Whether the workshop layout is reasonable has a significant impact on logistics efficiency,production costs,and production efficiency.This article takes the grain and oil processing workshop of Company J as the resear...Whether the workshop layout is reasonable has a significant impact on logistics efficiency,production costs,and production efficiency.This article takes the grain and oil processing workshop of Company J as the research object and conducts a field investigation of its grain and oil processing workshop using the SLP(System Layout Design)method.Based on the logistics volume of the production site and the correlation of each functional area,the correlation analysis is carried out from two aspects:logistics factors and non-logistics factors.The interrelationship diagram of the operation units in the workshop,the ranking of the comprehensive proximity of the operation units,and the location correlation diagram of the operation units were obtained,and the improvement plan was designed based on the principle of route optimization layout.Through the optimized design,transportation efficiency was enhanced,workshop area utilization was improved,production costs were reduced,and good social and economic benefits were created for the enterprise.It can also provide a reference for similar enterprises to carry out related work.展开更多
This study focuses on the deepening paths of ideological and political construction of professional courses in higher vocational colleges,taking the layout design course of the digital media technology major as the re...This study focuses on the deepening paths of ideological and political construction of professional courses in higher vocational colleges,taking the layout design course of the digital media technology major as the research object,and explores the integration mechanism of excellent traditional Chinese culture and professional teaching.The curriculum’s ideological and political reform is advanced through three major measures:Reconstructing the role of teachers,innovating teaching methods,and building a cultural infiltration system.Combined with the three-dimensional assessment mechanism of“professional+culture+value”and the transformation of teaching achievements into competitions,it breaks through the limitations of traditional skill training and systematically solves the problems of formalization tendency and insufficient value guidance existing in the practice of curriculum ideology and politics.It responds to the era proposition of“promoting the creative transformation of excellent traditional Chinese culture,”and provides an operable solution for higher vocational colleges to break the predicament of“emphasizing skills while neglecting culture.”展开更多
The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context ...The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context of large-scale distributed renewable energy integration into the power grid,conventional island power grid line layouts can no longer meet actual demands.It is necessary to combine the operational characteristics of island power systems and historical load data to perform load forecasting,thereby generating power grid line layout paths.This article focuses on large-scale distributed renewable energy integration,summarizing optimization strategies for island power grid line layouts,and providing a solid guarantee for the safe and stable operation of island power systems.展开更多
Obtaining residual stress is crucial for controlling the machining deformation in annular parts,and can directly influence the performance and stability of key components in advanced equipment.Since existing research ...Obtaining residual stress is crucial for controlling the machining deformation in annular parts,and can directly influence the performance and stability of key components in advanced equipment.Since existing research has achieved global residual stress field inference for components by using the deformation force-based method where the deformation force is monitored during the machining process,reliable acquisition of deformation force stll remains a significant challenge under complex machining conditions.This paper proposes a hierarchical optimization method for the layout of deformation force monitoring of annular parts.The proposed method establishes two optimization objectives by analyzing the relationship between the deformation force and the residual stress in annular parts,i.e.,equivalence and ilconditioning of solving process.Specifically,the equivalence of the monitored deformation force and residual stress in terms of effect on caused machining deformation is evaluated by local deformation,and the illconditioning is also optimized to enhance the stability of residual stress inference.Verification is implemented in both simulation and actual machining experiments,demonstrating effectiveness of the proposed layout optimization method in inferring residual stress field of annular parts with deformation force.展开更多
Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to en...Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.展开更多
Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhib...Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhibit significant limitations in representing attributes of complex networks at various scales,particularly failing to provide advanced visual representations of specific nodes and edges,community affiliation attribution,and global scalability.These limitations substantially impede the intuitive analysis and interpretation of complex network patterns through visual representation.To address these limitations,we propose SFFSlib,a multi-scale network visualization framework incorporating novel methods to highlight attribute representation in diverse network scenarios and optimize structural feature visualization.Notably,we have enhanced the visualization of pivotal details at different scales across diverse network scenarios.The visualization algorithms proposed within SFFSlib were applied to real-world datasets and benchmarked against conventional layout algorithms.The experimental results reveal that SFFSlib significantly enhances the clarity of visualizations across different scales,offering a practical solution for the advancement of network attribute representation and the overall enhancement of visualization quality.展开更多
Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This ...Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.展开更多
In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure ...In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors.Herein,we proposed a framework for addressing this issue.In this framework,the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption,greenhouse gas(GHG)emissions,economic benefits,as well as food,land,and water security constraints,while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm.This framework was further applied in the Black Soil Region of Northeast China(BSRNC)for analyzing optimized crop planting structures and spatial layouts of three main crops(rice,maize,and soybean)under various scenarios.This study showed that the sown area of rice in the BSRNC decreased by up to 40.73%and 35.30%in the environmental priority scenario and economic-environmental balance scenario,respectively,whereas that of soybean increased by up to 112.44%and 63.31%,respectively.In the economic priority scenario,the sown area of rice increased by up to 93.98%.Expanding the sown area of soybean was effective in reducing GHG emissions.On the contrary,rice production led to greater environmental costs though it provided higher economic returns.Among the three crops,maize exhibited an advantage in balancing environmental and economic benefits.Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios.Overall,this framework provides a new methodology for optimizing crop planting structures and spatial layouts with con-sideration of the nexus of various factors.Moreover,the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.展开更多
Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of...Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of light interception,light conversion,and LUE for relay maize and relay soybean to different crop layouts remains unclear.We aimed to quantify the effect of crop layout on intraspecific and interspecific competition,light interception,light conversion,LUE,and land productivity between relay maize and relay soybean.We conducted a field experiment for four consecutive years from 2017 to 2020 in Sichuan province,China,comparing different crop layouts(bandwidth 2.0 m,row ratio 2:2;bandwidth 2.4 m,row ratio 2:3;bandwidth 2.8 m,row ratio 2:4),with sole maize and sole soybean as controls.The results showed that relay maize in the 2.0 m bandwidth layout had the largest leaf area index and plant biomass,the lowest intraspecific competitive intensity and the highest aggressiveness.Compared to a bandwidth of 2.0 m,a bandwidth of 2.8 m significantly decreased relay maize leaf area index by 11%and plant biomass by 24%,while a 2.4 m bandwidth caused roughly half these reductions.The 2.0 m bandwidth layout also significantly improved crop light interception and LUE compared to sole maize.The light interception,light interception rate,light conversion rate and LUE in relay maize all decreased significantly with increasing bandwidth,but they increased in relay soybean.The increased light transmittance to the lower and middle canopy with increasing bandwidth did not compensate for the loss of relay maize yield caused by increased intraspecific competition.However,it enhanced the yield of relay soybeans.Increasing the bandwidth by 80 cm increased the relay maize intraspecific competition by 580%,and reduced maize yield by 33%,light interception by 12%,and LUE by 18%.In contrast,the relay soybean intraspecific competition was reduced by 64%,and the soybean yield was increased by 26%,light interception by 32%and LUE by 46%.Relay cropping systems with a 2.0 m bandwidth optimize the trade-off between light transmittance and intraspecific competition of relay crops.These systems achieve the highest LUE,group yield and economic benefits,making them a recommended crop layout for the southwest regions of China.Our study offers valuable insights for developing strip relay cropping systems that maximize light utilization and contributes to the theoretical understanding of efficient sunlight use in relay cropping practices.展开更多
Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components direct...Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.展开更多
An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing lit...An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.展开更多
The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechan...The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechanism and force characteristics being significantly different from those of the single-edged cutter.The gage cutter is installed on the transition arc of the cutterhead,and the installation inclination complicates its movement and force.In this paper,by taking sandstone as the research object,the composite rock breaking models of the center cutter group and the gage cutter group of a compound TBM are separately established based on the three-dimensional particle discrete element method.The numerical models are verified by comparing results with the full-scale rotary cutting laboratory test.From the view point of the force characteristics of a single cutter,the propagation of rock cracks between adjacent cutters,the overall mechanical properties of the cutterhead,the load characteristics and layout form of the double-edged center cutter,and the installation angle range of the gage cutter were studied.Results demonstrate that the use of a cross-shaped center cutter layout can reduce the force of a single cutter ring and the overall load of the cutterhead,which is conducive to TBM stability during tunneling.Therefore,it is recommended that a cross-shaped layout for the double-edged center cutter of a rock formation compound TBM should be used.To improve the stability and service life of the cutter,we recommend setting the installation angle of the innermost gage cutter of the rock formation compound TBM to about 9°,and the installation angle of the outermost gage cutter should not exceed 70°.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
