期刊文献+
共找到357篇文章
< 1 2 18 >
每页显示 20 50 100
Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries
1
作者 Hui Yang Guangxun Zhang +2 位作者 Yueyao Sun Huijie Zhou Huan Pang 《Chinese Chemical Letters》 2025年第6期733-738,共6页
Rationally design the morphology and structure of electroactive nanomaterials is an effective approach to enhance the performance of aqueous batteries.Herein,we co-engineered the hollow architecture and interlayer spa... Rationally design the morphology and structure of electroactive nanomaterials is an effective approach to enhance the performance of aqueous batteries.Herein,we co-engineered the hollow architecture and interlayer spacing of layered double hydroxides(LDH)to achieve high electrochemical activity.The hierarchical hollow LDH was prepared from bimetallic zeolitic imidazolate frameworks(ZIF)by a facile cation exchange strategy.Zn and Cu elements were selected as the second metals incorporated in Co-ZIF.The characteristics of the corresponding derivatives were studied.Besides,the transformation mechanism of CoZn-ZIF into nanosheet-assembled hollow Co Zn Ni LDH(denoted as CoZnNi-OH)was systematically investigated.Importantly,the interlayer spacing of CoZnNi-OH expands due to Zn^(2+)incorporation.The prepared CoZnNi-OH offers large surface area,exposed active sites,and rapid mass transfer/diffusion rate,which lead to a significant enhancement in the specific capacitance,rate performance,and cycle stability of CoZnNi-OH electrode.In addition,the aqueous alkaline CoZnNi-OH//Zn showed a maximum energy density/power density of 0.924 m Wh/cm^(2),8.479 m W/cm^(2).This work not only raises an insightful strategy for regulating the morphology and interlayer spacing of LDH,but also provides a reference of designing hollow nickel-based nanomaterials for aqueous batteries. 展开更多
关键词 Nickel-zinc battery HOLLOW Interlayer spacing layered double hydroxide Zeolitic imidazolate framework
原文传递
The high performance of Al^(3+)-preintercalated Cu9S5 derived from layered double hydroxide precursor in aqueous Cu-Al hybrid-ion battery
2
作者 Meina Tan Jingming Ge +5 位作者 Yang Qin Jiaxin Luo Yiping Wang Fazhi Zhang Xuhui Zhao Xiaodong Lei 《Journal of Energy Chemistry》 2025年第10期531-540,共10页
Aqueous hybrid-ion batteries(AHBs)are a promising class of energy storage devices characterized by low cost,high safety,and high energy density.However,aqueous Cu-Al hybrid-ion batteries face challenges such as sluggi... Aqueous hybrid-ion batteries(AHBs)are a promising class of energy storage devices characterized by low cost,high safety,and high energy density.However,aqueous Cu-Al hybrid-ion batteries face challenges such as sluggish reaction kinetics and severe structural collapse of cathode materials,which limit their practical application.Here,a high-performance aqueous Cu-Al hybrid-ion battery is developed using aluminum pre-inserted Cu_(9)S_(5)(Al-Cu_(9)S_(5))as the cathode material,derived from CuAl-layered double hydroxide(CuAl-LDH).The Al^(3+)pre-intercalation strategy narrows the band gap,enhancing electron transport and improving electrochemical kinetics.The battery exhibits excellent rate performance(463 and 408 mA h g^(-1)at current densities of 500 and 1000 mA g^(-1),respectively)and good cycle stability(with a capacity retention ratio of 81% after 300 cycles at a current density of 1000 mA g^(-1)).Its performance surpasses that of most reported Al-ion batteries.Ex situ characterization and density functional theory(DFT)calculations reveal that the pre-intercalated Al^(3+)in Al-Cu9S5participates in the reversible embedding/removal of Al ions during charge/discharge processes.These findings provide valuable insights for designing pre-intercalated cathodes in aqueous Cu-Al hybrid-ion batteries with stable cycle life. 展开更多
