The photoanodic characteristics of layer-structured n-InSe were investigated in polysulfide solution as a solid-liquid junction photoelectro- chemical cell(PEC).A quantum yield approaching about 90% and a photocurrent...The photoanodic characteristics of layer-structured n-InSe were investigated in polysulfide solution as a solid-liquid junction photoelectro- chemical cell(PEC).A quantum yield approaching about 90% and a photocurrent density as high as 30 mA/cm^2 were obtained.But the stabilization experiment demonstrates that about 8% of the photocurrent is attributed to a photoanodic corrosion ceaction.展开更多
This study introduces a cut-to-fit methodology for customizing bulk aramid aerogels into form factors suitable for wearable energy storage.Owing to strong intercomponent bonds within aramid-based building blocks,it is...This study introduces a cut-to-fit methodology for customizing bulk aramid aerogels into form factors suitable for wearable energy storage.Owing to strong intercomponent bonds within aramid-based building blocks,it is possible to delaminate layered bulk aerogel into flexible and thinner sheets,enabling efficient mass production.This process allows for precise customization of aerogel dimensions,shape,and elasticity,ensuring high resilience to deformation along with excellent thermal and impact resistance.Incorporation of conductive carbon nanotubes on the surface significantly enhances electrical conductivity and multi-catalytic activity while retaining the inherent advantages of aramids.These advancements facilitate the use of flexible and conductive electrodes as air cathodes in solid-state zinc–air batteries(ZABs),which demonstrate superior cyclic performance and lifecycles exceeding 160 h.Furthermore,aramid-based packaging provides superior protection for pouch-type ZABs,ensuring a consistent power supply even in severe conditions.These batteries are capable of withstanding structural deformations and absorbing physical and thermal shocks,such as impacts and exposure to fire.Moreover,the innovative reassembly of custom-cut single-pouch cells into battery modules allows for enhanced power output,tailored to wearable applications.This highlights the potential of the technology for a wide array of wearable devices requiring dependable energy sources in demanding environments.展开更多
As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-ener...As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials.展开更多
Cathode materials for rechargeable batteries have been extensively investigated. Sodium-ion batteries are emerging as alternatives to lithium-ion batteries. In this study, a novel cathode material for both lithium- an...Cathode materials for rechargeable batteries have been extensively investigated. Sodium-ion batteries are emerging as alternatives to lithium-ion batteries. In this study, a novel cathode material for both lithium- and sodium-ion batteries has been derived from a layered crystal. Layer-structured titanate CsxTi2-x/2Mgx/2O4 (x = 0.70) with lepidocrocite (γ-FeOOH)-type structure has been prepared in a solid-state reaction from Cs2CO3, anatase-type TiO2, and MgO at 800°C. Ion-exchange reactions of Cs+ in the interlayer space were studied in aqueous solutions. The single phases of Li+, Na+, and H+ exchange products were obtained, and these were found to contain interlayer water. The interlayer water in the lithium ion-exchange product was removed by heating at 180°C in vacuum. The resulting titanate Li0.53H0.13Cs0.14Ti1.65Mg0.30O4 was evaluated for use as cathodes in both rechargeable lithium and sodium batteries. The Li+ intercalation-deintercalation capacities were found to be 151 mAh/g and 114 mAh/g, respectively, for the first cycle in the voltage range 1.0 - 3.5 V. The amounts of Li+ corresponded to 0.98 and 0.74 of the formula unit, respectively. The Na+ intercalation-deintercalation capacities were 91 mAh/g and 77 mAh/g, respectively, for the first cycle in the voltage range 0.70 - 3.5 V. The amounts of Na+ corresponded to 0.59 and 0.50 of the formula unit, respectively. The new cathode material derived from the layer-structured titanate is non-toxic, inexpensive, and environmentally benign.展开更多
