure leaf traits
在线阅读 下载PDF
Soil water content and nitrogen differentially correlate with multidimensional leaf traits of two temperate broadleaf species
9
作者 Ming-Yue Jin Daniel J.Johnson +2 位作者 Guang-Ze Jin Qing-Xi Guo Zhi-Li Liu 《Plant Diversity》 SCIE CAS CSCD 2023年第6期694-701,共8页
The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and ... The variation and correlation of leaf economics and vein traits are crucial for predicting plant ecological strategies under different environmental changes.However,correlations between these two suites of traits and abiotic factors such as soil water and nitrogen content remain ambiguous.We measured leaf economics and vein traits as well as soil water and nitrogen content for two different shade-tolerant species(Betula platyphylla and Acer mono)in four mixed broadleaved-Korean pine(Pinus koraiensis)forests along a latitudinal gradient in Northeast China.We found that leaf economics traits and vein traits were decoupled in shade-intolerant species,Betula platphylla,but significantly coupled in a shadetolerant species,A.mono.We found stronger correlations among leaf traits in the shade tolerant species than in the shade intolerant species.Furthermore,leaf economic traits were positively correlated with the soil water gradient for both species,whereas vein traits were positively correlated with soil water gradient for the shade intolerant species but negatively correlated in the shade tolerant species.Although economic traits were positively correlated with soil nitrogen gradient in shade intolerant species but not correlated in shade tolerant species,vein traits were negatively correlated with soil nitrogen gradient in shade tolerant species but not correlated in shade intolerant species.Our study provides evidence for distinct correlations between leaf economics and vein traits and local abiotic factors of species differing in light demands.We recommend that the ecological significance of shade tolerance be considered for species when evaluating ecosystem functions and predicting plant responses to environmental changes. 展开更多
关键词 leaf trait multidimensionality Economics traits Vein traits Soil water content Soil total nitrogen Shade tolerance
在线阅读 下载PDF
Responses of maize germination,root morphology and leaf trait to characteristics of lead pollution:a case study
10
作者 Yongjian He Ranran Jiang Xiuli Hou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期184-196,共13页
On base of the content of Pb in the soil under different land use patterns in Lanping Lead-zinc mining area,Yunnan in southwest China,the root morphology and leaf traits of maize in different concentration Pb(20,40,60... On base of the content of Pb in the soil under different land use patterns in Lanping Lead-zinc mining area,Yunnan in southwest China,the root morphology and leaf traits of maize in different concentration Pb(20,40,60,80,100,150,200,500,1000,2000,3000 mg/L)were analyzed.The results showed that maize germination rate,germination vigor and growth index decreased with the increase of Pb concentration.The root length,surface area of maize increased by 0.21%-81.58%,8.99%-73.43%,1.50%-77.37%,respectively,under 20-500 mg/L Pb concentration.However,these parameters under 1000-3000 mg/L Pb concentration decreased by 37.86%-553.54%,44.99%-766.16%,55.99%-92.81%,respectively,and these lowest value appeared in 3000 mg/L Pb treatment.The root volume of maize increased by 4.57%-89.25%in 20-80 mg/L Pb concentration,and it decreased with the increase of Pb concentration when the Pb concentration was higher than 80 mg/L and decreased by 94.13%in 3000 mg/L Pb.The root surface area and length of 0.50-1.00 diameter class were higher than those of other diameter classes,and these value of maize under 500 mg/L Pb were higher than those of other concentrations.The length and perimeter of maize leaves with the highest value of 220.36 and 962.68 mm,respectively appeared in 60 mg/L Pb treatment.The leaf width and area of maize with the highest value of 15.68 mm and 2448.31 mm^(2),respectively,appeared in 40 mg/L Pb treatment,which indicated that the leaf traits of maize were promoted by low concentration Pb and inhibited by high concentration Pb. 展开更多
关键词 Pb stress Root morphology leaf traits Seed germination
