Temperature data at different layers of the past 45 years were studied and we found adiploe mode in the thermocline layer (DMT): anomalously cold sea temperature off the coast of Sumatra and warm sea temperature in th...Temperature data at different layers of the past 45 years were studied and we found adiploe mode in the thermocline layer (DMT): anomalously cold sea temperature off the coast of Sumatra and warm sea temperature in the western Indian Ocean. First, we analyzed the temperature and the temperature anomaly (TA) along the equatorial Indian Ocean in different layers. This shows that stronger cold and warm TA signals appeared at subsurface than at the surface in the tropical Indian O-cean. This result shows that there may be a strong dipole mode pattern in the subsurface tropical Indian Ocean. Secondly we used Empirical Orthogonal Functions (EOF) to analyze the TA at thermocline layer. The first EOF pattern was a dipole mode pattern. Finally we analyzed the correlations between DMT and surface tropical dipole mode (SDM), DMT and Nino 3 SSTA, etc. and these correlations are strong.展开更多
Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural...Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.展开更多
The instability of the Mack mode is destabilized by wall-cooling in a high speed boundary layer. The aim of this paper is to study the mechanism of the wall cooling effect on the Mack mode instability by numerical met...The instability of the Mack mode is destabilized by wall-cooling in a high speed boundary layer. The aim of this paper is to study the mechanism of the wall cooling effect on the Mack mode instability by numerical methods. It is shown that the wall-cooling can destabilize the Mack mode instability, similar to the previous conclusions with the exception that the Mack mode instability can be stabilized by wall-cooling if the wall temperature is extremely low. The reversed wall temperature is related to a freestream condition. If the Mach number increases to a large enough value, e.g., about 7, the reversed wall temperature will tend to be zero. It seems that the Mack mode instability is determined by the region between the boundary layer edge and the critical layer. When the wall temperature decreases, this region becomes wider, and the boundary layer becomes more unstable. Additionally, a relative supersonic unstable mode can be observed when the velocity of the critical layer is less than 1 - liMa or is cancelled by the wall-cooling effect. These results provide a deeper understanding on the wall-cooling effect in high speed boundary layers.展开更多
Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,...Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.展开更多
Noise is generated in a two-dimensional mixing layer due to the growing of instability waves and vortex pairings. The adjoint-based control methodology has shown to be a robust tool to suppress noise radiation. The mo...Noise is generated in a two-dimensional mixing layer due to the growing of instability waves and vortex pairings. The adjoint-based control methodology has shown to be a robust tool to suppress noise radiation. The mode decomposition algorithms such as the compressible version of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are employed to analyze the spatial/spatial-temporal coherent structures for a consecutive data sets of the controlled mixing layer and its uncontrolled counterpart. The analyses of POD indicate that the y-direction body force control mainly modify the most energetic spatial structures, and increase the uniformity of the flow. The analyses of DMD show us prevalent frequencies and corresponding mode structures, and the stability characteristics of each mode can be obtained from DMD-spectrum. The spectral signatures illustrate that a lot of neutral/slightly damping modes emerging in uncontrolled flow within the frequency range (w 〈 0.4) are suppressed due to control, relevant spatial-temporal structures are also varied, which is coincident with the change of far-field noise spectra. From the view of mode decomposition, the action of control redistribute the energy for frequency components of ~ 〈 0.4 by weakening nonlinearities and regularizing corresponding dynamic structures in streamwise direction, and thus suppress the noise radiation. Moreover, the POD- and DMD-analysis in this study demon- strate that DMD can serve as an important supplement for POD in analyzing a time-resolved physical process.展开更多
Nonlinear interactions of the two-dimensional (2D) second mode with oblique modes are studied numerically in a Mach 6.0 fiat-plate boundary layer, focusing on its selective enhancement effect on amplification of dif...Nonlinear interactions of the two-dimensional (2D) second mode with oblique modes are studied numerically in a Mach 6.0 fiat-plate boundary layer, focusing on its selective enhancement effect on amplification of different oblique waves. Evolution of oblique modes with various frequencies and spanwise wavenumbers in the presence of 2D second mode is simulated successively, using a modified parabolized stability equation (PSE) method, which is able to simulate interaction of two modes with different frequen- cies efficiently. Numerical results show that oblique modes in a broad band of frequencies and spanwise wavenumbers can be enhanced by the finite amplitude 2D second mode instability wave. The enhancement effect is accomplished by interaction of the 2D second mode, the oblique mode, and a forced mode with difference frequency. Two types of oblique modes are found to be more amplified, i.e., oblique modes with frequency close to that of the 2D second mode and low-frequency first mode oblique waves. Each of them may correspond to one type of transition routes found in transition experiments. The spanwise wavenumber of the oblique wave preferred by the nonlinear interaction is also determined by numerical simulations.展开更多