关键词 Aqueous battery Cu-Al hybrid-ion battery Cathode materials Cu-Al layered double hydroxide Aluminum storage
在线阅读 下载PDF
Enhancing d-p orbital hybridization through oxygen vacancies boosting capacity and kinetics of layered double hydroxides for durable aqueous magnesium-ion batteries
3
作者 Weizhi Kou Zhitang Fang +9 位作者 Yangyang Sui Yubo Yang Cong Liu Chenyu Yang Congyan Jiang Gang Yang Luming Peng Xuefeng Guo Weiping Ding Wenhua Hou 《Journal of Energy Chemistry》 2025年第8期558-569,共12页
Layered double hydroxides(LDHs)are potential cathode materials for aqueous magnesium-ion batteries(AMIBs).However,the low capacity and sluggish kinetics significantly limit their electrochemical performance in AMIBs.H... Layered double hydroxides(LDHs)are potential cathode materials for aqueous magnesium-ion batteries(AMIBs).However,the low capacity and sluggish kinetics significantly limit their electrochemical performance in AMIBs.Herein,we find that oxygen vacancies can significantly boost the capacity,electrochemical kinetics,and structure stability of LDHs.The corresponding structure-performance relationship and energy storage mechanism are elaborated through exhaustive in/ex-situ experimental characterizations and density functional theory(DFT)calculations.Specially,in-situ Raman and DFT calculations reveal that oxygen vacancies elevate orbital energy of O 2p and electron density of O atoms,thereby enhancing the orbital hybridization of O 2p with Ni/Co 3d.This facilitates electron transfer between O and adjacent Ni/Co atoms and improves the covalency of Ni–O and Co–O bonds,which activates Ni/Co atoms to release more capacity and stabilizes the Ov-NiCo-LDH structure.Moreover,the distribution of relaxation times(DRT)and molecular dynamics(MD)simulations disclose that the enhanced d-p orbital hybridization optimizes the electronic structure of Ov-NiCo-LDH,which distinctly reduces the diffusion energy barriers of Mg^(2+)and improves the charge transfer kinetics of Ov-NiCo-LDH.Consequently,the assembled Ov-NiCo-LDH//active carbon(AC)and Ov-NiCo-LDH//perylenediimide(PTCDI)AMIBs can both deliver high specific discharge capacity(182.7 and 59.4 mAh g^(−1)at 0.5 A g^(−1),respectively)and long-term cycling stability(85.4%and 89.0%of capacity retentions after 2500 and 2400 cycles at 1.0 A g^(−1),respectively).In addition,the practical prospects for Ov-NiCo-LDH-based AMIBs have been demonstrated in different application scenarios.This work not only provides an effective strategy for obtaining high-performance cathodes of AMIBs,but also fundamentally elucidates the inherent mechanisms. 展开更多
关键词 layered double hydroxide Aqueous magnesium-ion battery Oxygen vacancy d-p orbital hybridization Electrochemical kinetics
在线阅读 下载PDF
Unlocking the potential of photocatalysts:Recent advances in layered double hydroxide and future outlook
4
作者 Bavani Thirugnanam Preeyanghaa Mani +1 位作者 Munusamy Settu Anbazhagan Venkattappan 《Journal of Environmental Sciences》 2025年第12期207-227,共21页
Layered double hydroxides(LDHs)have emerged as a promising class of photocatalysts with remarkable properties for diverse energy and environmental-related applications.This review offers insights into recent advances ... Layered double hydroxides(LDHs)have emerged as a promising class of photocatalysts with remarkable properties for diverse energy and environmental-related applications.This review offers insights into recent advances in LDH-based photocatalysts,focusing on their synthesis methods,structural properties,and photocatalytic performance.The unique structure of LDHs,characterized by positively charged metal hydroxide layers and intercalated anions,presents opportunities for tailoring their properties to enhance photocatalytic performance.The mechanisms for pollutant degradation,water splitting,and CO_(2) reduction are discussed,along with strategies to enhance the efficacy and stability of LDH-based photocatalysts.The photocatalytic mechanisms of LDHs for various reactions,including pollutant degradation,water splitting,and CO_(2) reduction,are discussed.Additionally,strategies for enriching the efficacy and stability of LDH-based photocatalysts are explored.This review underscores the significant potential of LDHs as versatile and efficient photocatalysts for addressing current environmental and energy challenges. 展开更多