在线阅读 下载PDF
Ecological variations of woody species along an altitudinal gradient in the Qinling Mountains of Central China:area-based versus mass-based expression of leaf traits
11
作者 Yongfu Chai Hailin Shang +3 位作者 Xiaofei Zhang Ruichang Zhang Xiao Liu Ming Yue 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期599-608,共10页
Leaf trait-based research has become the preferred method to understand the ecological strategies of plants.However,there is still a debate on whether area-based or mass-based traits provide different insights into en... Leaf trait-based research has become the preferred method to understand the ecological strategies of plants.However,there is still a debate on whether area-based or mass-based traits provide different insights into environmental adaptations and responses.In this study,seven key leaf traits(maximum net photosynthetic rate,dark respiration rate,nitrogen content,photosynthetic nitrogen use efficiency,leaf mass per area,leaf dry matter contents and leaf area)of 43 woody species were quantified on the basis of both area and mass along an altitudinal gradient(1100–2700 m)in the Qinling Mountains of China.Differences in leaf traits and bivariate correlations between the two expressions were compared.By considering different expressions,the strengths and directions of the responses of leaf traits to the altitudinal gradient were determined.Leaf traits showed large variations;interspecific variations contributed more to total variance than intraspecific variations.Bivariate correlations between photosynthetic traits and structural traits(mass per area,dry matter content,and area)were weaker on a mass basis than those on an area basis.Most traits exhibited quadratic trends along the altitudinal gradient,and these patterns were more noticeable for area-based than mass-based traits.Area-based traits were more sensitive to changes in temperature and precipitation associated with altitude.These results provide evidence that mass-versus area-based traits show different ecological responses to environmental conditions associated with altitude,even if they do not contain very broad spatial scales.Our results also indicate distinction of photosynthetic acclimation among the two expressions along an altitudinal gradient,reflecting trade-offs among leaf structure and physiological traits. 展开更多
关键词 Altitude modulation Bivariate relationship leaf trait Qinling Mountains
在线阅读 下载PDF
An Analysis on Leaf Traits of 22 Helianthus tuberosus Germplasm Resources Introduced from Abroad
12
作者 Mengliang ZHAO Qiwen ZHONG +1 位作者 Mingchi LIU Li LI 《Asian Agricultural Research》 2018年第1期64-68,75,共6页
Atomic absorption spectrophotometry,sulfuric acid and potassium dichromate oxidation method and ultraviolet spectrophotometry,were used to determine mineral elements,fiber,the content of chlorogenic acid and flavones ... Atomic absorption spectrophotometry,sulfuric acid and potassium dichromate oxidation method and ultraviolet spectrophotometry,were used to determine mineral elements,fiber,the content of chlorogenic acid and flavones in leaves of 24 Helianthus tuberosus Linn.resources,and the characteristics of the leaf introduced from abroad were evaluated.The results showed that the highest water content of 22 species was F12(27.58%),and the lowest was F16(19.02%).The difference in mean water content between the species from Denmark and France was small,but it was lower than that of Qingyu 3 and Qingyu 4.There were 3 orbicular leaves,1 long oval-shaped leaf and 18 oval leaves.The highest K content in the leaves was F19(30.62 mg/g),which was 2.5 times than Qingyu 3.The highest Mg content was D8(14.17 mg/g).The Fe content hadlittledifference,ranging from 0.09 mg/g to 0.19 mg/g.The highest Ca content was D8(26.87 mg/g).The highest level of chlorogenic acid and flavones was F7,2.55%and 1.24 g/100 g respectively.The highest fiber content was F9(16.7%),and the lowest was F19(7.36%).Through the analysis of the main component and the clustering analysis,when the genetic distance was 0.65,the 24 resources can be divided into three major categories.The first category of leaves were mainly oval and orbicular;the second category of leaves were long oval-shaped;the third category of leaves were oval.There was a difference between the various indexes in the leaf of different kinds of H.tuberosus Linn.resources.Finally,F19,D8,F9,F7,D14 and D11,6 specific species(F19,D8,F9,F7,D14 and D11)were screened out for further studies in the future. 展开更多