Composition optimization and domain engineering modulation with diverse elements and structural tuning are favorable pathways that can be implemented to increase piezoelectric properties.Here,CaBi_(4)Ti_(3.89)(W_(1/2)...Composition optimization and domain engineering modulation with diverse elements and structural tuning are favorable pathways that can be implemented to increase piezoelectric properties.Here,CaBi_(4)Ti_(3.89)(W_(1/2)Co_(1/2))_(0.11)O_(15)+x wt%MnO_(2)(CBTWC-xMn,x=0-0.25)ceramics with superior piezoelectric responses were prepared via a solid-state sintering method.The mechanism of the high piezoresponse was examined by integrating visual crystal structure analysis with piezoresponse force microscopy,revealing that the introduction of MnO_(2) led to greater distortion of the[TiO_(6)]octahedron and a more oriented domain structure,both of which are critical factors contributing to the enhanced piezoelectric response.The optimized CBTWC-0.1Mn ceramics achieved an ultrahigh piezoelectric constant(d_(33=)27.3 pC/N),which was 50%greater than that of the pure CBTWC ceramics.Furthermore,the CBTWC-0.1Mn ceramics exhibited better ferroelectric properties,a high Curie temperature(T_(C)=754.7℃),low dielectric loss(tanδ=6.7%at 500℃),and excellent thermal stability,and their d_(33)(26.3 pC/N)maintained over 95%of its initial value after annealing at 500℃.This work provides a feasible strategy for improving the properties of bismuth layer-structured piezoelectric ceramics,which has important prospects for the application of high-temperature piezoelectric devices.展开更多
Owing to their exceptional piezoelectric effects,piezoelectric materials play a crucial role in high-end technologies and contribute significantly to the national economy.Bismuth layer-structured ferroelectrics(BLSFs)...Owing to their exceptional piezoelectric effects,piezoelectric materials play a crucial role in high-end technologies and contribute significantly to the national economy.Bismuth layer-structured ferroelectrics(BLSFs)possess high Curie temperatures,making them a focal point of research in high-temperature piezoelectric sensor devices.However,their poor piezoelectric performance and low direct-current(DC)electrical resistivity hinder their effective deployment in high-temperature applications.To overcome these shortcomings,we employed composition optimization by partially substituting bismuth ions with rare-earth praseodymium ions.This approach enhances the piezoelectric performance and improves the DC electrical resistivity by preventing the loss of volatile bismuth ions and stabilizing the bismuth oxide layer(Bi_(2)O_(2))2+,thereby reducing the concentration of oxygen vacancies.Consequently,we achieved a large piezoelectric constant d33 of 23.5 pC/N in praseodymium-substituted Bi5Ti3FeO15,which is three times higher than that of pure Bi5Ti3FeO15(7.1 pC/N),along with a high Curie temperature TC of 778℃.Additionally,the optimal composition of 4 mol%praseodymium-substituted Bi5Ti3FeO15 exhibits good thermal stability of electromechanical coupling characteristics up to 300℃.This study holds promise for a wide array of high-temperature piezoelectric applications and has the potential to accelerate the development of hightemperature piezoelectric sensor technologies.展开更多
CaBi_(2)Nb_(2)O_(9) thin film capacitors were fabricated on SrRuO_(3)-buffered Pt(111)/Ti/Si(100)substrates by adopting a two-step fabrication process.This process combines a low-temperature sputtering deposition with...CaBi_(2)Nb_(2)O_(9) thin film capacitors were fabricated on SrRuO_(3)-buffered Pt(111)/Ti/Si(100)substrates by adopting a two-step fabrication process.This process combines a low-temperature sputtering deposition with a rapid thermal annealing(RTA)to inhibit the grain growth,for the purposes of delaying the polarization saturation and reducing the ferroelectric hysteresis.By using this method,CaBi_(2)Nb_(2)O_(9) thin films with uniformly distributed nanograins were obtained,which display a large recyclable energy density Wrec≈69 J/cm^(3) and a high energy efficiencyη≈82.4%.A superior fatigue-resistance(negligible energy performance degradation after 10^(9) charge-discharge cycles)and a good thermal stability(from-170 to 150℃)have also been achieved.This two-step method can be used to prepare other bismuth layer-structured ferroelectric film capacitors with enhanced energy storage performances.展开更多
