Water management within the membrane electrode assemblies(MEAs)of electrochemical hydrogen compressors(EHCs)plays a crucial role in optimizing overall performance,particularly under low relative humidity(RH),where the...Water management within the membrane electrode assemblies(MEAs)of electrochemical hydrogen compressors(EHCs)plays a crucial role in optimizing overall performance,particularly under low relative humidity(RH),where the anode side tends to dry out.Hollow mesoporous silica nanoparticles functionalized with amino groups(HMSNs-NH_(2))were integrated into the anode catalyst layers of EHCs to establish humidity-independent proton pathways through acid-base interactions with Nafion ionomers.These acid-base pairs between grafted–NH_(2)and sulfonic acid groups create continuous“proton highways”,enabling efficient conduction via the Grotthuss mechanism even at 50%RH.With only 2.5 wt%HMSNs-NH_(2)in the anode catalyst layer,hydrogen was compressed to 0.9 MPa in 60±3 s at 50%RH,representing a 55%reduction in compression time compared to MEAs with conventional Pt/C catalyst layers under the same conditions.This work overcomes the critical water-management bottleneck in EHCs,advancing the deployment of hydrogen energy technologies in arid environments.展开更多
A traffic management scheme in serial RapidlO (SR10) interconnect is proposed to deal with the performance degradation caused by noise and electromagnetic interference (EMI), which is generated by hardly avoidable...A traffic management scheme in serial RapidlO (SR10) interconnect is proposed to deal with the performance degradation caused by noise and electromagnetic interference (EMI), which is generated by hardly avoidable errors of hardware implementation and tough working environment. The main idea of this scheme includes adaptive speed transition and freeze-acknowledgement (freeze-ACK). Adaptive speed transition can improve throughput and reduce delay in high bit error rate (BER) environment. Simultaneously, freeze-ACK is adopted to conquer frequent usage of feedback channel. Simulation shows that the scheme of combining adaptive speed transition with freeze-ACK offers great performance improvement in SRIO network.展开更多
基金supported by the National Natural Science Foundation of China(No.22208376,No.UA22A20429)the Fundamental Research Funds for the Central Universities(buctrc202118,No.25CX07002A)+1 种基金the Qingdao New Energy Shandong Laboratory Open Project(QNESL OP 202303)the Shandong Provincial Natural Science Foundation(ZR2024QB175 and ZR2023LFG005)。
文摘Water management within the membrane electrode assemblies(MEAs)of electrochemical hydrogen compressors(EHCs)plays a crucial role in optimizing overall performance,particularly under low relative humidity(RH),where the anode side tends to dry out.Hollow mesoporous silica nanoparticles functionalized with amino groups(HMSNs-NH_(2))were integrated into the anode catalyst layers of EHCs to establish humidity-independent proton pathways through acid-base interactions with Nafion ionomers.These acid-base pairs between grafted–NH_(2)and sulfonic acid groups create continuous“proton highways”,enabling efficient conduction via the Grotthuss mechanism even at 50%RH.With only 2.5 wt%HMSNs-NH_(2)in the anode catalyst layer,hydrogen was compressed to 0.9 MPa in 60±3 s at 50%RH,representing a 55%reduction in compression time compared to MEAs with conventional Pt/C catalyst layers under the same conditions.This work overcomes the critical water-management bottleneck in EHCs,advancing the deployment of hydrogen energy technologies in arid environments.
基金supported by the Korean Electronics and Telecommunications Research Institute,the Hi-Tech Research and Development Program of China (2006AA01Z283)the National Basic Research Program of China (60772113)
文摘A traffic management scheme in serial RapidlO (SR10) interconnect is proposed to deal with the performance degradation caused by noise and electromagnetic interference (EMI), which is generated by hardly avoidable errors of hardware implementation and tough working environment. The main idea of this scheme includes adaptive speed transition and freeze-acknowledgement (freeze-ACK). Adaptive speed transition can improve throughput and reduce delay in high bit error rate (BER) environment. Simultaneously, freeze-ACK is adopted to conquer frequent usage of feedback channel. Simulation shows that the scheme of combining adaptive speed transition with freeze-ACK offers great performance improvement in SRIO network.