期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Leaf stoichiometry of Leontopodium lentopodioides at high altitudes on the northeastern Qinghai-Tibetan Plateau,China 被引量:1
1
作者 WANG Hairu SU Haohai +1 位作者 Asim BISWAS CAO Jianjun 《Journal of Arid Land》 SCIE CSCD 2022年第10期1124-1137,共14页
Altitude affects leaf stoichiometry by regulating temperature and precipitation,and influencing soil properties in mountain ecosystems.Leaf carbon concentration(C),leaf nitrogen concentration(N),leaf phosphorous conce... Altitude affects leaf stoichiometry by regulating temperature and precipitation,and influencing soil properties in mountain ecosystems.Leaf carbon concentration(C),leaf nitrogen concentration(N),leaf phosphorous concentration(P),and their stoichiometric ratios of Leontopodium lentopodioides(Willd.)Beauv.,a widespread species in degraded grasslands,were investigated to explore its response and adaptation strategy to environmental changes along four altitude gradients(2500,3000,3500,and 3800 m a.s.l.)on the northeastern Qinghai-Tibetan Plateau(QTP),China.The leaf C significantly varied but without any clear trend with increasing altitude.Leaf N showed an increasing trend,and leaf P showed a little change with increasing altitude,with a lower value of leaf P at 3500 m than those at other altitudes.Similarity,leaf C:P and N:P exhibited a little change with increasing altitude,which both had greater values at 3500 m than those at other altitudes.However,leaf C:N exhibited a decreasing trend with increasing altitude.Soil NH^(+)_(4)-N,soil pH,soil total phosphorus(STP),mean annual temperature(MAT),and mean annual precipitation(MAP)were identified as the main factors driving the variations in leaf stoichiometry of L.lentopodioides across all altitudes,with NH^(+)_(4)-N alone accounting for 50.8%of its total variation.Specifically,leaf C and N were mainly controlled by MAT,soil pH,and NH^(+)_(4)-N,while leaf P by MAP and STP.In the study area,it seems that the growth of L.lentopodioides may be mainly limited by STP.The results could help to strengthen our understanding of the plasticity of plant growth to environmental changes and provide new information on global grassland management and restoration. 展开更多
关键词 alpine area environmental changes leaf elements nutrient limitation Qilian Mountains
在线阅读 下载PDF
Linking leaf elemental traits to biomass across forest biomes in the Himalayas
2
作者 Nita DYOLA Eryuan LIANG +8 位作者 Josep PEÑUELAS J.Julio CAMARERO Shalik Ram SIGDEL Sugam ARYAL Wentao LIN Xiang LIU Yongwen LIU Xingliang XU Sergio ROSSI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第5期1518-1528,共11页
Plants require a number of essential elements in different proportions for ensuring their growth and development.The elemental concentrations in leaves reflect the functions and adaptations of plants under specific en... Plants require a number of essential elements in different proportions for ensuring their growth and development.The elemental concentrations in leaves reflect the functions and adaptations of plants under specific environmental conditions.However,less is known about how the spectrum of leaf elements associated with resource acquisition,photosynthesis and growth regulates forest biomass along broad elevational gradients.We examined the influence of leaf element distribution and diversity on forest biomass by analyzing ten elements(C,N,P,K,Ca,Mg,Zn,Fe,Cu,and Mn)in tree communities situated every 100 meters along an extensive elevation gradient,ranging from the tropical forest(80 meters above sea level)to the alpine treeline(4200 meters above sea level)in the Kangchenjunga Landscape in eastern Nepal Himalayas.We calculated communityweighted averages(reflecting dominant traits governing biomass,i.e.,mass-ratio effect)and functional divergence(reflecting increased trait variety,i.e.,complementarity effect)for leaf elements in a total of 1,859 trees representing 116 species.An increasing mass-ratio effect and decreasing complementarity in leaf elements enhance forest biomass accumulation.A combination of elements together with elevation explains biomass(52.2%of the variance)better than individual elemental trait diversity(0.05%to 21%of the variance).Elevation modulates trait diversity among plant species in biomass accumulation.Complementarity promotes biomass at lower elevations,but reduces biomass at higher elevations,demonstrating an interaction between elevation and complementarity.The interaction between elevation and mass-ratio effect produces heterogeneous effects on biomass along the elevation gradient.Our research indicates that biomass accumulation can be disproportionately affected by elevation due to interactions among trait diversities across vegetation zones.While higher trait variation enhances the adaptation of species to environmental changes,it reduces biomass accumulation,especially at higher elevations. 展开更多
关键词 Ecosystem function Elevational gradient Functional diversity Functional traits leaf elements Niche complementarity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部