In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densi...In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities.The impermeable cylinder is fully immersed in either the bottom layer or the upper layer.The effect of surface tension at the surface of separation is neglected.In this set-up,there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces.For each wave number,there exist two modes for which trapped waves exist.The existence of these trapped modes is shown by numerical evidence.We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth.We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity.The existence of trapped modes shows that in general,a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.展开更多
A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an S...A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.展开更多
The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution ...The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.展开更多
Spatial mode direct numerical simulation has been applied to study the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a fiat plate with Mach number 4.5. Analysis of the result...Spatial mode direct numerical simulation has been applied to study the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a fiat plate with Mach number 4.5. Analysis of the result showed that, during the breakdown process in laminar-turbulent transition, the mechanism causing the mean flow profile to evolve swiftly from laminar to turbulent was that the modification of mean flow profile by the disturbance, when they became larger, leads to remarkable change of its stability characteristics. Though the most unstable T-S wave was of second mode for laminar flow, the first mode waves played the key role in the breakdown process in laminar-turbulent transition.展开更多
In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conver- sion mode, a virtual blade model (VBM) and an real blade model (RBM) are established respec- tively. A new multi-layer mo...In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conver- sion mode, a virtual blade model (VBM) and an real blade model (RBM) are established respec- tively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM) is established to search corresponding donor elements in the present moving- embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD) model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum- Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are val- idated by comparing the calculated results with available experimental data. Then, unsteady aero- dynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60°) and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these investigation results could provide a good foundation for tilt-rotor aircraft design in the future.展开更多
We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is d...We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is determined numerically. An important special case of a spherical conducting cavity with a smaller dielectric sphere at its center is treated in more detail. By numerically integrating the equations of motion we demonstrate that the transverse electric oscillations in such cavity can be used to accelerate strongly relativistic electrons. The electron’s trajectory is assumed to be nearly tangential to the dielectric sphere. We demonstrate that the interaction of such electrons with the oscillating magnetic field deflects their trajectory from a straight line only slightly. The Q factor of such a resonator only depends on losses in the dielectric. For existing ultra low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.展开更多
The new AUV driven by multi-vectored thrusters not only has unique kinematic characteristics during the actual cruise but also exists uncertain factors such as hydrodynamic coefficients perturbation and unknown interf...The new AUV driven by multi-vectored thrusters not only has unique kinematic characteristics during the actual cruise but also exists uncertain factors such as hydrodynamic coefficients perturbation and unknown interference of tail fluid, which bring difficult to the stability of the AUV's control system. In order to solve the nonlinear term and unmodeled dynamics existing in the new AUV's attitude control and the disturbances caused by the external marine environment, a second-order sliding mode controller with double-loop structure that considering the dynamic characteristics of the rudder actuators is designed, which improves the robustness of the system and avoids the control failure caused by the problem that the design theory of the sliding mode controller does not match with the actual application conditions. In order to avoid the loss of the sliding mode caused by the amplitude and rate constraints of the rudder actuator in the new AUV's attitude control, the dynamic boundary layer method is used to adjust the sliding boundary layer thickness so as to obtain the best anti-chattering effects. Then the impacts of system parameters, rudder actuator's constraints and boundary layer on the sliding mode controller are computed and analyzed to verify the effectiveness and robustness of the sliding mode controller based on dynamic boundary layer. The computational results show that the original divergent second-order sliding mode controller can still effectively implement the AUV's attitude control through dynamically adjusting the sliding boundary layer thickness. The dynamic boundary layer method ensures the stability of the system and does not exceed the amplitude constraint of the rudder actuator, which provides a theoretical guidance and technical support for the control system design of the new AUV in real complex sea conditions.展开更多