Ship pipe layout optimization is one of the difficulties and hot spots in ship intelligent production design.A high-dimensional vector coding is proposed based on the research of related pipe coding and ship pipe rout...Ship pipe layout optimization is one of the difficulties and hot spots in ship intelligent production design.A high-dimensional vector coding is proposed based on the research of related pipe coding and ship pipe route features in this paper.The advantages of this coding method are concise structure,strong compatibility,and independence from the gridding space.Based on the proposed coding,the particle swarm optimization algorithm is implemented,and the algorithm is improved by the pre-selected path strategy and the branch-pipe processing strategy.Finally,two simulation results reveal that the proposed coding and algorithm have feasibility and engineering practicability.展开更多
The layout optimization design of a natural gas gathering pipeline network is a multi-objective optimization problem because the extant theories are unable to meet the different decision preferences in scheme design,w...The layout optimization design of a natural gas gathering pipeline network is a multi-objective optimization problem because the extant theories are unable to meet the different decision preferences in scheme design,which restricts the intelligentization of gas gathering pipeline layout optimization.Currently,there are no generic design studies on the loop-star pipeline network.Therefore,this paper proposes a generic layout optimization model containing a large number of discrete and continuous variables,such as pipe connection relationships,pipe sizes,pipe length,and pipe specifications.In the solution section,drawing inspiration from the hormone regulation mechanism and local foraging rule in bionics,an improved particle swarm optimization algorithm based on hormone regulation(HRPSO)is proposed,and it obtains the favorable parameters range of the HRPSO algorithm.The results illustrate that the HRPSO algorithm exhibits convergence to the global optimum with a probability of 1.In comparison to manual design,the comprehensive costs of the optimized scheme are saved by 22.71%with the HRPSO algorithm.Compared to the four PSO variants in the paper,it can save costs by 5.38%,4.95%,4.09%,and 3.65%,respectively.展开更多
Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.W...Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.Wind energy is a readily available and sustainable energy source.Wind farm layout optimization problem,through scientifically arranging wind turbines,significantly enhances the efficiency of harnessing wind energy.Meta-heuristic algorithms have been widely employed in wind farm layout optimization.This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm,referred to as AIGA,for optimizing wind farm layout problems.The adaptive strategy dynamically adjusts the placement of wind turbines,leading to a substantial improvement in energy utilization efficiency within the wind farm.In this study,AIGA is tested in four different wind conditions,alongside four other classical algorithms,to assess their energy conversion efficiency within the wind farm.Experimental results demonstrate a notable advantage of AIGA.展开更多
With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy e...With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.展开更多
Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where quantum bits(qubits)can only interact effectively with their nearest neighbors.This constraint severely impacts...Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where quantum bits(qubits)can only interact effectively with their nearest neighbors.This constraint severely impacts the design and efficiency of quantum algorithms,as arranging qubits optimally can significantly reduce circuit depth and improve computational performance.To tackle the layout synthesis challenge,we propose an algorithm based on integer linear programming(ILP).ILP is well-suited for this problem as it can formulate the optimization objective of minimizing circuit depth while adhering to the nearest neighbor interaction constraint.The algorithm aims to generate layouts that maximize qubit connectivity within the given physical constraints of the quantum device.For experimental validation,we outline a clear and feasible setup using real quantum devices.This includes specifying the type and configuration of the quantum hardware used,such as the number of qubits,connectivity constraints,and any technological limitations.The proposed algorithm is implemented on these devices to demonstrate its effectiveness in producing depth-optimal quantum circuit layouts.By integrating these elements,our research aims to provide practical solutions to enhance the efficiency and scalability of quantum computing systems,paving the way for advancements in quantum algorithm design and implementation.展开更多
With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the rou...With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.展开更多
文摘Whether the workshop layout is reasonable has a significant impact on logistics efficiency,production costs,and production efficiency.This article takes the grain and oil processing workshop of Company J as the research object and conducts a field investigation of its grain and oil processing workshop using the SLP(System Layout Design)method.Based on the logistics volume of the production site and the correlation of each functional area,the correlation analysis is carried out from two aspects:logistics factors and non-logistics factors.The interrelationship diagram of the operation units in the workshop,the ranking of the comprehensive proximity of the operation units,and the location correlation diagram of the operation units were obtained,and the improvement plan was designed based on the principle of route optimization layout.Through the optimized design,transportation efficiency was enhanced,workshop area utilization was improved,production costs were reduced,and good social and economic benefits were created for the enterprise.It can also provide a reference for similar enterprises to carry out related work.
