The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium...The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.展开更多
Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface mo...Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.展开更多
As a potential alternative cathode material,α-LiFeO2 suffers a realization handicap,mainly due to its poor electrical conductivity and low lithium ion diffusion rate.In this work,we have successfully synthesized α-L...As a potential alternative cathode material,α-LiFeO2 suffers a realization handicap,mainly due to its poor electrical conductivity and low lithium ion diffusion rate.In this work,we have successfully synthesized α-LiFeO2/rGO nanocomposite through a layer by layer self-assembly modification process and annealing treatment.Due to the strong electrostatic attraction between opposite cha rged spices,α-LiFeO2 nanoparticles were homogeneously dispersed on the graphene sheet to form a typical interconnected conducting network which was bene ficial for electronic conductivity and ionic diffu sivity.In comparison to pristine α-LiFeO2,the α-LiFeO2/rGO displayed an excellent electrochemical perfo rmance with average discharge capacities of 238.9,187.2,178.4,121.8 and 99.5 mA hg^-1 at 0.1,0.2,0.5,1 and 2 C,respectively.Besides,the specific capacity retained 164.9 mA h g^-1 and 107.98 mA h g^-1 after 50 cycles at 0.5 C and 1 C,respectively.The remarkable progress in rate capability and cycling ability of this new nanocomposite developed a new approach to improve the electrochemical performance of α-LiFeO2.展开更多
Spherical polyelectrolyte brushes (SPBs) consisting of polystyrene (PS) core and poly(2-aminoethyl methacrylate hydrochloride) (PAEMH) shell were prepared by photo-emulsion polymerization. Au nanoparticles (A...Spherical polyelectrolyte brushes (SPBs) consisting of polystyrene (PS) core and poly(2-aminoethyl methacrylate hydrochloride) (PAEMH) shell were prepared by photo-emulsion polymerization. Au nanoparticles (Au-NPs) with controlled size and size distribution were synthesized in situ using SPBs as nanoreactors. Via layer-by-layer deposition technique on the surface of SPBs, nano-composite particles with Au/Ag-NPs bilayer and Au/Ag/Au-NPs trilayer were prepared. The structures of the as-prepared Au/Ag multilayer SPBs were characterized by UV-Vis spectroscopy, TEM, ICP-AES and DLS. The charge reversal of the nano-composite particles observed by zeta potential confirmed the success of layer-by-layer assembly. The Au/Ag-NPs bilayer nano-composite particles showed high catalytic efficiency with an apparent activation energy of about 41.2 kJ/mol in the reduction reaction of 4-nitrophenol to 4-aminophenol in the existence of sodium borohydride monitored. The catalytic activity ofAu/Ag-NPs multilayer SPBs close to that of Au-NPs SPBs and much higher than that of Ag-NPs SPBs reveals its potential applications in cost-effective catalysts with high-performance.展开更多
Orthopedic implants for the treatment of bone defects from various causes have been challenged by insufficient osseointegration,bacterial infection,oxidative stress,immune rejection,and insufficient individualized tre...Orthopedic implants for the treatment of bone defects from various causes have been challenged by insufficient osseointegration,bacterial infection,oxidative stress,immune rejection,and insufficient individualized treatment.These challenges not only impact treatment outcomes but also severely impact patients’daily lives.Layer-by-Layer(LbL)serves as a simple surface coating technique,in simple terms,to functionalize implants by sequentially adsorbing oppositely charged materials onto a substrate.In orthopaedics,LbL self-assembly technology solves some of the challenges by loading various drugs or biological agents on the implant surface and controlling their release precisely to the site of bone defects in a personalized way.This review will introduce the basic principle and the development of LbL in orthopaedics,review and analyze the chemical strategy of LbL in the preparation of bone implants to ensure the stability of the implant,and introduce the use of LbL bone implants in orthopaedics in recent years.The application of LbL includes the realization of programmed drug delivery and sustained release,thereby promoting osseointegration and the formation of new blood vessels,antibacterial,antioxidant,etc.This review focuses on the LbL technology,involving the technology selection for the preparation of bone implants,the chemical strategies of the stability guarantee of LbL implants,the pharmacological properties,loading and release mechanisms of loaded drugs,and the molecular mechanisms of osteogenesis and angiogenesis.The aim of this review is to provide an overview of current research advances,and a prospect in this field was also described.展开更多
A film with“brick-and-mortar”structure was prepared by layer-by-layer(LBL)technique using polyvinyl alcohol(PVA)and polymethyl methacrylate(PMMA)as the flexible material or“mortar”and mica as the rigid material or...A film with“brick-and-mortar”structure was prepared by layer-by-layer(LBL)technique using polyvinyl alcohol(PVA)and polymethyl methacrylate(PMMA)as the flexible material or“mortar”and mica as the rigid material or“brick”.The film deposited on a glass slide after self-assembly cycles had a thickness of 3μm thick and an uneven,wavy surface.The film exhibits enhanced mechanical properties,i e,the hardness and indentation modulus values could reach 6.14 and 68.41 GPa,respectively.The hardness and elastic toughness were found to be depended on three factors,i e,the ratio of PVA to mica,the number of self-assembly cycles,and the pretreatment method of the mica suspension.The self-assembly process was driven by formation of the hydrogen bonds between the silanol groups of mica and the hydroxyl groups of PVA and carbonyl groups of PMMA.展开更多
A wafer-scale colloidal monolayer consisting of SiO2 spheres is fabricated by a method combining spin coating and thermal treatment for the first time. Moreover, a new cellular automaton model describing the self-asse...A wafer-scale colloidal monolayer consisting of SiO2 spheres is fabricated by a method combining spin coating and thermal treatment for the first time. Moreover, a new cellular automaton model describing the self-assembly process of the colloidal monolayer is introduced. Rather than simulate molecular self-assembly to establish the most energetically favored position, we reconstruct the self-assembly of the colloidal monolayer by adjusting several simple transition rules of a cellular automaton. This model captures the main self-assembly characteristics of SiO2 spheres, including experimental processing time, morphology, and some statistics. It possesses the advantage of less calculation and higher efficiency, paving a new way to simulate a mesoscopic system.展开更多
Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous met...Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS.展开更多
Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembl...Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembly and photoinduced seeded reversible addition-fragmentation chain transfer(RAFT)polymerization to prepare a diverse set of core-shell colloidal particles with a well-defined polymer layer.Chemical compositions,structures,and thicknesses of polymer layers could be conveniently regulated by using different types of monomers and feed[monomer]/[chain transfer agent]ratios during seeded RAFT polymerization.展开更多
Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practica...Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life.展开更多
Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,whic...Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity.展开更多
Self-assembled monolayers(SAMs)have been commonly employed as hole-selective layers(HSLs)in inverted(p-i-n)perovskite solar cells(PSCs),and typically only a single-component SAM is applied,which plays limited role in ...Self-assembled monolayers(SAMs)have been commonly employed as hole-selective layers(HSLs)in inverted(p-i-n)perovskite solar cells(PSCs),and typically only a single-component SAM is applied,which plays limited role in selective hole transport.Herein,we synthesize a novel SAM,(4-(3,11-dibro mo-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid(Br-4PADBC),and apply it as a complementary component to the commonly used[2-(3,6-dimeth oxy-9H-carbazol-9-yl)ethyl]phosphonic acid(MeO-2PACz)SAM,accomplishing boosted hole transport in inverted PSCs.A series of characterizations and theoretical calculations are employed to unravel the roles of each components within the binary SAM(bi-SAM).The involvements of the non-planar dibenzo[c,g]carbazole unit and electron-withdrawing Br atoms induce larger dipole moment of Br-4PADBC than MeO-2PACz,resulting in much deeper work function of ITO and consequently improved alignment with the valence band energy level of perovskite.Besides,the introduced Br atoms improve the quality of perovskite crystals and help passivate defects of perovskite.On the other hand,the existence of the conventional MeO-2PACz SAM ensures the considerable conductivity of the bi-SAM and thus efficient hole extraction from the perovskite layer.As a result,inverted PSC devices based on bi-SAM HSL deliver a decent power conversion efficiency(PCE)of 24.52%as well as dramatically improved thermal and operational stabilities.展开更多
Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology,medicine,and nanotechnology.Experimental research has shown that diphenylalanine-based analo...Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology,medicine,and nanotechnology.Experimental research has shown that diphenylalanine-based analogs with ethylenediamine linkers(PA,P=phenylalanine,and A=analog)can self-assemble into spherical assemblies,which can serve as novel anticancer drug carriers.In this work,to understand the assembly pathways,drug loading behavior,and formation mechanism of PA aggregates at the molecular level,we carried out dissipative particle dynamics(DPD)simulations of PA molecule systems.Our simulation results demonstrate that PA molecules spontaneously assemble into nanospheres and can self-assemble into drug-loaded nanospheres upon addition of the cancer chemotherapeutic agent doxorubicin(DOX).We also found that the hydrophobic side chain beads of PA molecules exhibited a unique onion-like distribution inside the nanospheres,which was not observed in the experiment.The onion-like nanospheres were verified by calculating the radial distribution function(RDF)of the DPD beads.Furthermore,based on the analysis of the percentages of different interaction components in the total nonbonded energies,main chain-side chain interactions between PA molecules may be important in the formation of onion-like nanospheres,and the synergistic effects of main chain-side chain,main chain-drug,side chain-drug,and main chain-solvent interactions are significant in the formation of drug-loaded nanospheres.These findings provide new insights into the structure and self-assembly pathway of PA assemblies,which may be helpful for the design of efficient and effective drug delivery systems.展开更多
The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence em...The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence emission through protein coronas-controlled distance between gold nanoclusters(Au NCs).Interestingly,the gold ion complexes coated with proteins of low isoelectric point(pI)nucleate at the secondary structure of proteins with high p I through ionic exchange within cells,generating fluorescent Au NCs.It is worth noting that due to the steric hindrance formed by the protein coronas on the surface of Au NCs,the distance between Au NCs can be controlled,avoiding electron transfer caused by close proximity of Au NCs and inhibiting fluorescence ACQ.This strategy can achieve fluorescence imaging of clinical tissue samples without observable side effects.Therefore,this study proposes a distance-controllable self-assembled pitaya structure to provide a new approach for Au NCs with stable fluorescence.展开更多
The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycola...The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycolamide,MPyEDChDGA) with a new structure was synthesized,and the pyridine group was successfully grafted onto the 3-oxadiglycolamide structure.Using MPyEDChDGA for efficient enrichment of rare earth ions,the self-assembled solids were recovered by simple filtration without further backextraction and final precipitation,achieving a one-step strategy for the recovery of rare earth ions.Several important parameters affecting the self-assembly extraction,including pH,diluent,temperature,and extractant concentration,were systematically evaluated using La(NO_(3))_(3),Tb(NO_(3))_(3),and Lu(NO_(3))_(3) as representatives.The self-assembled solids were investigated in detail by X-ray diffraction(XRD),scanning electron microscopy(SEM),1H nuclear magnetic resonance(1H NMR),Fourier transform infrared spectroscopy(FT-IR),Raman,and X-ray photoelectron spectroscopy(XPS) analyses.The stoichiometry of the extraction species was characterized using the Job's method and electrospray ionization mass spectrometry(ESI-MS).In addition,MPyEDChDGA was applied to the recovery of Sm in SmCoCu simulated liquid,and the results show that MPyEDChDGA has good selectivity of Sm from transition metals(Co,Cu).The separation factor of Sm/Co can reach 6281±117,which provides a new approach to recovering Sm from SmCoCu scrap magnets.This study presents an efficient and convenient new strategy for the recovery and separation of rare earth elements.展开更多
Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AAB...Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AABCs presents challenges,which greatly limits the exploration of their self-assembly behaviors.In this work,we employed dissipative particle dynamics(DPD)simulations to investigate the self-assembly behaviors of AABCs in selective solution.By varying the copolymer concentration and structure,we conducted the self-assembly phase diagrams of AABCs,revealing complex morphologies such as channelized micelles with one or more solvophilic channels.Moreover,the number,surface area,and one-dimensional density distribution of the channelized micelles were calculated to demonstrate the internal structure and morphological transformation during the self-assembly process.Our findings indicate that the morphology of the internal solvophilic channels is greatly influenced by the copolymer structure,concentration,and interaction parameters between the different side chains.The simulation results are consistent with available experimental observations,which can offer theoretical insights into the self-assembly of AABCs.展开更多
Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs hav...Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs have shown to be promising in small-area devices(≤1 cm^(2)),their application in larger areas has been limited by a lack of knowledge regarding alternative deposition methods beyond the common spin-coating approach.Here,we compare spin-coating and upscalable methods such as thermal evaporation and spray-coating for[2-(9H-carbazol-9-yl)ethyl]phosphonic acid(2PACz),one of the most common carbazole-based SAMs.The impact of these deposition methods on the device performance is investigated,revealing that the spray-coating technique yields higher device performance.Furthermore,our work provides guidelines for the deposition of SAM materials for the fabrication of perovskite solar modules.In addition,we provide an extensive characterization of 2PACz films focusing on thermal evaporation and spray-coating methods,which allow for thicker 2PACz deposition.It is found that the optimal 2PACz deposition conditions corresponding to the highest device performances do not always correlate with the monolayer characteristics.展开更多
The optimization of hole transport layer(HTL)is crucial for achieving high efficiency and stability in inverted perovskite solar cells(PSCs)due to its role in facilitating hole transport and passivating the perovskite...The optimization of hole transport layer(HTL)is crucial for achieving high efficiency and stability in inverted perovskite solar cells(PSCs)due to its role in facilitating hole transport and passivating the perovskite bottom interface.While self-assembled monolayers(SAMs)are commonly used for this purpose,the inherent limitations of a single SAM,such as fixed energy levels and rigid structure,restrict their adaptability for different perovskite components and further efficiency enhancement.Here,we demonstrate a stepwise deposition method for SAM-based HTLs to address this issue.We regulated the energy level gradient by depositing two SAMs with distinct energy levels,while the interactions between the phosphate groups in the SAMs and perovskite effectively reduce defect density at the bottom interface of the perovskite film.The as-fabricated PSCs achieved enhanced efficiency and stability with PCEs of 25.7% and 24.0% for rigid and flexible PSCs,respectively;these devices maintain 90% of their initial PCE after 500 h of maximum power point tracking,and retain 98% of their initial PCE after 4,000 bending cycles,representing one of the most stable flexible PSCs reported to date.展开更多
The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we...The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we report a fluorinated N-heterocyclic carbene(NHC)–based pillarplex with a tunable quaternary structure,employed as an efficient building block for constructing hierarchical superstructures.Initially,multiple noncovalent interactions in the NHC-based pillarplex,particularly those between the fluorinated pillarplex and PF_(6)-anions,induce the formation of a supramolecular gel at high concentrations.Additionally,this hierarchical self-assembled structure can be regulated by adjusting anion types,facilitating the controlled transformation from a supramolecular gel into a supramolecular channel upon the introduction of four monocarboxylic acids as anions.The study provides insight into the construction and controlled regulation of superstructures based on NHC-based pillarplexes.展开更多
Inverted p-i-n perovskite solar cells(PSCs)based on self-assembled monolayers(SAMs)as hole-selective layers(HSLs)have produced potential record efficiencies of more than 26%by tuning work function,dipole,and passivati...Inverted p-i-n perovskite solar cells(PSCs)based on self-assembled monolayers(SAMs)as hole-selective layers(HSLs)have produced potential record efficiencies of more than 26%by tuning work function,dipole,and passivation defects.However,the stability of the SAM molecules,the stability of the molecular anchoring conformation,and the impact on the stability of subsequent PSCs have not been clearly elucidated.In this review,we systematically discussed the intrinsic connection between the molecular conformation(including anchoring groups,spacer groups,and terminal groups)and the stability of SAMs.Sequentially,the research progress of SAMs as HSLs in improving the stability of PSCs is summarized,including photostability,thermal stability,ion migration,and residual stress.Finally,we look forward to the shortcomings and possible challenges of using SAMs as HSLs for inverted PSCs.展开更多
基金National Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.202210288027).