The evolution of Gortler vortices and its interaction with other instabilities are investigated in this paper. Both the Mack mode and the Gortler mode exist in hypersonic boundary-layer flows over concave surfaces, an...The evolution of Gortler vortices and its interaction with other instabilities are investigated in this paper. Both the Mack mode and the Gortler mode exist in hypersonic boundary-layer flows over concave surfaces, and their interactions are crucially important in boundary layer transition. We carry out a direct numerical simulation to explore the interaction between the GOrtler and the oblique Mack mode. The results indicate that the interaction between the forced Gortler mode and the oblique Mack mode promotes the onset of the transition. The forced oblique Mack mode is susceptible to nonlinear interaction. Because of the development of the GOrtler mode, the forced Mack mode and other harmonic modes are excited.展开更多
The effect of height on performance of the PZT/Ni cylindrical bilayered magnetoelectric (ME) com- posites was studied in situ in this paper. Multiple resonant peaks appear between 1 and 300 kHz frequency for cyl- in...The effect of height on performance of the PZT/Ni cylindrical bilayered magnetoelectric (ME) com- posites was studied in situ in this paper. Multiple resonant peaks appear between 1 and 300 kHz frequency for cyl- inders of different heights. The first resonance frequency does not change with the cylinder height decreasing, but the second and the third resonant frequencies increase. The first three resonant modes radial, first-order height are attributed to the cylinder resonance, and second-order height resonance, respectively. The appropriate size and resonance frequency were chosen to obtain the highest ME voltage coefficient when designing cylindrical bilayered magnetoelectric devices. This article provides reference to design cylindrical magnetoelectric devices.展开更多
The present climate simulation and future projection of the Eastern Subtropical Mode Water (ESTMW) in the North Pacific are investigated based on the Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-E...The present climate simulation and future projection of the Eastern Subtropical Mode Water (ESTMW) in the North Pacific are investigated based on the Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2M). Spatial patterns of the mixed layer depth (MLD) in the eastern subtropical North Pacific and the ESTMW are well simulated using this model. Compared with historical simulation, the ESTMW is produced at lighter isopycnal surfaces and its total volume is decreased in the RCP8.5 runs, because the subduction rate of the ESTMW decreases by 0.82×10?6 m/s during February–March. In addition, it is found that the lateral induction decreasing is approximately four times more than the Ekman pumping, and thus it plays a dominant role in the decreased subduction rate associated with global warming. Moreover, the MLD during February–March is banded shoaling in response to global warming, extending northeastward from the east of the Hawaii Islands (20°N, 155°W) to the west coast of North America (30°N, 125°W), with a max-imum shoaling of 50 m, and then leads to the lateral induction reduction. Meanwhile, the increased north-eastward surface warm current to the east of Hawaii helps strengthen of the local upper ocean stratification and induces the banded shoaling MLD under warmer climate. This new finding indicates that the ocean surface currents play an important role in the response of the MLD and the ESTMW to global warming.展开更多
Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just...Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have suffcient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed.展开更多
In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye(RB5) from synthetic contaminated wate...In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye(RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand(COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9 × 10^(-5)cm^2/sec and electrical energy consumption of 20.53 kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology(RSM) are: initial solution p H of 6.29,current density of 1.6 m A/cm^2, electrolyte dose of 0.15 g/L and flow rate of 11.47 m L/min which resulted in an RB5 removal efficiency of 81.62%.展开更多
文摘Temperature data at different layers of the past 45 years were studied and we found adiploe mode in the thermocline layer (DMT): anomalously cold sea temperature off the coast of Sumatra and warm sea temperature in the western Indian Ocean. First, we analyzed the temperature and the temperature anomaly (TA) along the equatorial Indian Ocean in different layers. This shows that stronger cold and warm TA signals appeared at subsurface than at the surface in the tropical Indian O-cean. This result shows that there may be a strong dipole mode pattern in the subsurface tropical Indian Ocean. Secondly we used Empirical Orthogonal Functions (EOF) to analyze the TA at thermocline layer. The first EOF pattern was a dipole mode pattern. Finally we analyzed the correlations between DMT and surface tropical dipole mode (SDM), DMT and Nino 3 SSTA, etc. and these correlations are strong.