文摘This study focuses on the deepening paths of ideological and political construction of professional courses in higher vocational colleges,taking the layout design course of the digital media technology major as the research object,and explores the integration mechanism of excellent traditional Chinese culture and professional teaching.The curriculum’s ideological and political reform is advanced through three major measures:Reconstructing the role of teachers,innovating teaching methods,and building a cultural infiltration system.Combined with the three-dimensional assessment mechanism of“professional+culture+value”and the transformation of teaching achievements into competitions,it breaks through the limitations of traditional skill training and systematically solves the problems of formalization tendency and insufficient value guidance existing in the practice of curriculum ideology and politics.It responds to the era proposition of“promoting the creative transformation of excellent traditional Chinese culture,”and provides an operable solution for higher vocational colleges to break the predicament of“emphasizing skills while neglecting culture.”
文摘The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context of large-scale distributed renewable energy integration into the power grid,conventional island power grid line layouts can no longer meet actual demands.It is necessary to combine the operational characteristics of island power systems and historical load data to perform load forecasting,thereby generating power grid line layout paths.This article focuses on large-scale distributed renewable energy integration,summarizing optimization strategies for island power grid line layouts,and providing a solid guarantee for the safe and stable operation of island power systems.
基金supported in part by the General Program of the National Natural Science Foundation of China(No.52175467)the National Key R&D Program of China(No.2022YFB3402600).
文摘Obtaining residual stress is crucial for controlling the machining deformation in annular parts,and can directly influence the performance and stability of key components in advanced equipment.Since existing research has achieved global residual stress field inference for components by using the deformation force-based method where the deformation force is monitored during the machining process,reliable acquisition of deformation force stll remains a significant challenge under complex machining conditions.This paper proposes a hierarchical optimization method for the layout of deformation force monitoring of annular parts.The proposed method establishes two optimization objectives by analyzing the relationship between the deformation force and the residual stress in annular parts,i.e.,equivalence and ilconditioning of solving process.Specifically,the equivalence of the monitored deformation force and residual stress in terms of effect on caused machining deformation is evaluated by local deformation,and the illconditioning is also optimized to enhance the stability of residual stress inference.Verification is implemented in both simulation and actual machining experiments,demonstrating effectiveness of the proposed layout optimization method in inferring residual stress field of annular parts with deformation force.
基金supported by the National Natural Science Foundation of China(No.92371206)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.CX2023063).
文摘Satellite Component Layout Optimization(SCLO) is crucial in satellite system design.This paper proposes a novel Satellite Three-Dimensional Component Assignment and Layout Optimization(3D-SCALO) problem tailored to engineering requirements, aiming to optimize satellite heat dissipation while considering constraints on static stability, 3D geometric relationships between components, and special component positions. The 3D-SCALO problem is a challenging bilevel combinatorial optimization task, involving the optimization of discrete component assignment variables in the outer layer and continuous component position variables in the inner layer,with both influencing each other. To address this issue, first, a Mixed Integer Programming(MIP) model is proposed, which reformulates the original bilevel problem into a single-level optimization problem, enabling the exploration of a more comprehensive optimization space while avoiding iterative nested optimization. Then, to model the 3D geometric relationships between components within the MIP framework, a linearized 3D Phi-function method is proposed, which handles non-overlapping and safety distance constraints between cuboid components in an explicit and effective way. Subsequently, the Finite-Rectangle Method(FRM) is proposed to manage 3D geometric constraints for complex-shaped components by approximating them with a finite set of cuboids, extending the applicability of the geometric modeling approach. Finally, the feasibility and effectiveness of the proposed MIP model are demonstrated through two numerical examples"and a real-world engineering case, which confirms its suitability for complex-shaped components and real engineering applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61773091 and 62476045)the LiaoNing Revitalization Talents Program(Grant No.XLYC1807106)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Liaoning(Grant No.LR2016070).