关键词 Helianthus tuberosus Linn. Germplasm resources leaf traits Mineral elements CELLULOSE Cluster analysis
在线阅读 下载PDF
QTL analysis of ear leaf traits in maize(Zea mays L.)under different planting densities 被引量:10
13
作者 Hongwu Wang Qianjin Liang +5 位作者 Kun Li Xiaojiao Hu Yujin Wu Hui Wang Zhifang Liu Changling Huang 《The Crop Journal》 SCIE CAS CSCD 2017年第5期387-395,共9页
Modem maize varieties have become more productive than ever, owing largely to increased tolerance of high plant density. However, the genetics of ear leaf traits under different densities remains poorly understood. In... Modem maize varieties have become more productive than ever, owing largely to increased tolerance of high plant density. However, the genetics of ear leaf traits under different densities remains poorly understood. In this study, Zhongdan 909 recombinant inbred lines(RILs) derived from a cross between Z58 and HD568 were genotyped for 3072 single-nucleotide polymorphisms(SNPs), and phenotyped for leaf length(LL), leaf width(LW), and leaf angle(LA) of the uppermost ear leaf under three planting densities(52,500,67,500, and 82,500 plants ha-1, respectively). A genetic map was then constructed using1358 high-quality SNPs. The total length of the linkage map was 1985.2 cM and the average interval between adjacent markers 1.46 cM. With increasing density, LL and LW decreased from 63.68 to 63.02 cm and from 8.56 to 8.21 cm, respectively, while LA increased from19.42° to 19.66°. All three traits had high heritabilities, of 0.75, 0.78, and 0.84, respectively.Using inclusive composite interval mapping, 23, 25, and 17 quantitative trait loci(QTL) were detected for LL, LW, and LA, respectively. Of these, 35 were simultaneously detected under two or three plant densities, while 30 were detected under only one. Sixty-five individual QTL explained 2.41% to 16.53% of phenotypic variation, while eight accounted for >10%.These findings will help us understand the genetic basis of leaf traits in maize as well as the response of maize to increased plant density. 展开更多
关键词 MAIZE Quantitative trait LOCI leaf traitS Density treatment
在线阅读 下载PDF
Seasonal variations of leaf traits and drought adaptation strategies of four common woody species in South Texas, USA 被引量:4
14
作者 Juan Qin Zhouping Shangguan Weimin Xi 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第5期1715-1725,共11页
Understanding physiological responses and drought adaptation strategies of woody plant leaf traits in sub-humid to semi-arid regions is of vital importance to understand the interplay between ecological processes and ... Understanding physiological responses and drought adaptation strategies of woody plant leaf traits in sub-humid to semi-arid regions is of vital importance to understand the interplay between ecological processes and plant resource-allocation strategies of different tree species.Seasonal variations of leaf morphological traits,stoichiometric traits and their relationships of two drought tolerant woody species,live oak(Quercus virginiana)and honey mesquite(Prosopis glandulosa)and two less drought tolerant species,sugarberry(Celtis laevigata)and white ash(Fraxinus americana)were analyzed in a sub-humid to semi-arid area of south Texas,USA.Our findings demonstrate that for the two drought tolerant species,the leguminous P.glandulosa had the highest specific leaf area,leaf N,P,and lowest leaf area and dry mass,indicating that P.glandulosa adapts to an arid habitat by decreasing leaf area,thus reducing water loss,reflecting a resource acquisition strategy.While the evergreen species Q.virginiana exhibited higher leaf dry mass,leaf dry matter content,C content,C:N,C:P and N:P ratios,adapts to an arid habitat through increased leaf thickness and thus reduced water loss,reflecting a resource conservation strategy in south Texas.For the two less drought tolerant deciduous species,the variations of leaf traits in C.laevigata and F.americana varied between Q.virginiana and P.glandulosa,reflecting a trade-off between rapid plant growth and nutrient maintenance in a semi-arid environment. 展开更多