文摘The abuse of plastic food packaging has brought about severe white pollution issues around the world.Developing green and sustainable biomass packaging is an effective way to solve this problem.Hence,a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer(LBL)self-assembly method.With the help of superior interaction between the layers,the multilayer film possesses excellent mechanical properties(with a tensile strength of 50 MPa).Besides,the film displays outstanding water retention property(blocking moisture of 97.56%)and ultraviolet blocking property.Anthocyanin is introduced into the film to detect the food quality since it is one natural plant polyphenol that is sensitive to the pH changes ranging from 1 to 13 in food when spoilage occurs.It is noted that the film is also bacteriostatic which is desired for food packaging.This study describes a simple technique for the development of advanced multifunctional and fully biodegradable food packaging film and it is a sustainable alternative to plastic packaging.
基金Funded by the Key R&D Program of the Science and Technology Department of Hubei Province(No.2022BCE008)。
文摘Poly(3,4-ethylenedioxyethiophene)-polystyrene sulfonic acid(PEDOT:PSS)/polyallyl dimethyl ammonium chloride modified reduced graphene oxide(PDDA-rGO)was layer by layer self-assembled on the cotton fiber.The surface morphology and electric property was investigated.The results confirmed the dense membrane of PEDOT:PSS and the lamellar structure of PDDA-rGO on the fibers.It has excellent electrical conductivity and mechanical properties.The fiber based electrochemical transistor(FECTs)prepared by the composite conductive fiber has a maximum output current of 8.7 mA,a transconductance peak of 10 mS,an on time of 1.37 s,an off time of 1.6 s and excellent switching stability.Most importantly,the devices by layer by layer self-assembly technology opens a path for the true integration of organic electronics with traditional textile technologies and materials,laying the foundation for their later widespread application.
基金This work was financially supported by the National Natural Science Foundation of China(No.21071026)the Outstanding Talent Introduction Project of University of Electronic Science and Technology of China(No.08JC00303)。
文摘As a potential alternative cathode material,α-LiFeO2 suffers a realization handicap,mainly due to its poor electrical conductivity and low lithium ion diffusion rate.In this work,we have successfully synthesized α-LiFeO2/rGO nanocomposite through a layer by layer self-assembly modification process and annealing treatment.Due to the strong electrostatic attraction between opposite cha rged spices,α-LiFeO2 nanoparticles were homogeneously dispersed on the graphene sheet to form a typical interconnected conducting network which was bene ficial for electronic conductivity and ionic diffu sivity.In comparison to pristine α-LiFeO2,the α-LiFeO2/rGO displayed an excellent electrochemical perfo rmance with average discharge capacities of 238.9,187.2,178.4,121.8 and 99.5 mA hg^-1 at 0.1,0.2,0.5,1 and 2 C,respectively.Besides,the specific capacity retained 164.9 mA h g^-1 and 107.98 mA h g^-1 after 50 cycles at 0.5 C and 1 C,respectively.The remarkable progress in rate capability and cycling ability of this new nanocomposite developed a new approach to improve the electrochemical performance of α-LiFeO2.
基金financially supported by the National Natural Science Foundation of China(No.51273063 and 51003028)the Fundamental Research Funds for the Central Universities+1 种基金the Higher School Specialized Research Fund for the Doctoral Program(No.20110074110003)111 Project Grant(No.B08021)
文摘Spherical polyelectrolyte brushes (SPBs) consisting of polystyrene (PS) core and poly(2-aminoethyl methacrylate hydrochloride) (PAEMH) shell were prepared by photo-emulsion polymerization. Au nanoparticles (Au-NPs) with controlled size and size distribution were synthesized in situ using SPBs as nanoreactors. Via layer-by-layer deposition technique on the surface of SPBs, nano-composite particles with Au/Ag-NPs bilayer and Au/Ag/Au-NPs trilayer were prepared. The structures of the as-prepared Au/Ag multilayer SPBs were characterized by UV-Vis spectroscopy, TEM, ICP-AES and DLS. The charge reversal of the nano-composite particles observed by zeta potential confirmed the success of layer-by-layer assembly. The Au/Ag-NPs bilayer nano-composite particles showed high catalytic efficiency with an apparent activation energy of about 41.2 kJ/mol in the reduction reaction of 4-nitrophenol to 4-aminophenol in the existence of sodium borohydride monitored. The catalytic activity ofAu/Ag-NPs multilayer SPBs close to that of Au-NPs SPBs and much higher than that of Ag-NPs SPBs reveals its potential applications in cost-effective catalysts with high-performance.
