Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered su...Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered sulfur-carbon complex with long-chain C–S_(x)–C bond(M-SC-S)is prepared.The layered structure ensures structural stability,and long-chain C–S_(x)–C bond expanding interlayer spacing boosts facile Na+diffusion.When assembled into cells,a high-quality solid-electrolyte interphase film would be formed due to a good match between the M-SC-S electrode and ether electrolyte.Moreover,an electrochemical activation process would happen between the Cu current collector and proper S-doped electrode material to in-situ form Cu_(2)S.The formation of Cu_(2)S in active material can not only provide more active sites for sodium storage and enhance pseudo-capacitance,but also reinforce the electrode/current collector interface and decrease the interfacial transfer resistance for rapid Na+kinetics.The synergistic effect of structure design and interface engineering optimizes the sodium storage system.Thus,the M-SC-S electrode delivers an excellent cyclic performance(321.6 mAh g^(−1)after 1000 cycles at 2 A g^(−1)with a capacity retention rate of 97.4%)and good rate capability(282.8 mAh g^(−1)after 4000 cycles even at a high current density of 10 A g^(−1)).The full cell also has an impressive cyclic performance(151.4 mAh g^(−1)after 500 cycles at 0.5 A g^(−1)).展开更多
Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class at...Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security.展开更多
基金supported by the Key Research and Development Program of Wuhan(2025010102030005)the National Nature Science Foundation of Jiangsu Province(BK20221259)。
文摘Carbonaceous material has attracted much attention in the application of sodium-ion batteries(SIBs)anode.However,sluggish reaction kinetics and structure stability impede the application.Therefore,a stacked layered sulfur-carbon complex with long-chain C–S_(x)–C bond(M-SC-S)is prepared.The layered structure ensures structural stability,and long-chain C–S_(x)–C bond expanding interlayer spacing boosts facile Na+diffusion.When assembled into cells,a high-quality solid-electrolyte interphase film would be formed due to a good match between the M-SC-S electrode and ether electrolyte.Moreover,an electrochemical activation process would happen between the Cu current collector and proper S-doped electrode material to in-situ form Cu_(2)S.The formation of Cu_(2)S in active material can not only provide more active sites for sodium storage and enhance pseudo-capacitance,but also reinforce the electrode/current collector interface and decrease the interfacial transfer resistance for rapid Na+kinetics.The synergistic effect of structure design and interface engineering optimizes the sodium storage system.Thus,the M-SC-S electrode delivers an excellent cyclic performance(321.6 mAh g^(−1)after 1000 cycles at 2 A g^(−1)with a capacity retention rate of 97.4%)and good rate capability(282.8 mAh g^(−1)after 4000 cycles even at a high current density of 10 A g^(−1)).The full cell also has an impressive cyclic performance(151.4 mAh g^(−1)after 500 cycles at 0.5 A g^(−1)).
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)—Innovative Human Resource Development for Local Intellectualization program grant funded by the Korea government(MSIT)(IITP-2025-RS-2022-00156334)in part by Liaoning Province Nature Fund Project(2024-BSLH-214).
文摘Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security.