关键词 DROUGHT adaptation STRATEGIES leaf traitS SEASONAL variations South Texas WOODY species
在线阅读 下载PDF
Leaf morphological trait integration and modularity provide insights into ecological adaptation in evergreen oaks
15
作者 Yi Zhang Yanjun Luo +2 位作者 Min Qi Ying Li Fang K.Du 《Forest Ecosystems》 2025年第5期953-962,共10页
The integration and modularity of leaf morphological traits are fundamental to plant adaptations, yet their responses to diverse environmental pressures remain unclear. In this study, we investigate the roles of leaf ... The integration and modularity of leaf morphological traits are fundamental to plant adaptations, yet their responses to diverse environmental pressures remain unclear. In this study, we investigate the roles of leaf trait integration and modularity and how they interact with environmental factors. We analyzed geometric, traditional, and functional leaf traits across 908 individuals from 72 populations of two alpine evergreen oaks, Quercus aquifolioides Rehder & E.H. Wilson and Quercus spinosa David ex Franch., distributed throughout the Himalayan-Hengduan Mountains(HHM), employing genetic assignment as a priori. Multivariate and redundancy analyses revealed that Q. aquifolioides, which inhabits harsher environments, exhibits lower trait integration and greater morphological flexibility, allowing for dynamic adaptation to fluctuating conditions. In contrast, Q. spinosa, thriving in milder environments, demonstrates stronger integration and stability in leaf morphology, facilitating resource optimization and providing a competitive advantage. Notable differences in modularity between the two species were observed, particularly in specific leaf traits, as revealed by structural equation modeling(SEM) analysis. These results underscore the adaptive significance of leaf trait integration and modularity in extreme environments and highlight the critical role of leaf morphology in enhancing species resilience. 展开更多
关键词 Quercus aquifolioides Quercus spinosa leaf traits Geometric morphometrics(GMMs) Environmental factors
在线阅读 下载PDF
Leaf functional traits and ecological strategies of common plant species in evergreen broad-leaved forests on Huangshan Mountain
16
作者 Ningjie Wang Ting Lv +4 位作者 Lu Wang Shuifei Chen Lei Xie Yanming Fang Hui Ding 《Journal of Forestry Research》 2025年第1期223-243,共21页
The survival strategy of plants is to adjust their functional traits to adapt to the environment.However,these traits and survival strategies of evergreen broad-leaved forest species are not well understood.This study... The survival strategy of plants is to adjust their functional traits to adapt to the environment.However,these traits and survival strategies of evergreen broad-leaved forest species are not well understood.This study examined 10 leaf functional traits(LFTs)of 70 common plant species in an evergreen broad-leaved forest in Huangshan Mountain to decipher their adaptive strategies.The phylogenetic signals of these LFTs were assessed and phylogenetically independent contrasts(PIC)and correlation analyses were carried out.LFTs were analyzed to determine their CSR(C:competitor,S:stress-tolerator,R:ruderal)strategies.The results show that plant species exhibit different leaf functional traits and ecological strategies(nine strategies were identified;the most abundant were S/CS and S/CSR strategies).Some traits showed significant phylogenetic signals,indicating the effect of phylogeny on LFTs to an extent.Trait variations among species suggest distinct adaptation strategies to environmental changes.The study species were mainly clustered on the C-S strategy axis,with a high S component.Species leaning toward the C-strategy end(e.g.,deciduous species),favored a resource acquisition strategy characterized by higher specific leaf area(SLA),greater nutrient contents(N and P),lower leaf dry matter content(LDMC),and reduced nutrient utilization efficiency(C:N and C:P).Conversely,species closer to the S-strategy end(e.g.,evergreen species)usually adopted a resource conservative strategy with trait combinations contrary to those of C-strategy species.Overall,this study corroborated the applicability of the CSR strategy at a local scale and provides insights into the varied trait combinations and ecological strategies employed by plant species to adapt to their environment.These findings contribute to a better understanding of the mechanisms involved in biodiversity maintenance. 展开更多