关键词 layered double hydroxides(LDHs) PHOTOCATALYSIS Water splitting CO_(2)reduction Environmental remediation
原文传递
The recent progress of high-entropy layered double hydroxides and high-entropy amorphous materials for water electrocatalysis
5
作者 Tadele Hunde Wondimu Zuo Yong +5 位作者 Akeel A.Shah Puiki Leung Yilkal Dessie Filimon Hadish Abraha Cristina Flox Qiang Liao 《DeCarbon》 2025年第2期64-83,共20页
High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that ... High-entropy materials(HEMs),which are typically composed of five or more elements in near-equimolar ratios with concentrations ranging from 5%to 35%,have distinct elemental compositions and geometric properties that allow for the development of advanced electrocatalysts for renewable energy conversion systems.The highentropy effect,crystal dislocations,cocktail effect,and slow diffusion in high-entropy layered double hydroxides(HE-LDHs)and amorphous materials(HE-AMs)have all been shown to boost electrocatalytic water oxidation performance significantly.These materials exhibit remarkable activity and stability in both alkaline and acidic conditions.HE-AMs,in particular,benefit from a variety of defects,including coordinatively unsaturated sites and loosely connected atoms,which are critical to their improved catalytic capabilities.HEMs engineering and precise nanostructure control can address the low intrinsic activity,restricted active sites,and poor conductivity of binary and ternary amorphous and LDH catalysts.This study discusses current advances in HE-LDHs and HE-AMs for water electrolysis,including synthesis methods,structural features,active site identification by DFT calculations,and their applications in water electrocatalysis.The presentation also covers potential problems and future directions for developing these materials in energy conversion device systems. 展开更多
关键词 layered double hydroxides ELECTROCATALYST Water oxidation Amorphous high-entropy and renewable energy
在线阅读 下载PDF
Asymmetric ruthenium-iron dipole enabling fast alkaline water splitting on ruthenium-doped iron-nickel layered double hydroxides
6
作者 Jiayang Li Gaowa Naren +7 位作者 Chunmei Tang Lixin Xing Ling Meng Ning Wang Ruiming Zhang Siyu Ye Liguang Wang Lei Du 《Materials Reports(Energy)》 2025年第3期87-94,共8页
Electrically driven water splitting is an efficient method for green hydrogen production;however,its practical application is substantially constrained by the kinetically sluggish anodic oxygen evolution reaction(OER)... Electrically driven water splitting is an efficient method for green hydrogen production;however,its practical application is substantially constrained by the kinetically sluggish anodic oxygen evolution reaction(OER).Ruthenium(Ru)and its oxides are widely recognized as highly active OER catalysts.Although Ru is significantly cheaper than iridium(Ir),further reducing its content remains desirable.Herein,atomically dispersed Ru is doped into iron-nickel layered double hydroxides(Ru-FeNi-LDH)to decrease the Ru usage.We found that the Ru doping limit is roughly 9 wt%,and the Ru doping content significantly alters the OER kinetics-note that the high Ru concentration remarkably damages the Ru-FeNi-LDH structure and leads to agglomeration formation.By optimizing the Ru doping content to 3.3 wt%,the Ru-FeNi-LDH presents a low overpotential of 230 mV to