There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China...There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China is much larger than other countries or regions.The publications by Chinese researchers cover a broad spectrum on the preparations,structures,properties and applications of lead-free piezoelectric ceramics.This has motivated us to come out with a review on recent advances in development of lead-free piezoelectric ceramics in China.The emphases are especially on the preparation and electric properties of barium titanate-based materials,bismuth sodium titanate and related materials,alkaline niobate and related materials,bismuth layerstructured materials,as well as texture engineering of ceramics and some of their single crystals.Hopefully,this could give further impetus to the researchers to continue their e®orts in this promising area and also draw the attentions from legislature,research o±ce,industrial and publics.展开更多
文摘The photoanodic characteristics of layer-structured n-InSe were investigated in polysulfide solution as a solid-liquid junction photoelectro- chemical cell(PEC).A quantum yield approaching about 90% and a photocurrent density as high as 30 mA/cm^2 were obtained.But the stabilization experiment demonstrates that about 8% of the photocurrent is attributed to a photoanodic corrosion ceaction.
基金supported by‘Regional Innovation Strategy(RIS)’through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002)supported by NRF grant funded by Ministry of Science,ICT and Future Planning(No.NRF-2018R1C1B6005009,NRF-2021R1C1C1012676,and 2009-0082580).
文摘This study introduces a cut-to-fit methodology for customizing bulk aramid aerogels into form factors suitable for wearable energy storage.Owing to strong intercomponent bonds within aramid-based building blocks,it is possible to delaminate layered bulk aerogel into flexible and thinner sheets,enabling efficient mass production.This process allows for precise customization of aerogel dimensions,shape,and elasticity,ensuring high resilience to deformation along with excellent thermal and impact resistance.Incorporation of conductive carbon nanotubes on the surface significantly enhances electrical conductivity and multi-catalytic activity while retaining the inherent advantages of aramids.These advancements facilitate the use of flexible and conductive electrodes as air cathodes in solid-state zinc–air batteries(ZABs),which demonstrate superior cyclic performance and lifecycles exceeding 160 h.Furthermore,aramid-based packaging provides superior protection for pouch-type ZABs,ensuring a consistent power supply even in severe conditions.These batteries are capable of withstanding structural deformations and absorbing physical and thermal shocks,such as impacts and exposure to fire.Moreover,the innovative reassembly of custom-cut single-pouch cells into battery modules allows for enhanced power output,tailored to wearable applications.This highlights the potential of the technology for a wide array of wearable devices requiring dependable energy sources in demanding environments.
基金supported by the National Natural Science Foundation of China(Grant No.52272194)LiaoNing Revitalization Talents Program(Grant No.XLYC2007155)。
文摘As the primary suppliers of cyclable sodium ions,O3-type layer-structured manganese-based oxides are recognized as highly competitive cathode candidates for sodium-ion batteries.To advance the development of high-energy sodium-ion batteries,it is crucial to explore cathode materials operating at high voltages while maintaining a stable cycling behavior.The orbital and electronic structure of the octahedral center metal element plays a crucial role in maintaining the octahedra structural integrity and improving Na^(+)ion diffusion by introducing heterogeneous chemical bonding.Inspired by the abundant configuration of extra nuclear electrons and large ion radius,we employed trace amounts of tungsten in this study.The obtained cathode material can promote the reversibility of oxygen redox reactions in the high-voltage region and inhibit the loss of lattice oxygen.Additionally,the formation of a Na_(2)WO_(4) coating on the material surface can improve the interfacial stability and interface ions diffusion.It demonstrates an initial Coulombic efficiency(ICE)of 94.6%along with 168.5 mA h g^(-1 )discharge capacity within the voltage range of 1.9-4.35 V.These findings contribute to the advancement of high-energy sodium-ion batteries by providing insights into the benefits of tungsten doping and Na_(2)WO_(4) coating on cathode materials.