文摘Orthopedic implants for the treatment of bone defects from various causes have been challenged by insufficient osseointegration,bacterial infection,oxidative stress,immune rejection,and insufficient individualized treatment.These challenges not only impact treatment outcomes but also severely impact patients’daily lives.Layer-by-Layer(LbL)serves as a simple surface coating technique,in simple terms,to functionalize implants by sequentially adsorbing oppositely charged materials onto a substrate.In orthopaedics,LbL self-assembly technology solves some of the challenges by loading various drugs or biological agents on the implant surface and controlling their release precisely to the site of bone defects in a personalized way.This review will introduce the basic principle and the development of LbL in orthopaedics,review and analyze the chemical strategy of LbL in the preparation of bone implants to ensure the stability of the implant,and introduce the use of LbL bone implants in orthopaedics in recent years.The application of LbL includes the realization of programmed drug delivery and sustained release,thereby promoting osseointegration and the formation of new blood vessels,antibacterial,antioxidant,etc.This review focuses on the LbL technology,involving the technology selection for the preparation of bone implants,the chemical strategies of the stability guarantee of LbL implants,the pharmacological properties,loading and release mechanisms of loaded drugs,and the molecular mechanisms of osteogenesis and angiogenesis.The aim of this review is to provide an overview of current research advances,and a prospect in this field was also described.
基金Funded by the Wuhan Science and Technology Bureau(No.2020020601012279)。
文摘A film with“brick-and-mortar”structure was prepared by layer-by-layer(LBL)technique using polyvinyl alcohol(PVA)and polymethyl methacrylate(PMMA)as the flexible material or“mortar”and mica as the rigid material or“brick”.The film deposited on a glass slide after self-assembly cycles had a thickness of 3μm thick and an uneven,wavy surface.The film exhibits enhanced mechanical properties,i e,the hardness and indentation modulus values could reach 6.14 and 68.41 GPa,respectively.The hardness and elastic toughness were found to be depended on three factors,i e,the ratio of PVA to mica,the number of self-assembly cycles,and the pretreatment method of the mica suspension.The self-assembly process was driven by formation of the hydrogen bonds between the silanol groups of mica and the hydroxyl groups of PVA and carbonyl groups of PMMA.
基金Project supported by the National Natural Science Foundation of China(Grant No.81172082)Anhui Provincial Scientific and Technological Project of China(Grant No.12010202035)
文摘A wafer-scale colloidal monolayer consisting of SiO2 spheres is fabricated by a method combining spin coating and thermal treatment for the first time. Moreover, a new cellular automaton model describing the self-assembly process of the colloidal monolayer is introduced. Rather than simulate molecular self-assembly to establish the most energetically favored position, we reconstruct the self-assembly of the colloidal monolayer by adjusting several simple transition rules of a cellular automaton. This model captures the main self-assembly characteristics of SiO2 spheres, including experimental processing time, morphology, and some statistics. It possesses the advantage of less calculation and higher efficiency, paving a new way to simulate a mesoscopic system.
基金supported by the National Natural Science Foundation of China(No.62075069 and 52303092)the Water Conservancy Technology project of Hunan Province,China(XSKJ2021000-32)+1 种基金the City University of Hong Kong(#7005507)the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(grant number YPML-2023050278).
文摘Nowadays,high-stable and ultrasensitive heavy metal detection is of utmost importance in water quality monitoring.Nanoparticle-enhanced laser-induced breakdown spectroscopy(NELIBS)shows high potential in hazardous metal detection,however,encounters unstable and weak signals due to nonuniform distribution of analytes.Herein,we developed an interface self-assembly(ISA)method to create a uniformly distributed gold nanolayer at a liquid-liquid interface for positive heavy metal ions capture and NELIBS analysis.The electrostatically selfassembled Au nanoparticles(NPs)-analytes membrane was prepared at the oil-water interface by injecting ethanol into the mixture of cyclohexane and Au NPs-analytes water solution.Then,the interface self-assembled Au NPs-analytes membrane was transformed onto a laser-processed superhydrophilic Si slide for detection.Three heavy metals(cadmium(Cd),barium(Ba),and chromium(Cr))were analyzed to evaluate the stability and sensitivity of the ISA method for NELIBS.The results(Cd:RSD=3.6%,LoD=0.654 mg/L;Ba:RSD=3.4%,LoD=0.236 mg/L;Cr:RSD=7.7%,LoD=1.367 mg/L)demonstrated signal enhancement and high-stable and ultrasensitive detection.The actual sample detection(Cd:RE=7.71%,Ba:RE=6.78%)illustrated great reliability.The ISA method,creating a uniform distribution of NP-analytes at the interface,has promising prospects in NELIBS.