文摘Complex network modeling characterizes system relationships and structures,while network visualization enables intuitive analysis and interpretation of these patterns.However,existing network visualization tools exhibit significant limitations in representing attributes of complex networks at various scales,particularly failing to provide advanced visual representations of specific nodes and edges,community affiliation attribution,and global scalability.These limitations substantially impede the intuitive analysis and interpretation of complex network patterns through visual representation.To address these limitations,we propose SFFSlib,a multi-scale network visualization framework incorporating novel methods to highlight attribute representation in diverse network scenarios and optimize structural feature visualization.Notably,we have enhanced the visualization of pivotal details at different scales across diverse network scenarios.The visualization algorithms proposed within SFFSlib were applied to real-world datasets and benchmarked against conventional layout algorithms.The experimental results reveal that SFFSlib significantly enhances the clarity of visualizations across different scales,offering a practical solution for the advancement of network attribute representation and the overall enhancement of visualization quality.
基金funded by King Fahd University of Petroleum&Minerals,Saudi Arabia under IRC-SES grant#INRE 2217.
文摘Wind energy has emerged as a potential replacement for fossil fuel-based energy sources.To harness maximum wind energy,a crucial decision in the development of an efficient wind farm is the optimal layout design.This layout defines the specific locations of the turbines within the wind farm.The process of finding the optimal locations of turbines,in the presence of various technical and technological constraints,makes the wind farm layout design problem a complex optimization problem.This problem has traditionally been solved with nature-inspired algorithms with promising results.The performance and convergence of nature-inspired algorithms depend on several parameters,among which the algorithm termination criterion plays a crucial role.Timely convergence is an important aspect of efficient algorithm design because an inefficient algorithm results in wasted computational resources,unwarranted electricity consumption,and hardware stress.This study provides an in-depth analysis of several termination criteria while using the genetic algorithm as a test bench,with its application to the wind farm layout design problem while considering various wind scenarios.The performance of six termination criteria is empirically evaluated with respect to the quality of solutions produced and the execution time involved.Due to the conflicting nature of these two attributes,fuzzy logic-based multi-attribute decision-making is employed in the decision process.Results for the fuzzy decision approach indicate that among the various criteria tested,the criterion Phi achieves an improvement in the range of 2.44%to 32.93%for wind scenario 1.For scenario 2,Best-worst termination criterion performed well compared to the other criteria evaluated,with an improvement in the range of 1.2%to 9.64%.For scenario 3,Hitting bound was the best performer with an improvement of 1.16%to 20.93%.
基金funded by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.72221002)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28060200)National Natural Science Foundation of Youth Project(Grant No.72303087).
文摘In the new phase of sustainable development,agriculture is seeking sustainable management of the water-land-energy-economy-environment-food nexus.At present,there are few studies on optimizing crop planting structure and analyzing its spatial layout with consideration of natural and socio-economic factors.Herein,we proposed a framework for addressing this issue.In this framework,the NSGA-II algorithm was used to construct the multi-objective optimization model of crop planting structures with consideration of water and energy consumption,greenhouse gas(GHG)emissions,economic benefits,as well as food,land,and water security constraints,while the model for planting spatial layout optimization was established with consideration of crop suitability using the MaxEnt model and the improved Hungarian algorithm.This framework was further applied in the Black Soil Region of Northeast China(BSRNC)for analyzing optimized crop planting structures and spatial layouts of three main crops(rice,maize,and soybean)under various scenarios.This study showed that the sown area of rice in the BSRNC decreased by up to 40.73%and 35.30%in the environmental priority scenario and economic-environmental balance scenario,respectively,whereas that of soybean increased by up to 112.44%and 63.31%,respectively.In the economic priority scenario,the sown area of rice increased by up to 93.98%.Expanding the sown area of soybean was effective in reducing GHG emissions.On the contrary,rice production led to greater environmental costs though it provided higher economic returns.Among the three crops,maize exhibited an advantage in balancing environmental and economic benefits.Hegang-Jixi area in the northeast of the BSRNC was identified as the key area with the most intense crop planting transfer among different scenarios.Overall,this framework provides a new methodology for optimizing crop planting structures and spatial layouts with con-sideration of the nexus of various factors.Moreover,the case study demonstrates the applicability and expansion potential of the framework in the fields of sustainable agricultural development and food security assurance.