基金National Natural Science Foundation of China(51208296&51478343)Shanghai Committee of Science and Technology(13231200503)+2 种基金Fundamental Research Funds for the Central Universities(2013KJ095&101201438)Shanghai Educational Development Foundation(13CG17)National Key Technology R&D Program(2012BAK24B04)
文摘Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.
基金Project supported by the State Key Program of National Natural Science Foundation of China(No.11332007)the Young Scientists Fund of the National Natural Science Foundation of China(No.11402167)
文摘The instability of the Mack mode is destabilized by wall-cooling in a high speed boundary layer. The aim of this paper is to study the mechanism of the wall cooling effect on the Mack mode instability by numerical methods. It is shown that the wall-cooling can destabilize the Mack mode instability, similar to the previous conclusions with the exception that the Mack mode instability can be stabilized by wall-cooling if the wall temperature is extremely low. The reversed wall temperature is related to a freestream condition. If the Mach number increases to a large enough value, e.g., about 7, the reversed wall temperature will tend to be zero. It seems that the Mack mode instability is determined by the region between the boundary layer edge and the critical layer. When the wall temperature decreases, this region becomes wider, and the boundary layer becomes more unstable. Additionally, a relative supersonic unstable mode can be observed when the velocity of the critical layer is less than 1 - liMa or is cancelled by the wall-cooling effect. These results provide a deeper understanding on the wall-cooling effect in high speed boundary layers.
文摘Because of its ease of implementation,a linear PID controller is generally used to control robotic manipulators.Linear controllers cannot effectively cope with uncertainties and variations in the parameters;therefore,nonlinear controllers with robust performance which can cope with these are recommended.The sliding mode control(SMC)is a robust state feedback control method for nonlinear systems that,in addition having a simple design,efficiently overcomes uncertainties and disturbances in the system.It also has a very fast transient response that is desirable when controlling robotic manipulators.The most critical drawback to SMC is chattering in the control input signal.To solve this problem,in this study,SMC is used with a boundary layer(SMCBL)to eliminate the chattering and improve the performance of the system.The proposed SMCBL was compared with inverse dynamic control(IDC),a conventional nonlinear control method.The kinematic and dynamic equations of the IRB-120 robot manipulator were initially extracted completely and accurately,and then the control of the robot manipulator using SMC was evaluated.For validation,the proposed control method was implemented on a 6-DOF IRB-120 robot manipulator in the presence of uncertainties.The results were simulated,tested,and compared in the MATLAB/Simulink environment.To further validate our work,the results were tested and confirmed experimentally on an actual IRB-120 robot manipulator.
基金supported by the National Natural Science Foundation of China (11072238, 11232011)111 project (B07033)
文摘Noise is generated in a two-dimensional mixing layer due to the growing of instability waves and vortex pairings. The adjoint-based control methodology has shown to be a robust tool to suppress noise radiation. The mode decomposition algorithms such as the compressible version of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are employed to analyze the spatial/spatial-temporal coherent structures for a consecutive data sets of the controlled mixing layer and its uncontrolled counterpart. The analyses of POD indicate that the y-direction body force control mainly modify the most energetic spatial structures, and increase the uniformity of the flow. The analyses of DMD show us prevalent frequencies and corresponding mode structures, and the stability characteristics of each mode can be obtained from DMD-spectrum. The spectral signatures illustrate that a lot of neutral/slightly damping modes emerging in uncontrolled flow within the frequency range (w 〈 0.4) are suppressed due to control, relevant spatial-temporal structures are also varied, which is coincident with the change of far-field noise spectra. From the view of mode decomposition, the action of control redistribute the energy for frequency components of ~ 〈 0.4 by weakening nonlinearities and regularizing corresponding dynamic structures in streamwise direction, and thus suppress the noise radiation. Moreover, the POD- and DMD-analysis in this study demon- strate that DMD can serve as an important supplement for POD in analyzing a time-resolved physical process.