基金support from the Science and Technology Program of Guangzhou(No.2024A04J2821)the National Natural Science Foundation of China(Nos.52222301,22171055)the Guangdong Natural Science Foundation for Distinguished Young Scholar(No.2022B1515020078)。
文摘Core-shell colloidal particles with a polymer layer have broad applications in different areas.Herein,we developed a two-step method combining aqueous surface-initiated photoinduced polymerization-induced self-assembly and photoinduced seeded reversible addition-fragmentation chain transfer(RAFT)polymerization to prepare a diverse set of core-shell colloidal particles with a well-defined polymer layer.Chemical compositions,structures,and thicknesses of polymer layers could be conveniently regulated by using different types of monomers and feed[monomer]/[chain transfer agent]ratios during seeded RAFT polymerization.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2020R1C1C1003375)。
文摘Recently,hollow carbon nanospheres(HCSs)have garnered significant attention as potential Li metal hosts owing to their unique large voids and ease of fabrication.However,similar to other nanoscale hosts,their practical performance is limited by inhomogeneous agglomeration,increased binder requirements,and high tortuosity within the electrode.To overcome these problems and high tortuosity within the electrode,this study introduces a pomegranate-like carbon microcluster composed of primary HCSs(P-CMs)as a novel Li metal host.This unique nanostructure can be easily prepared using the spray-drying technique,enabling its mass production.Comprehensive analyses with various tools demonstrate that compared with HCS hosts,the P-CM host requires a smaller amount of binder to fabricate a sufficiently robust and even surface electrode.Furthermore,owing to reduced tortuosity,the well-designed P-CM electrode can provide continuous and shortened pathways for electron/ion transport,accelerating the Li-ion transfer kinetics and prohibiting preferential Li plating at the upper region of the electrode.Due to these characteristics,Li metal can be effectively encapsulated in the large inner voids of the primary HCSs constituting the P-CM,thereby enhancing the electrochemical performance of P-CM hosts in Li metal batteries.Specifically,the Coulombic efficiency of the P-CM host can be maintained at 97%over 100 cycles,with a high Li deposition areal capacity of 3 mAh·cm^(-2)and long cycle life(1000 h,1 mA·cm^(-2),and 1.0 mAh·cm^(-2)).Furthermore,a full cell incorporating a LiFePO4 cathode exhibits excellent cycle life.
文摘Four glycoluril-based amphiphilic molecular clips(AMCs)M1~M4 have been prepared for intracellular delivery of short DNA.M1~M4 have two methyl groups on its convex surface and four cations on its aromatic side arm,which can be used to construct self-assembled nanoparticles in aqueous solution driven by hydrophobic interaction.Dynamic light scattering experiments show that M1 and M2 can be driven hydrophobically to aggregate into extremely stable nanoparticles in water at the micromolar concentrations.Fluorescence titration and zeta potential experiments support that the nanoparticles formed by M1 and M2 are able to efficiently encapsulate short DNA(sDNA).Fluorescence imaging and flow cytometry studies reveal that their nano sizes enable intracellular delivery of the encapsulated sDNA into both normal and cancer cells,with delivery percentage reaching up to 94%,while in vitro experiments indicate that the two compounds have excellent biocompatibility and low cytotoxicity.
基金the National Natural Science Foundation of China(51925206,U1932214,52302052)the National Natural Science Foundation of China(52322318)+6 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0450301)the Fundamental Research Funds for the Central Universities(WK2060000051,20720220009)the National Key Research and Development Program of China(No.2023YFB3809700)the Innovation and Technology Fund(GHP/100/20SZ,GHP/102/20GD,MRP/040/21X,ITS/147/22FP)the Research Grants Council of Hong Kong Grant(N_City U102/23,C4005-22Y,C1055-23G,11306521)the Green Tech Fund(GTF202020164)the Science Technology and Innovation Committee of Shenzhen Municipality(SGDX20210823104002015,JCYJ20220818101018038)。
文摘Self-assembled monolayers(SAMs)have been commonly employed as hole-selective layers(HSLs)in inverted(p-i-n)perovskite solar cells(PSCs),and typically only a single-component SAM is applied,which plays limited role in selective hole transport.Herein,we synthesize a novel SAM,(4-(3,11-dibro mo-7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid(Br-4PADBC),and apply it as a complementary component to the commonly used[2-(3,6-dimeth oxy-9H-carbazol-9-yl)ethyl]phosphonic acid(MeO-2PACz)SAM,accomplishing boosted hole transport in inverted PSCs.A series of characterizations and theoretical calculations are employed to unravel the roles of each components within the binary SAM(bi-SAM).The involvements of the non-planar dibenzo[c,g]carbazole unit and electron-withdrawing Br atoms induce larger dipole moment of Br-4PADBC than MeO-2PACz,resulting in much deeper work function of ITO and consequently improved alignment with the valence band energy level of perovskite.Besides,the introduced Br atoms improve the quality of perovskite crystals and help passivate defects of perovskite.On the other hand,the existence of the conventional MeO-2PACz SAM ensures the considerable conductivity of the bi-SAM and thus efficient hole extraction from the perovskite layer.As a result,inverted PSC devices based on bi-SAM HSL deliver a decent power conversion efficiency(PCE)of 24.52%as well as dramatically improved thermal and operational stabilities.