基金supported by the Annual Water and Fertilizer Efficient Utilization and Regulation Technology Research (2022YFD2300902-02)Key Cultivation Technology Innovation and Application of New Maize varieties (2021YFYZ0005)+1 种基金Soybean Maize Strip Mixed Cropping Planting Technology and Application in Tianfu New Area (XZY1-03)Soybean Green Increase Production and Efficiency Technology Integration and Demonstration in Meigu County (2022YFD1100203).
文摘Light is one of the most important environmental factors for plant growth and development.In relay cropping systems,crop layouts influence light distribution,affecting light use efficiency(LUE).However,the response of light interception,light conversion,and LUE for relay maize and relay soybean to different crop layouts remains unclear.We aimed to quantify the effect of crop layout on intraspecific and interspecific competition,light interception,light conversion,LUE,and land productivity between relay maize and relay soybean.We conducted a field experiment for four consecutive years from 2017 to 2020 in Sichuan province,China,comparing different crop layouts(bandwidth 2.0 m,row ratio 2:2;bandwidth 2.4 m,row ratio 2:3;bandwidth 2.8 m,row ratio 2:4),with sole maize and sole soybean as controls.The results showed that relay maize in the 2.0 m bandwidth layout had the largest leaf area index and plant biomass,the lowest intraspecific competitive intensity and the highest aggressiveness.Compared to a bandwidth of 2.0 m,a bandwidth of 2.8 m significantly decreased relay maize leaf area index by 11%and plant biomass by 24%,while a 2.4 m bandwidth caused roughly half these reductions.The 2.0 m bandwidth layout also significantly improved crop light interception and LUE compared to sole maize.The light interception,light interception rate,light conversion rate and LUE in relay maize all decreased significantly with increasing bandwidth,but they increased in relay soybean.The increased light transmittance to the lower and middle canopy with increasing bandwidth did not compensate for the loss of relay maize yield caused by increased intraspecific competition.However,it enhanced the yield of relay soybeans.Increasing the bandwidth by 80 cm increased the relay maize intraspecific competition by 580%,and reduced maize yield by 33%,light interception by 12%,and LUE by 18%.In contrast,the relay soybean intraspecific competition was reduced by 64%,and the soybean yield was increased by 26%,light interception by 32%and LUE by 46%.Relay cropping systems with a 2.0 m bandwidth optimize the trade-off between light transmittance and intraspecific competition of relay crops.These systems achieve the highest LUE,group yield and economic benefits,making them a recommended crop layout for the southwest regions of China.Our study offers valuable insights for developing strip relay cropping systems that maximize light utilization and contributes to the theoretical understanding of efficient sunlight use in relay cropping practices.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52001088,52271269,U1906233)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2021E050)+2 种基金the State Key Laboratory of Ocean Engineering(Grant No.GKZD010084)Liaoning Province’s Xing Liao Talents Program(Grant No.XLYC2002108)Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents(Grant No.2021RD16)。
文摘Marine umbilical is one of the key equipment for subsea oil and gas exploitation,which is usually integrated by a great number of different functional components with multi-layers.The layout of these components directly affects manufacturing,operation and storage performances of the umbilical.For the multi-layer cross-sectional layout design of the umbilical,a quantifiable multi-objective optimization model is established according to the operation and storage requirements.Considering the manufacturing factors,the multi-layering strategy based on contact point identification is introduced for a great number of functional components.Then,the GA-GLM global optimization algorithm is proposed combining the genetic algorithm and the generalized multiplier method,and the selection operator of the genetic algorithm is improved based on the steepest descent method.Genetic algorithm is used to find the optimal solution in the global space,which can converge from any initial layout to the feasible layout solution.The feasible layout solution is taken as the initial value of the generalized multiplier method for fast and accurate solution.Finally,taking umbilicals with a great number of components as examples,the results show that the cross-sectional performance of the umbilical obtained by optimization algorithm is better and the solution efficiency is higher.Meanwhile,the multi-layering strategy is effective and feasible.The design method proposed in this paper can quickly obtain the optimal multi-layer cross-sectional layout,which replaces the manual design,and provides useful reference and guidance for the umbilical industry.