基金Project supported by the National Natural Science Foundation of China(No.11332007)
文摘Nonlinear interactions of the two-dimensional (2D) second mode with oblique modes are studied numerically in a Mach 6.0 fiat-plate boundary layer, focusing on its selective enhancement effect on amplification of different oblique waves. Evolution of oblique modes with various frequencies and spanwise wavenumbers in the presence of 2D second mode is simulated successively, using a modified parabolized stability equation (PSE) method, which is able to simulate interaction of two modes with different frequen- cies efficiently. Numerical results show that oblique modes in a broad band of frequencies and spanwise wavenumbers can be enhanced by the finite amplitude 2D second mode instability wave. The enhancement effect is accomplished by interaction of the 2D second mode, the oblique mode, and a forced mode with difference frequency. Two types of oblique modes are found to be more amplified, i.e., oblique modes with frequency close to that of the 2D second mode and low-frequency first mode oblique waves. Each of them may correspond to one type of transition routes found in transition experiments. The spanwise wavenumber of the oblique wave preferred by the nonlinear interaction is also determined by numerical simulations.
文摘In this work,trapped mode frequencies are computed for a submerged horizontal circular cylinder with the hydrodynamic set-up involving an infinite depth three-layer incompressible fluid with layer-wise different densities.The impermeable cylinder is fully immersed in either the bottom layer or the upper layer.The effect of surface tension at the surface of separation is neglected.In this set-up,there exist three wave numbers:the lowest one on the free surface and the other two on the internal interfaces.For each wave number,there exist two modes for which trapped waves exist.The existence of these trapped modes is shown by numerical evidence.We investigate the variation of these trapped modes subject to change in the depth of the middle layer as well as the submergence depth.We show numerically that two-layer and single-layer results cannot be recovered in the double and single limiting cases of the density ratios tending to unity.The existence of trapped modes shows that in general,a radiation condition for the waves at infinity is insufficient for the uniqueness of the solution of the scattering problem.
基金Supported by the National Natural Science Foundation of China under Grant No 11104314
文摘A detailed investigation is presented for Love waves (LWs) with thick viscoelastic guiding layers. A theoretical calculation and an experiment are carried out for LW devices incorporating an SU-8 guiding layer, an ST-90° X quartz substrate and two 28-μm periodic interdigital transducers. Both the calculated and the measured results show an increase in propagation velocity when h / λ〉0.05. The measured insertion loss of LWs is consistent with the calculated propagation loss. The insertion loss of bulk waves is also measured and is compared with that of LWs.
基金supported by the NSFC (grant Nos. 41631072, 41721003, 41874023, 41574007, and 41429401)the Discipline Innovative Engineering Plan of Modern Geodesy and Geodynamics (grant No. B17033)the DAAD Thematic Network Project (grant No. 57173947)
文摘The Earth's rotational normal modes depend on Earth model used, including the layer structures,principal inertia moments of different layers and the compliances. This study focuses on providing numerical solution of the rotational normal modes of a triaxial two-layered anelastic Earth model without external forces but with considering the complex forms of compliances and the electromagnetic coupling between the core and mantle. Based on the present knowledge of the Chandler wobble(CW) and Free Core Nutation(FCN), we provide a set of complete compliances which could be used for reference in further investigations. There are eight rotational normal mode solutions, four of which might exist in nature. However, in reality only two of these four solutions correspond to the present motion status of the prograde CW and the retrograde FCN. On one hand, our numerical calculations show that the periods and quality factors(Qs) of CW and FCN are respectively 434.90 and 429.86 mean solar days(d) and 76.56 and 23988.47 under frequency-dependent assumption, and the triaxiality prolongs CW about 0.01 d and has hardly effect on FCN. On the other hand, we analyze the sensibility of compliances and electromagnetic coupling parameter on the periods and Qs of CW and FCN and find the sensitive parameters with respect to them.