关键词 leaf functional traits Phylogenetic signals Phylogenetically independent contrasts CSR ecological strategy
在线阅读 下载PDF
Quantifying foliar trait variation and covariation in sun and shade leaves using leaf spectroscopy in eastern North America
17
作者 Zhihui Wang Philip A.Townsend +1 位作者 Eric L.Kruger Anna K.Schweiger 《Forest Ecosystems》 SCIE CSCD 2024年第5期728-742,共15页
Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multi... Characterizing foliar trait variation in sun and shade leaves can provide insights into inter-and intra-species resource use strategies and plant response to environmental change.However,datasets with records of multiple foliar traits from the same individual and including shade leaves are sparse,which limits our ability to investigate trait-trait,trait-environment relationships and trait coordination in both sun and shade leaves.We presented a comprehensive dataset of 15 foliar traits from sun and shade leaves sampled with leaf spectroscopy,including 424 individuals of 110 plant species from 19 sites across eastern North America.We investigated trait variation,covariation,scaling relationships with leaf mass,and the effects of environment,canopy position,and taxonomy on trait expression.Generally,sun leaves had higher leaf mass per area,nonstructural carbohydrates and total phenolics,lower mass-based chlorophyll a+b,carotenoids,phosphorus,and potassium,but exhibited species-specific characteristics.Covariation between sun and shade leaf traits,and trait-environment relationships were overall consistent across species.The main dimensions of foliar trait variation in seed plants were revealed including leaf economics traits,photosynthetic pigments,defense,and structural traits.Taxonomy and canopy position collectively explained most of the foliar trait variation.This study highlights the importance of including intra-individual and intra-specific trait variation to improve our understanding of ecosystem functions.Our findings have implications for efficient field sampling,and trait mapping with remote sensing. 展开更多
关键词 Foliar traits leaf trait variation trait-environment covariation Shade leaves NEON leaf spectroscopy
在线阅读 下载PDF
Relative position of seeds driven the seedling growth are mediated by root-leaf traits
18
作者 Jing Zhu Xue-Lin Wang +5 位作者 Xing Jin Lan Jiang Hong-Yu Lin Yang Hu Jin-Fu Liu Zhong-Sheng He 《Journal of Plant Ecology》 SCIE CSCD 2024年第2期24-35,共12页
Variations in plant traits are indicative of plant adaptations to forest environments,and studying their relationships with tree growth provides valuable insights into forest regeneration.The spatial arrangement of pl... Variations in plant traits are indicative of plant adaptations to forest environments,and studying their relationships with tree growth provides valuable insights into forest regeneration.The spatial arrangement of plant seeds within the forest litter or soil critically infuences the variations of root-leaf traits,thereby affecting the adaptive strategies of emerging seedlings.However,our current understanding of the impacts of individual root-leaf traits on seedling growth in different relative position,and whether these traits together affect growth,remains limited.This study focuses on the dominant tree species,Castanopsis kawakamii,within the Sanming C.kawakamii Nature Reserve of China.The present experiment aimed to examine the variations in root-leaf traits of seedling,focus on the relative positions of seeds within different layers:beneath or above the litter layer,or within the bare soil layer(without litter).Our fndings provided evidence supporting a coordinated relationship between root and leaf traits,wherein leaf traits varied in conjunction with root traits in the relative positions of seeds.Specifcally,we observed that seedlings exhibited higher values for specifc leaf area and average root diameter,while displaying lower root tissue density.The mixed model explained 86.1%of the variation in root-leaf traits,surpassing the variation explained by the relative positions.Furthermore,soil nitrogen acted as a mediator,regulating the relationship between seedling growth and root-leaf traits,specifcally leaf dry matter content and root tissue density.Therefore,future studies should consider artifcially manipulating tree species diversity based on root-leaf traits characteristics to promote forest recovery. 展开更多