基金Supported by National Natural Science Foundation of China(Grant No.52005371)Shanghai Municipal Natural Science Foundation of China(Grant No.22ZR1463900)+1 种基金Fundamental Research Funds for the Central Universities of China(Grant No.22120220649)State Key Laboratory of Mechanical System and Vibration of China(Grant No.MSV202318).
文摘An increasing number of researchers have researched fixture layout optimization for thin-walled part assembly during the past decades.However,few papers systematically review these researches.By analyzing existing literature,this paper summarizes the process of fixture layout optimization and the methods applied.The process of optimization is made up of optimization objective setting,assembly variation/deformation modeling,and fixture layout optimization.This paper makes a review of the fixture layout for thin-walled parts according to these three steps.First,two different kinds of optimization objectives are introduced.Researchers usually consider in-plane variations or out-of-plane deformations when designing objectives.Then,modeling methods for assembly variation and deformation are divided into two categories:Mechanism-based and data-based methods.Several common methods are discussed respectively.After that,optimization algorithms are reviewed systematically.There are two kinds of optimization algorithms:Traditional nonlinear programming and heuristic algorithms.Finally,discussions on the current situation are provided.The research direction of fixture layout optimization in the future is discussed from three aspects:Objective setting,improving modeling accuracy and optimization algorithms.Also,a new research point for fixture layout optimization is discussed.This paper systematically reviews the research on fixture layout optimization for thin-walled parts,and provides a reference for future research in this field.
基金the National Natural Science Foundation of China(No.U1934213)the Sichuan Science and Technology Program(No.2019YFG0460)。
文摘The cutter layout of a full-face tunnel boring machine(TBM)directly affects its tunneling efficiency.The revolving diameter of the center cutter is small,and the double-edged design results in its rock breaking mechanism and force characteristics being significantly different from those of the single-edged cutter.The gage cutter is installed on the transition arc of the cutterhead,and the installation inclination complicates its movement and force.In this paper,by taking sandstone as the research object,the composite rock breaking models of the center cutter group and the gage cutter group of a compound TBM are separately established based on the three-dimensional particle discrete element method.The numerical models are verified by comparing results with the full-scale rotary cutting laboratory test.From the view point of the force characteristics of a single cutter,the propagation of rock cracks between adjacent cutters,the overall mechanical properties of the cutterhead,the load characteristics and layout form of the double-edged center cutter,and the installation angle range of the gage cutter were studied.Results demonstrate that the use of a cross-shaped center cutter layout can reduce the force of a single cutter ring and the overall load of the cutterhead,which is conducive to TBM stability during tunneling.Therefore,it is recommended that a cross-shaped layout for the double-edged center cutter of a rock formation compound TBM should be used.To improve the stability and service life of the cutter,we recommend setting the installation angle of the innermost gage cutter of the rock formation compound TBM to about 9°,and the installation angle of the outermost gage cutter should not exceed 70°.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金the Foundation of State Key Laboratory of Structural Analysis for Industrial Equipment(No.S18315)。
文摘Ship pipe layout optimization is one of the difficulties and hot spots in ship intelligent production design.A high-dimensional vector coding is proposed based on the research of related pipe coding and ship pipe route features in this paper.The advantages of this coding method are concise structure,strong compatibility,and independence from the gridding space.Based on the proposed coding,the particle swarm optimization algorithm is implemented,and the algorithm is improved by the pre-selected path strategy and the branch-pipe processing strategy.Finally,two simulation results reveal that the proposed coding and algorithm have feasibility and engineering practicability.