reach a current density of 10 mA cm^(-2) in 1 M KOH,which is far better than the reference FeNi-LDH(280 mV)and RuO_(2)(350 mV).In the overall water splitting test,the current density of 10 mA cm^(-2) can be reached at a low voltage of 1.52 V,with stable operation for 80 h.Interestingly,Ru and Fe form an asymmetric Ru-Fe dipole,which is likely doped together into the LDH because the content of Fe instead of Ni is dependent on Ru content in experimental results.The electron-deficient feature of the Ru-Fe dipole thus facilitates the OER process.This work demonstrates a dual-transition metal synergy,providing a design strategy for OER and related catalysts. 展开更多
关键词 Alkaline water splitting Oxygen evolution reaction(OER) Ruthenium-iron dipole Ruthenium-doped iron-nickel layered double hydroxides
在线阅读 下载PDF
Effective multifunctional coatings with polyvinylpyrrolidone-enhanced ZIF-67 and zinc iron layered double hydroxide on microarc oxidation treated AZ31 magnesium alloy 被引量:2
7
作者 Mohammad Aadil Ananda Repycha Safira +2 位作者 Arash Fattah-alhosseini Mohammad Alkaseem Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3729-3743,共15页
Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electroc... Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks. 展开更多
关键词 Hybrid material POLYVINYLPYRROLIDONE Metal-organic framework layered double hydroxide Corrosion Photocatalytic degradation
在线阅读 下载PDF
Exploring the role of solvents in structural regulation during ultrasonic synthesis of Co/Ni-layered double hydroxide for oxygen evolution reaction 被引量:2
8
作者 Zhaojin Li Qian Ma +5 位作者 Zezhao Li Di Zhang Qujiang Sun Qiujun Wang Huilan Sun Bo Wang 《Materials Reports(Energy)》 EI 2024年第4期48-56,I0002,共10页
Cobalt-based layered double hydroxides(LDHs)are highly sought after by researchers due to their low-cost,high efficiency and stability for oxygen evolution reaction(OER)in water electrolysis.The OER performance of the... Cobalt-based layered double hydroxides(LDHs)are highly sought after by researchers due to their low-cost,high efficiency and stability for oxygen evolution reaction(OER)in water electrolysis.The OER performance of these LDHs is closely related to their morphology and electronic structure.However,there is a lack of theory on how to control reaction conditions to regulate the morphologies.In this paper,the growth mechanism of LDH prepared in different solvents is thoroughly studied.Consequently,the Co/Ni-LDHs exhibiting a 3D hierarchical flower-like structure were synthesized with normal alcohol as a solvent,meanwhile,the thickness of the LDHs can be controlled by the molecular weight of the normal alcohol.By adjusting the suitable Co/Ni ratio and solvent,the Co/Ni0.050-LDH-Me was synthesized and exhibited excellent OER performance.At 10 mA cm^(-2),the overpotential of Co/Ni0.050-LDH-Me is 307 mV,and the Tafel slope is 76.5 mV dec^(-1). 展开更多
关键词 Oxygen evolution reaction ELECTROCATALYSTS layered double hydroxide Transition metal
在线阅读 下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping 被引量:1
9
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
在线阅读 下载PDF
Tumor microenvironment-responsive arsenic-loaded layered double hydroxides film with synergistic anticancer and bactericidal activity 被引量:1
10
作者 Shun Xing Dong-Hui Wang +6 位作者 Hai-Feng Zhang Li-Dan Liu Cheng-Ce Li Chao Wei Jun-Yu Liu Nai-Jian Ge Xuan-Yong Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1207-1221,共15页