文摘Cathode materials for rechargeable batteries have been extensively investigated. Sodium-ion batteries are emerging as alternatives to lithium-ion batteries. In this study, a novel cathode material for both lithium- and sodium-ion batteries has been derived from a layered crystal. Layer-structured titanate CsxTi2-x/2Mgx/2O4 (x = 0.70) with lepidocrocite (γ-FeOOH)-type structure has been prepared in a solid-state reaction from Cs2CO3, anatase-type TiO2, and MgO at 800°C. Ion-exchange reactions of Cs+ in the interlayer space were studied in aqueous solutions. The single phases of Li+, Na+, and H+ exchange products were obtained, and these were found to contain interlayer water. The interlayer water in the lithium ion-exchange product was removed by heating at 180°C in vacuum. The resulting titanate Li0.53H0.13Cs0.14Ti1.65Mg0.30O4 was evaluated for use as cathodes in both rechargeable lithium and sodium batteries. The Li+ intercalation-deintercalation capacities were found to be 151 mAh/g and 114 mAh/g, respectively, for the first cycle in the voltage range 1.0 - 3.5 V. The amounts of Li+ corresponded to 0.98 and 0.74 of the formula unit, respectively. The Na+ intercalation-deintercalation capacities were 91 mAh/g and 77 mAh/g, respectively, for the first cycle in the voltage range 0.70 - 3.5 V. The amounts of Na+ corresponded to 0.59 and 0.50 of the formula unit, respectively. The new cathode material derived from the layer-structured titanate is non-toxic, inexpensive, and environmentally benign.
基金supported by the Key R&D Project of Jiangxi Province(No.20223BBE51018)the Natural Science Foundation of Jiangxi Province(No.20224BAB214020)+1 种基金the Opening Project of the National Engineering Research Center for Domestic&Building Ceramics(No.GXZX2303)the Graduate Innovation Fund of Jiangxi Province(No.JYC202309).
文摘Composition optimization and domain engineering modulation with diverse elements and structural tuning are favorable pathways that can be implemented to increase piezoelectric properties.Here,CaBi_(4)Ti_(3.89)(W_(1/2)Co_(1/2))_(0.11)O_(15)+x wt%MnO_(2)(CBTWC-xMn,x=0-0.25)ceramics with superior piezoelectric responses were prepared via a solid-state sintering method.The mechanism of the high piezoresponse was examined by integrating visual crystal structure analysis with piezoresponse force microscopy,revealing that the introduction of MnO_(2) led to greater distortion of the[TiO_(6)]octahedron and a more oriented domain structure,both of which are critical factors contributing to the enhanced piezoelectric response.The optimized CBTWC-0.1Mn ceramics achieved an ultrahigh piezoelectric constant(d_(33=)27.3 pC/N),which was 50%greater than that of the pure CBTWC ceramics.Furthermore,the CBTWC-0.1Mn ceramics exhibited better ferroelectric properties,a high Curie temperature(T_(C)=754.7℃),low dielectric loss(tanδ=6.7%at 500℃),and excellent thermal stability,and their d_(33)(26.3 pC/N)maintained over 95%of its initial value after annealing at 500℃.This work provides a feasible strategy for improving the properties of bismuth layer-structured piezoelectric ceramics,which has important prospects for the application of high-temperature piezoelectric devices.
基金supported by the National Natural Science Foundation of China(Grant No.52372115)the Opening Project of Key Laboratory of Inorganic Functional Materials and Devices,Chinese Academy of Sciences(Grant No.KLIFMD202309)Fundamental Research Funds for Central Universities.Dr.Q.W.also acknowledges financial support from the State Key Laboratory of Crystal Materials,Shandong University(Grant No.KF2308).