关键词 relative growth rate COORDINATION leaf traits root traits soil nitrogen content seed relative positions
原文传递
Investigating Drought Resilience in Fig Cultivars:A Comprehensive Study of Leaf Structural and Functional Characteristics
19
作者 Nouha Haoudi Lahcen Hssaini +3 位作者 Jamila Bahhou Abderrahim Bentaibi Hicham Aboumadane Rachid Razouk 《Phyton-International Journal of Experimental Botany》 2025年第6期1857-1877,共21页
This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotr... This study was carried out to assess plasticity to drought of 30 adult fig cultivars,based on a screening of leaf structural and functional traits under sustained deficit irrigation,corresponding to 60%of crop evapotranspiration.All trees,three per cultivar,are planted in an ex-situ collection in Sais plain,northern Morocco.The measurements concerned leaf area,blade thickness,trichomes density,trichome hair length,stomatal density,stomatal dimensions,stomatal area index,chlorophyll concentration index,relative water content,stomatal conductance,leaf temperature,water loss in detached leaves,cuticular wax content,proline content,total phenolic compounds,and total soluble sugars.The ranking of cultivars regarding drought tolerance was established based on a two-level clustering approach,primarily relying on chlorophyll concentration index and secondarily on water status traits.Results showed significant genotypic variations for all measured traits,except phenolic compounds content.Correlations between structural and functional traits have pinpointed blade thickness and trichome hair length as the key indicators of fig drought tolerance,owing to their involvement in maintaining chlorophyll content under water stress conditions.The extent of the variations shows that fig leaf is endowed with a wide structural and functional diversity,which can give to the species potential for resilience to various environmental stresses,including drought.Among the cultivars assessed,two exotic varieties,“Kadota”and“Royal Blanck”,as well as four local cultivars,namely,“Ferqouch Jmel”,“El Qoti Labied”,“Hamra”and“Fassi”showed the highest drought plasticity level. 展开更多
关键词 Fig tree plasticity to drought leaf traits functional diversity RESILIENCE
在线阅读 下载PDF
Extremely thin but very robust:Surprising cryptogam trait combinations at the end of the leaf economics spectrum
20
作者 Tana Wuyun Lu Zhang +6 位作者 Tiina Tosens Bin Liu Kristiina Mark JoséÁngel Morales-Sanchez Jesamine Jöneva Rikisahedew Vivian Kuusk Ülo Niinemets 《Plant Diversity》 SCIE CAS CSCD 2024年第5期621-629,共9页
Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhi... Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhibit lower photosynthetic capacity per dry mass(Amass).Paradoxically,“soft and thinleaved”mosses and spikemosses have very low Amass,but due to minute-size foliage elements,their LMA and its components,leaf thickness(LT)and density(LD),have not been systematically estimated.Here,we characterized LES and associated traits in cryptogams in unprecedented details,covering five evolutionarily different lineages.We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants.Across a broad range of species from different lineages,Amass and LD were negatively correlated.In contrast,Amass was only related to LMA when LMA was greater than 14 g cm^(-2).In fact,low Amass reflected high LD and cell wall thickness in the studied cryptogams.We conclude that evolutionarily old plant lineages attained poorly differentiated,ultrathin mesophyll by increasing LD.Across plant lineages,LD,not LMA,is the trait that represents the trade-off between leaf robustness and physiology in the LES. 展开更多
关键词 Investment strategy leaf density leaf structural traits LMA estimation bias Non-seed plants trait trade-offs
在线阅读 下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部