Malignant obstruction makes gallbladder cancer have a high mortality rate.Nickel-titanium alloy(nitinol)stents are commonly used as a local intervention to maximize patient survival time,but the stents lack antitumor ... Malignant obstruction makes gallbladder cancer have a high mortality rate.Nickel-titanium alloy(nitinol)stents are commonly used as a local intervention to maximize patient survival time,but the stents lack antitumor and antibacterial capacity and are vulnerable to secondary obstruction.Arsenic-based drugs show good therapeutic promise against gallbladder cancer.To meet clinical needs.the layered double hydroxides(LDHs)film is constructed on the nitinol,whose arsenite loading amounts rose by 60%after simple heat treatment compared with the conventional anion-exchange strategy.In addition,calcination promotes the dissolution of nickel ions from the LDHs lattice,resulting in a powerful synergistic killing effect on tumor cells together with the released arsenic.More importantly,the calcined arsenic-loaded LDHs are sensitive to the acidic microenvironment of tumor tissues,which presents a much lower arsenic and nickel release amount in the normal tissues,guaranteeing its biosafety.Meanwhile,the vertically sharp LDHs nanosheets can synergize with arsenic to achieve effective physical cleavage and chemical killing of adherent and planktonic bacteria.In short,we attempt to use arsenic drugs for local interventions and reasonably avoid their toxic side effects,which provides a new design idea for nitinol stents applied in the treatment of gallbladder cancer. 展开更多
关键词 Nitinol layered double hydroxides ARSENIC Gallbladder cancer
原文传递
Long-lasting growth regulation on cotton using mepiquat chloride adsorbed layered double hydroxide 被引量:1
11
作者 Chong Wang Changcheng An +5 位作者 Ningjun Li Changjiao Sun Yue Shen Shenshan Zhan Xingye Li Yan Wang 《Advanced Agrochem》 2024年第1期57-63,共7页
Mepiquat chloride(1,1-dimethyl piperidinium chloride,DPC)is a representative plant growth regulator which can regulate the source-sink relationship for yield increase and shape ideal plant type for mechanical cultivat... Mepiquat chloride(1,1-dimethyl piperidinium chloride,DPC)is a representative plant growth regulator which can regulate the source-sink relationship for yield increase and shape ideal plant type for mechanical cultivation.Here we show a DPC adsorbed layered double hydroxide(DPC-LDH)architecture with enhanced controlled release property and soil distribution.By drip irrigation on cotton,it makes total dosage of DPC reduced from 270 to 90 g/ha,while the frequency decreased from 5 to 2 times.The unique supramolecular interaction is confirmed as the basis of controlled release behavior.Moreover,except for the physical resistance to the sedimentation brought by the lamellar LDH,the enhanced electrostatic interaction makes DPC-LDH the dominant distribution in soil.It improves the efficiency of DPC molecules absorbed by cotton plants and greatly saves the inputs in labor and chemicals.This method is expected to achieve the yield increase and agricultural sustainability by energy saving and emission reduction. 展开更多
关键词 layered double hydroxide Plant growth regulation Controlled release CO2 emission reduction Nano-pesticide
在线阅读 下载PDF
Deprotonated of layered double hydroxides during electrocatalytic water oxidation for multi-cations intercalation 被引量:1
12
作者 Bowen Jin Jianxiong Gao +1 位作者 Yunqi Zhang Mingfei Shao 《Smart Molecules》 2024年第2期1-14,共14页
Aqueous rechargeable batteries using abundant multi-ion cations have receivedincreasing attention in the energy storage field for their high safety and low cost.Layered double hydroxides(LDHs)possess a two-dimensional... Aqueous rechargeable batteries using abundant multi-ion cations have receivedincreasing attention in the energy storage field for their high safety and low cost.Layered double hydroxides(LDHs)possess a two-dimensional structure andexhibit great potential as cathodes for multi-ion intercalation.However,theinsufficient active sites of LDHs result in low capacities in the discharging process.Interestingly,the LDHs after the deprotonation process exhibit favorable electrochemicalperformance of multi-cation intercalation.The deprotonation process ofLDHs has been widely found in the oxygen evolution reaction and energy storagefield,where LDHs lose H in laminates and converts to deprotonatedγ-phaseMOOHs(MOOs).Herein,we take a comprehensive overview of the dynamicsstructure transformation of the deprotonation process of LDHs.Furthermore,thedevelopment of advanced aqueous battery cathode and metal battery anode basedon deprotonated LDHs for energy storage is explored and summarized.Finally,theperspective of deprotonated LDHs in the energy storage field is discussed. 