基金funding provided by the National Natural Science Foundation of China,China(Grant No.52104065,52074090)the Heilongjiang Provincial Natural Science Foundation of China,China(Grant No.LH2021E019)+3 种基金the China Postdoctoral Science Foundation,China(Grant Nos.2022T150089 and 2020M681064)the Heilongjiang Postdoctoral Foundation,China(Grant No.LBH-Z20101)the Scientific Research Personnel Training Foundation of Northeast Petroleum University,China(Grant No.XNYXLY202103)Northeast Petroleum University Scientific Research Foundation,China(Grant No.2019KQ54).
文摘The layout optimization design of a natural gas gathering pipeline network is a multi-objective optimization problem because the extant theories are unable to meet the different decision preferences in scheme design,which restricts the intelligentization of gas gathering pipeline layout optimization.Currently,there are no generic design studies on the loop-star pipeline network.Therefore,this paper proposes a generic layout optimization model containing a large number of discrete and continuous variables,such as pipe connection relationships,pipe sizes,pipe length,and pipe specifications.In the solution section,drawing inspiration from the hormone regulation mechanism and local foraging rule in bionics,an improved particle swarm optimization algorithm based on hormone regulation(HRPSO)is proposed,and it obtains the favorable parameters range of the HRPSO algorithm.The results illustrate that the HRPSO algorithm exhibits convergence to the global optimum with a probability of 1.In comparison to manual design,the comprehensive costs of the optimized scheme are saved by 22.71%with the HRPSO algorithm.Compared to the four PSO variants in the paper,it can save costs by 5.38%,4.95%,4.09%,and 3.65%,respectively.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI under Grant JP22H03643,Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)under Grant JPMJSP2145JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation under Grant JPMJFS2115.
文摘Energy issues have always been one of the most significant concerns for scientists worldwide.With the ongoing over exploitation and continued outbreaks of wars,traditional energy sources face the threat of depletion.Wind energy is a readily available and sustainable energy source.Wind farm layout optimization problem,through scientifically arranging wind turbines,significantly enhances the efficiency of harnessing wind energy.Meta-heuristic algorithms have been widely employed in wind farm layout optimization.This paper introduces an Adaptive strategy-incorporated Integer Genetic Algorithm,referred to as AIGA,for optimizing wind farm layout problems.The adaptive strategy dynamically adjusts the placement of wind turbines,leading to a substantial improvement in energy utilization efficiency within the wind farm.In this study,AIGA is tested in four different wind conditions,alongside four other classical algorithms,to assess their energy conversion efficiency within the wind farm.Experimental results demonstrate a notable advantage of AIGA.
文摘With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future.
基金supported by National Science and Technology Council,Taiwan,NSTC 112-2221-E-024-004.
文摘Layout synthesis in quantum computing is crucial due to the physical constraints of quantum devices where quantum bits(qubits)can only interact effectively with their nearest neighbors.This constraint severely impacts the design and efficiency of quantum algorithms,as arranging qubits optimally can significantly reduce circuit depth and improve computational performance.To tackle the layout synthesis challenge,we propose an algorithm based on integer linear programming(ILP).ILP is well-suited for this problem as it can formulate the optimization objective of minimizing circuit depth while adhering to the nearest neighbor interaction constraint.The algorithm aims to generate layouts that maximize qubit connectivity within the given physical constraints of the quantum device.For experimental validation,we outline a clear and feasible setup using real quantum devices.This includes specifying the type and configuration of the quantum hardware used,such as the number of qubits,connectivity constraints,and any technological limitations.The proposed algorithm is implemented on these devices to demonstrate its effectiveness in producing depth-optimal quantum circuit layouts.By integrating these elements,our research aims to provide practical solutions to enhance the efficiency and scalability of quantum computing systems,paving the way for advancements in quantum algorithm design and implementation.
基金supported by the Natural Science Foundation of Zhejiang Province(LY19A020001).
文摘With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.