文摘Owing to their exceptional piezoelectric effects,piezoelectric materials play a crucial role in high-end technologies and contribute significantly to the national economy.Bismuth layer-structured ferroelectrics(BLSFs)possess high Curie temperatures,making them a focal point of research in high-temperature piezoelectric sensor devices.However,their poor piezoelectric performance and low direct-current(DC)electrical resistivity hinder their effective deployment in high-temperature applications.To overcome these shortcomings,we employed composition optimization by partially substituting bismuth ions with rare-earth praseodymium ions.This approach enhances the piezoelectric performance and improves the DC electrical resistivity by preventing the loss of volatile bismuth ions and stabilizing the bismuth oxide layer(Bi_(2)O_(2))2+,thereby reducing the concentration of oxygen vacancies.Consequently,we achieved a large piezoelectric constant d33 of 23.5 pC/N in praseodymium-substituted Bi5Ti3FeO15,which is three times higher than that of pure Bi5Ti3FeO15(7.1 pC/N),along with a high Curie temperature TC of 778℃.Additionally,the optimal composition of 4 mol%praseodymium-substituted Bi5Ti3FeO15 exhibits good thermal stability of electromechanical coupling characteristics up to 300℃.This study holds promise for a wide array of high-temperature piezoelectric applications and has the potential to accelerate the development of hightemperature piezoelectric sensor technologies.
基金the financial support of the National Natural Science Foundation of China(Grant Nos.51772175 and 51872166)the Nano Projects of Suzhou City(Grant No.ZXG201445)+2 种基金the support from the Seed Funding for Top Talents in Qilu University of Technology(Shandong Academy of Sciences)the International Cooperation Research Project of Qilu University of Technology(Grant No.QLUTGJHZ2018003)the Independent Innovation Foundation of Shandong University(Grant Nos.2018JC045 and 2017ZD008).
文摘CaBi_(2)Nb_(2)O_(9) thin film capacitors were fabricated on SrRuO_(3)-buffered Pt(111)/Ti/Si(100)substrates by adopting a two-step fabrication process.This process combines a low-temperature sputtering deposition with a rapid thermal annealing(RTA)to inhibit the grain growth,for the purposes of delaying the polarization saturation and reducing the ferroelectric hysteresis.By using this method,CaBi_(2)Nb_(2)O_(9) thin films with uniformly distributed nanograins were obtained,which display a large recyclable energy density Wrec≈69 J/cm^(3) and a high energy efficiencyη≈82.4%.A superior fatigue-resistance(negligible energy performance degradation after 10^(9) charge-discharge cycles)and a good thermal stability(from-170 to 150℃)have also been achieved.This two-step method can be used to prepare other bismuth layer-structured ferroelectric film capacitors with enhanced energy storage performances.
基金supports from The National Nature Science Foundation of China(NSFC,Nos.50072039,20151003,50572113,50932007)The Ministry of Sciences and Technology of China(MOST)through 973-projects(Nos.2002CB613307,2009CB623305)+3 种基金863-Projects(Nos.2001AA325070,2006AA03Z430)The Science and Technology Commission of Shanghai Municipality(Nos.05JC14079,08JC1420500,10XD1404700)Shanghai Institute of Ceramics(No.SCX200409)are gratefully acknowledged.
文摘There are a large number of research publications on the hot topic of environmental friendly leadfree piezoelectric materials worldwide in the last decade.The number of researchers and institutions involved from China is much larger than other countries or regions.The publications by Chinese researchers cover a broad spectrum on the preparations,structures,properties and applications of lead-free piezoelectric ceramics.This has motivated us to come out with a review on recent advances in development of lead-free piezoelectric ceramics in China.The emphases are especially on the preparation and electric properties of barium titanate-based materials,bismuth sodium titanate and related materials,alkaline niobate and related materials,bismuth layerstructured materials,as well as texture engineering of ceramics and some of their single crystals.Hopefully,this could give further impetus to the researchers to continue their e®orts in this promising area and also draw the attentions from legislature,research o±ce,industrial and publics.