展开更多
关键词 DEPROTONATION energy storage layered double hydroxides multi-ion battery
在线阅读 下载PDF
Defective Nickel-Iron Layered Double Hydroxide for Enhanced Photocatalytic NO Oxidation with Significant Alleviation of NO2 Production
13
作者 Xiaoyu Li Xiaoshu Lv +6 位作者 Jian Pan Peng Chen Huihui Peng Yan Jiang Haifeng Gong Guangming Jiang Li’an Hou 《Engineering》 SCIE EI CAS CSCD 2024年第5期276-284,共9页
Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to ... Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission. 展开更多
关键词 Vacancie layered double hydroxide NO+ PHOTOCATALYSIS NO removal
在线阅读 下载PDF
Recent advances in flat sheet mixed matrix membrane modified by Mg-based layered double hydroxides(LDHs)for salt and organic compound separations
14
作者 Payam Veisi Arash Fattah-alhosseini Mosab Kaseem 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2182-2200,共19页
Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particul... Magnesium(Mg)is a widely used and attractive metal,known for its unique physical and chemical properties,and it has been employed in the manufacture of many practical materials.Layered Double Hydroxides(LDHs),particularly Mg-based LDHs,rank among the most prevalent two-dimensional materials utilized in separation processes,which include adsorption,extraction,and membrane technology.The high popularity of Mg-based LDHs in separation applications can be attributed to their properties,such as excellent hydrophilicity,high surface area,ion exchangeability,and adjustable interlayer space.Currently,polymer membranes play a pivotal role in semi-industrial and industrial separation processes.Consequently,the development of polymer membranes and the mitigation of their limitations have emerged as compelling topics for researchers.Several methods exist to enhance the separation performance and anti-fouling properties of polymer membranes.Among these,incorporating additives into the membrane polymer matrix stands out as a cost-effective,straightforward,readily available,and efficient approach.The use of Mg-based LDHs,either in combination with other materials or as a standalone additive in the polymer membrane matrix,represents a promising strategy to bolster the separation and anti-fouling efficacy of flat sheet mixed matrix polymer membranes.This review highlights Mg-based LDHs as high-potential additives designed to refine flat sheet mixed matrix polymer membranes for applications in wastewater treatment and brackish water desalination. 展开更多
关键词 Mg-based layered double hydroxides(LDHs) Mixed matrix membrane Polymeric membrane Water and wastewater treatment Brackishwater desalination
在线阅读 下载PDF
Enhanced corrosion resistance,antibacterial properties and osteogenesis by Cu ion optimized MgAl-layered double hydroxide on Mg alloy
15
作者 Qingge Wang Chuting Liao +8 位作者 Bo Liu Shaohui Jing Zhenhu Guo Luxin Liang Jingbo Liu Ning Li Runhua Zhou Ian Baker Hong Wu 《Journal of Magnesium and Alloys》 CSCD 2024年第10期4174-4190,共17页
