Magnesium(Mg)alloys are promising candidates for biodegradable implants and medical devices due to their biocompatibility,mechanical properties,and ability to degrade in vivo,thereby eliminating the need for secondary...Magnesium(Mg)alloys are promising candidates for biodegradable implants and medical devices due to their biocompatibility,mechanical properties,and ability to degrade in vivo,thereby eliminating the need for secondary removal surgeries[1,2].However,their clinical adoption is hindered by rapid corrosion in physiological environments[3–5].Due to the high chemical reactivity of magnesium substrates and the inability of primary corrosion degradation products to form ideal protective layers,no effective scientific guidance has yet been identified from fundamental material science to address the rapid degradation of bare Mg[6–8].Surface modification strategies equivalently create new materials wrapped in a matrix,which can thus be extensively explored to enhance the corrosion resistance of Mg alloys while endowing them with tailored biological functionalities[9,10].展开更多
基金supported by grants from the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Major/key program(No.23M1060280)the Fundamental Research Funds for the Central Universities(No.2232024D-34 and No 2232023A-10).
文摘Magnesium(Mg)alloys are promising candidates for biodegradable implants and medical devices due to their biocompatibility,mechanical properties,and ability to degrade in vivo,thereby eliminating the need for secondary removal surgeries[1,2].However,their clinical adoption is hindered by rapid corrosion in physiological environments[3–5].Due to the high chemical reactivity of magnesium substrates and the inability of primary corrosion degradation products to form ideal protective layers,no effective scientific guidance has yet been identified from fundamental material science to address the rapid degradation of bare Mg[6–8].Surface modification strategies equivalently create new materials wrapped in a matrix,which can thus be extensively explored to enhance the corrosion resistance of Mg alloys while endowing them with tailored biological functionalities[9,10].