基金financially supported by the National Natural Science Foundation of China(Nos.20904047 and 12074151)the Natural Science Foundation of Zhejiang Province(Nos.LY17A040001 and LY19F03004)。
文摘Diphenylalanine and its analogs cause many concerns owing to their perfect self-assembly properties in the fields of biology,medicine,and nanotechnology.Experimental research has shown that diphenylalanine-based analogs with ethylenediamine linkers(PA,P=phenylalanine,and A=analog)can self-assemble into spherical assemblies,which can serve as novel anticancer drug carriers.In this work,to understand the assembly pathways,drug loading behavior,and formation mechanism of PA aggregates at the molecular level,we carried out dissipative particle dynamics(DPD)simulations of PA molecule systems.Our simulation results demonstrate that PA molecules spontaneously assemble into nanospheres and can self-assemble into drug-loaded nanospheres upon addition of the cancer chemotherapeutic agent doxorubicin(DOX).We also found that the hydrophobic side chain beads of PA molecules exhibited a unique onion-like distribution inside the nanospheres,which was not observed in the experiment.The onion-like nanospheres were verified by calculating the radial distribution function(RDF)of the DPD beads.Furthermore,based on the analysis of the percentages of different interaction components in the total nonbonded energies,main chain-side chain interactions between PA molecules may be important in the formation of onion-like nanospheres,and the synergistic effects of main chain-side chain,main chain-drug,side chain-drug,and main chain-solvent interactions are significant in the formation of drug-loaded nanospheres.These findings provide new insights into the structure and self-assembly pathway of PA assemblies,which may be helpful for the design of efficient and effective drug delivery systems.
基金supported by the National Natural Science Foundation of China(Nos.82061148012,82027806,21974019)SEU Innovation Capability Enhancement Plan for Doctoral Students(No.CXJH_SEU 24138)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_0469)。
文摘The potential of metal nanoclusters in biomedical applications is limited due to aggregation-caused quenching(ACQ).In this study,an in situ self-assembled pitaya structure was proposed to obtain stable fluorescence emission through protein coronas-controlled distance between gold nanoclusters(Au NCs).Interestingly,the gold ion complexes coated with proteins of low isoelectric point(pI)nucleate at the secondary structure of proteins with high p I through ionic exchange within cells,generating fluorescent Au NCs.It is worth noting that due to the steric hindrance formed by the protein coronas on the surface of Au NCs,the distance between Au NCs can be controlled,avoiding electron transfer caused by close proximity of Au NCs and inhibiting fluorescence ACQ.This strategy can achieve fluorescence imaging of clinical tissue samples without observable side effects.Therefore,this study proposes a distance-controllable self-assembled pitaya structure to provide a new approach for Au NCs with stable fluorescence.
基金Project supported by the Natural Science Foundation of Shandong Province (ZR2022QB067)。
文摘The development of new and efficient extractants plays a key role in the separation and recovery of rare earth elements.In this pape r,the extractant(N,N-methyl py ridineethyl-N',N'-dicyclohexyl-3-oxadiglycolamide,MPyEDChDGA) with a new structure was synthesized,and the pyridine group was successfully grafted onto the 3-oxadiglycolamide structure.Using MPyEDChDGA for efficient enrichment of rare earth ions,the self-assembled solids were recovered by simple filtration without further backextraction and final precipitation,achieving a one-step strategy for the recovery of rare earth ions.Several important parameters affecting the self-assembly extraction,including pH,diluent,temperature,and extractant concentration,were systematically evaluated using La(NO_(3))_(3),Tb(NO_(3))_(3),and Lu(NO_(3))_(3) as representatives.The self-assembled solids were investigated in detail by X-ray diffraction(XRD),scanning electron microscopy(SEM),1H nuclear magnetic resonance(1H NMR),Fourier transform infrared spectroscopy(FT-IR),Raman,and X-ray photoelectron spectroscopy(XPS) analyses.The stoichiometry of the extraction species was characterized using the Job's method and electrospray ionization mass spectrometry(ESI-MS).In addition,MPyEDChDGA was applied to the recovery of Sm in SmCoCu simulated liquid,and the results show that MPyEDChDGA has good selectivity of Sm from transition metals(Co,Cu).The separation factor of Sm/Co can reach 6281±117,which provides a new approach to recovering Sm from SmCoCu scrap magnets.This study presents an efficient and convenient new strategy for the recovery and separation of rare earth elements.
基金supported by the National Science Foundation for Distinguished Young Scholars(No.52325308)the National Natural Science Foundation of China(Nos.52273008 and 52073092)+1 种基金Shanghai Scientific and Technological Innovation Projects(No.22ZR1479300)Shanghai Rising-Star Program(No.23QA1402500).
文摘Amphiphilic asymmetric brush copolymers(AABCs)possess unique self-assembly behaviors owing to their asymmetric brush architecture and multiple functionalities of multicomponent side chains.However,the synthesis of AABCs presents challenges,which greatly limits the exploration of their self-assembly behaviors.In this work,we employed dissipative particle dynamics(DPD)simulations to investigate the self-assembly behaviors of AABCs in selective solution.By varying the copolymer concentration and structure,we conducted the self-assembly phase diagrams of AABCs,revealing complex morphologies such as channelized micelles with one or more solvophilic channels.Moreover,the number,surface area,and one-dimensional density distribution of the channelized micelles were calculated to demonstrate the internal structure and morphological transformation during the self-assembly process.Our findings indicate that the morphology of the internal solvophilic channels is greatly influenced by the copolymer structure,concentration,and interaction parameters between the different side chains.The simulation results are consistent with available experimental observations,which can offer theoretical insights into the self-assembly of AABCs.