基金Project supported by the National Natural Science Foundation of China (No.90205021)the Special Foundation for Doctoral Dissertations Research (No.200328)the Science Foundation of Liuhui Center of Applied Mathematics, Nankai University and Tianjin University
文摘Spatial mode direct numerical simulation has been applied to study the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a fiat plate with Mach number 4.5. Analysis of the result showed that, during the breakdown process in laminar-turbulent transition, the mechanism causing the mean flow profile to evolve swiftly from laminar to turbulent was that the modification of mean flow profile by the disturbance, when they became larger, leads to remarkable change of its stability characteristics. Though the most unstable T-S wave was of second mode for laminar flow, the first mode waves played the key role in the breakdown process in laminar-turbulent transition.
基金supported by the National Natural Science Foundation of China(No.11272150)
文摘In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conver- sion mode, a virtual blade model (VBM) and an real blade model (RBM) are established respec- tively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM) is established to search corresponding donor elements in the present moving- embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD) model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum- Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are val- idated by comparing the calculated results with available experimental data. Then, unsteady aero- dynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60°) and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these investigation results could provide a good foundation for tilt-rotor aircraft design in the future.
文摘We present an analysis of electromagnetic oscillations in a spherical conducting cavity filled concentrically with either dielectric or vacuum layers. The fields are given analytically, and the resonant frequency is determined numerically. An important special case of a spherical conducting cavity with a smaller dielectric sphere at its center is treated in more detail. By numerically integrating the equations of motion we demonstrate that the transverse electric oscillations in such cavity can be used to accelerate strongly relativistic electrons. The electron’s trajectory is assumed to be nearly tangential to the dielectric sphere. We demonstrate that the interaction of such electrons with the oscillating magnetic field deflects their trajectory from a straight line only slightly. The Q factor of such a resonator only depends on losses in the dielectric. For existing ultra low loss dielectrics, Q can be three orders of magnitude better than obtained in existing cylindrical cavities.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2006AA09Z235)Hunan Provincial Innovation Foundation for Postgraduate of China (Grant No. CX2009B003)
文摘The new AUV driven by multi-vectored thrusters not only has unique kinematic characteristics during the actual cruise but also exists uncertain factors such as hydrodynamic coefficients perturbation and unknown interference of tail fluid, which bring difficult to the stability of the AUV's control system. In order to solve the nonlinear term and unmodeled dynamics existing in the new AUV's attitude control and the disturbances caused by the external marine environment, a second-order sliding mode controller with double-loop structure that considering the dynamic characteristics of the rudder actuators is designed, which improves the robustness of the system and avoids the control failure caused by the problem that the design theory of the sliding mode controller does not match with the actual application conditions. In order to avoid the loss of the sliding mode caused by the amplitude and rate constraints of the rudder actuator in the new AUV's attitude control, the dynamic boundary layer method is used to adjust the sliding boundary layer thickness so as to obtain the best anti-chattering effects. Then the impacts of system parameters, rudder actuator's constraints and boundary layer on the sliding mode controller are computed and analyzed to verify the effectiveness and robustness of the sliding mode controller based on dynamic boundary layer. The computational results show that the original divergent second-order sliding mode controller can still effectively implement the AUV's attitude control through dynamically adjusting the sliding boundary layer thickness. The dynamic boundary layer method ensures the stability of the system and does not exceed the amplitude constraint of the rudder actuator, which provides a theoretical guidance and technical support for the control system design of the new AUV in real complex sea conditions.
文摘The evolution of Gortler vortices and its interaction with other instabilities are investigated in this paper. Both the Mack mode and the Gortler mode exist in hypersonic boundary-layer flows over concave surfaces, and their interactions are crucially important in boundary layer transition. We carry out a direct numerical simulation to explore the interaction between the GOrtler and the oblique Mack mode. The results indicate that the interaction between the forced Gortler mode and the oblique Mack mode promotes the onset of the transition. The forced oblique Mack mode is susceptible to nonlinear interaction. Because of the development of the GOrtler mode, the forced Mack mode and other harmonic modes are excited.