基金supported by funding from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University,the OIST R&D Cluster Research Program,the OIST Proof of Concept(POC)Program,the JSPS KAKENHI Grant Number JP21F21754 and Alexander von Humboldt Foundation。
文摘Self-assembled monolayers(SAMs)are widely used as hole transport materials in inverted perovskite solar cells,offering low parasitic absorption and suitability for semitransparent and tandem solar cells.While SAMs have shown to be promising in small-area devices(≤1 cm^(2)),their application in larger areas has been limited by a lack of knowledge regarding alternative deposition methods beyond the common spin-coating approach.Here,we compare spin-coating and upscalable methods such as thermal evaporation and spray-coating for[2-(9H-carbazol-9-yl)ethyl]phosphonic acid(2PACz),one of the most common carbazole-based SAMs.The impact of these deposition methods on the device performance is investigated,revealing that the spray-coating technique yields higher device performance.Furthermore,our work provides guidelines for the deposition of SAM materials for the fabrication of perovskite solar modules.In addition,we provide an extensive characterization of 2PACz films focusing on thermal evaporation and spray-coating methods,which allow for thicker 2PACz deposition.It is found that the optimal 2PACz deposition conditions corresponding to the highest device performances do not always correlate with the monolayer characteristics.
基金supported by the National Natural Science Foundation of China(22305119,12204234)the Natural Science Foundation of Jiangsu Province(BK20220878)+3 种基金the Fundamental Research Funds for the Central Universities(NS2023059)the China Postdoctoral Science Foundation(2022TQ0157,2023M741695)the Liaoning University Talent Introduction Research Startup Project(d295000048)the Center for Microscopy and Analysis of Nanjing University of Aeronautics and Astronautics for characterization support。
文摘The optimization of hole transport layer(HTL)is crucial for achieving high efficiency and stability in inverted perovskite solar cells(PSCs)due to its role in facilitating hole transport and passivating the perovskite bottom interface.While self-assembled monolayers(SAMs)are commonly used for this purpose,the inherent limitations of a single SAM,such as fixed energy levels and rigid structure,restrict their adaptability for different perovskite components and further efficiency enhancement.Here,we demonstrate a stepwise deposition method for SAM-based HTLs to address this issue.We regulated the energy level gradient by depositing two SAMs with distinct energy levels,while the interactions between the phosphate groups in the SAMs and perovskite effectively reduce defect density at the bottom interface of the perovskite film.The as-fabricated PSCs achieved enhanced efficiency and stability with PCEs of 25.7% and 24.0% for rigid and flexible PSCs,respectively;these devices maintain 90% of their initial PCE after 500 h of maximum power point tracking,and retain 98% of their initial PCE after 4,000 bending cycles,representing one of the most stable flexible PSCs reported to date.
基金financial support from the National Natural Science Fund for Distinguished Young Scholars of China(No.22025107)Shaanxi Fundamental Science Research Project for Chemistry&Biology(No.22JHZ003)+2 种基金the Key International Scientific and Technological Cooperation and Exchange Project of Shaanxi Province(No.2023-GHZD-15)the National Youth Top-notch Talent Support Program of Chinathe FM&EM International Joint Laboratory of Northwest University。
文摘The precise control over the hierarchical self-assembly of sophisticated structures with comparable complexities and functions relying on the modulation of basic building blocks is elusive and highly desirable.Here,we report a fluorinated N-heterocyclic carbene(NHC)–based pillarplex with a tunable quaternary structure,employed as an efficient building block for constructing hierarchical superstructures.Initially,multiple noncovalent interactions in the NHC-based pillarplex,particularly those between the fluorinated pillarplex and PF_(6)-anions,induce the formation of a supramolecular gel at high concentrations.Additionally,this hierarchical self-assembled structure can be regulated by adjusting anion types,facilitating the controlled transformation from a supramolecular gel into a supramolecular channel upon the introduction of four monocarboxylic acids as anions.The study provides insight into the construction and controlled regulation of superstructures based on NHC-based pillarplexes.
基金supported by the Natural Science Foundation of China(22425903,U24A20568,61705102,62288102,22409091,22409090 and 62205142)the National Key R&D Program of China(2023YFB4204500)the Jiangsu Provincial Departments of Science and Technology(BE2022023,BK20220010,BZ2023060,BK20240561,and BK20240562)。
文摘Inverted p-i-n perovskite solar cells(PSCs)based on self-assembled monolayers(SAMs)as hole-selective layers(HSLs)have produced potential record efficiencies of more than 26%by tuning work function,dipole,and passivation defects.However,the stability of the SAM molecules,the stability of the molecular anchoring conformation,and the impact on the stability of subsequent PSCs have not been clearly elucidated.In this review,we systematically discussed the intrinsic connection between the molecular conformation(including anchoring groups,spacer groups,and terminal groups)and the stability of SAMs.Sequentially,the research progress of SAMs as HSLs in improving the stability of PSCs is summarized,including photostability,thermal stability,ion migration,and residual stress.Finally,we look forward to the shortcomings and possible challenges of using SAMs as HSLs for inverted PSCs.