基金supported by the Beijing Nova Program(No.Z141103001814006)the National Key Technology R&D Program(Nos.2012BAC12B05 and 2012BAC02B01)+1 种基金the National Natural Science Foundation of China(Nos.51174247 and U1360202)the National High-Tech Research and the Development Program of China(No.2012AA063202)
文摘The effect of height on performance of the PZT/Ni cylindrical bilayered magnetoelectric (ME) com- posites was studied in situ in this paper. Multiple resonant peaks appear between 1 and 300 kHz frequency for cyl- inders of different heights. The first resonance frequency does not change with the cylinder height decreasing, but the second and the third resonant frequencies increase. The first three resonant modes radial, first-order height are attributed to the cylinder resonance, and second-order height resonance, respectively. The appropriate size and resonance frequency were chosen to obtain the highest ME voltage coefficient when designing cylindrical bilayered magnetoelectric devices. This article provides reference to design cylindrical magnetoelectric devices.
基金The National Basic Research Program(973 Program)of China under contract No.2012CB955603the National Natural Science Foundation of China under contract Nos 41176006,41221063 and U1406401
文摘The present climate simulation and future projection of the Eastern Subtropical Mode Water (ESTMW) in the North Pacific are investigated based on the Geophysical Fluid Dynamics Laboratory Earth System Model (GFDL-ESM2M). Spatial patterns of the mixed layer depth (MLD) in the eastern subtropical North Pacific and the ESTMW are well simulated using this model. Compared with historical simulation, the ESTMW is produced at lighter isopycnal surfaces and its total volume is decreased in the RCP8.5 runs, because the subduction rate of the ESTMW decreases by 0.82×10?6 m/s during February–March. In addition, it is found that the lateral induction decreasing is approximately four times more than the Ekman pumping, and thus it plays a dominant role in the decreased subduction rate associated with global warming. Moreover, the MLD during February–March is banded shoaling in response to global warming, extending northeastward from the east of the Hawaii Islands (20°N, 155°W) to the west coast of North America (30°N, 125°W), with a max-imum shoaling of 50 m, and then leads to the lateral induction reduction. Meanwhile, the increased north-eastward surface warm current to the east of Hawaii helps strengthen of the local upper ocean stratification and induces the banded shoaling MLD under warmer climate. This new finding indicates that the ocean surface currents play an important role in the response of the MLD and the ESTMW to global warming.
基金supported by National Natural Science Foundation of China(Nos.10135020 and 10375019)also supported in part by JSPSCAS Core University Program in the Field of Plasma and Nuclear Fusion
文摘Non-linear development of double tearing modes induced by electron viscosity is numerically simulated. MHD flow layers are demonstrated to merge in the development of the modes. The sheared flows are shown to lie just at the boundaries of the magnetic islands, and to have suffcient levels required for internal transport barrier (ITB) formation. Possible correlation between the layer formation and triggering of experimentally observed ITBs, preferentially formed in proximities of rational flux surfaces of low safety factors, is discussed.
基金the financial support provided by the High Impact Research Grant UM.C/HIR/MOHE/ENG/43the Bright Sparks Program which made this research possible
文摘In this work a novel anode configuration consisting of an iron mesh double layer is proposed for the electrochemical treatment of wastewater. The removal of Reactive Black 5 dye(RB5) from synthetic contaminated water was used as a model system. At a constant anode surface area, identical process operating parameters and batch process mode, the iron mesh double layer electrode showed better performance compared to the conventional single layer iron mesh. The double layer electrode was characterized by RB5 and chemical oxygen demand(COD) removal efficiency of 98.2% and 97.7%, respectively, kinetic rate constant of 0.0385/min, diffusion coefficient of 4.9 × 10^(-5)cm^2/sec and electrical energy consumption of 20.53 kWh/kgdye removed. In the continuous flow system, the optimum conditions suggested by Response Surface Methodology(RSM) are: initial solution p H of 6.29,current density of 1.6 m A/cm^2, electrolyte dose of 0.15 g/L and flow rate of 11.47 m L/min which resulted in an RB5 removal efficiency of 81.62%.