Magnesium(Mg)and its alloys have similar densities and elastic moduli to natural bone,making them an excellent choice for orthopedic implants.However,Mg alloys are prone to electrochemical corrosion,which often leads ... Magnesium(Mg)and its alloys have similar densities and elastic moduli to natural bone,making them an excellent choice for orthopedic implants.However,Mg alloys are prone to electrochemical corrosion,which often leads to implant failure and hinders the further development of Mg alloys due to bacterial infection around the implant.This work aims to enhance the corrosion resistance of Mg alloys,and provide theoretical guidance for solving the problem that Mg-based orthopedic implants are susceptible to bacterial infection and,thus,implant failure.In order to solve the corrosion problem,the Mg alloy AZ91D was used as the substrate,and a compact and uniform MgAlCu-layered double hydroxide(Mg(Cu)-LDH)was prepared on its surface using a hydrothermal method.The Mg(Cu)-LDH provides a barrier between the AZ91D and corrosive liquid,which effectively protects the Mg substrate from being corroded.The Mg(Cu)-LDH shows great cell viability for MC3T3-E1 cells.The Cu^(2+)and Mg^(2+) in the coating also endow the Mg(Cu)-LDH/AZ91D with antibacterial properties,showing strong antibacterial effects on both E.coli and S.aureus with antibacterial rates over 85%.Finally,in vivo results indicated that a LDH-coated implant had no systemic effects on the hearts,livers,spleens,lungs or kidneys.It was shown that 4 weeks after surgery the ratio of bone volume to tissue volume(BV/TV)of the LDH implant was 24%,which was 1.7 times that observed for AZ91D. 展开更多
关键词 Mg alloy Surface modification layered double hydroxide Corrosion resistance Antibacterial mechanisms OSTEOGENESIS
在线阅读 下载PDF
Layered double hydroxide-derived Mg_(2)Ni/TiH_(1.5)composite catalysts for enhancing hydrogen storage performance of MgH_(2)
16
作者 Gang Huang Yao Lu +5 位作者 Xiaofang Liu Wukui Tang Xinyu Li Feng Wang Jianglan Shui Ronghai Yu 《Journal of Magnesium and Alloys》 CSCD 2024年第12期4966-4975,共10页
Developing efficient catalysts is of great significance in improving the sluggish kinetics and high desorption temperature of Mg H_(2)hydrogen storage material.Here,ultrathin Ni Ti-layered double hydroxide(Ni Ti-LDH)n... Developing efficient catalysts is of great significance in improving the sluggish kinetics and high desorption temperature of Mg H_(2)hydrogen storage material.Here,ultrathin Ni Ti-layered double hydroxide(Ni Ti-LDH)nanosheets are used as precursors to prepare Mg_(2)Ni/TiH_(1.5)composite catalysts to improve the hydrogen storage properties of MgH_(2).The variation of Ni/Ti ratio in LDH plays an important role in regulating the composition,morphology and distribution of Mg_(2)Ni/Ti H_(1.5)catalysts,which significantly affect their synergistic catalytic effect.Mg_(2)Ni/TiH_(1.5)composite catalyst exhibits significantly improved catalytic performance compared with conventional Ni-,Ti-and Ni/Ti-based catalysts.The optimal Mg H_(2)/Mg_(2)Ni/TiH_(1.5)system shows a significantly reduced desorption temperature of 212℃which is 133℃lower than that of pure MgH_(2)(345℃),and can release 5.97 wt%hydrogen within 300s at 300℃.Further mechanism analysis reveals that the unique flaky morphology and suitable composition of Ni/Ti LDH can significantly enhance the synergistic effect of Mg_(2)Ni and TiH_(1.5),which promotes the fracture of the H–H and Mg-H bonds. 展开更多
关键词 Hydrogen storage materials MgH_(2) layered double hydroxides NANOCATALYSTS
在线阅读 下载PDF
Balancing loading mass and gravimetric capacitance of NiCo-layered double hydroxides to achieve ultrahigh areal performance for flexible supercapacitors
17
作者 Jie Zhao Cao Zhou +6 位作者 Yue Guo Zhen Shen Geng Luo Qiang Wu Lijun Yang Xizhang Wang Zheng Hu 《Advanced Powder Materials》 2024年第1期80-89,共10页
Delivering high areal capacitance(CA)at high rates is crucial but challenging for flexible supercapacitors.CA is the product of areal loading mass(MA)and gravimetric capacitance(CW).Finding and understanding the balan... Delivering high areal capacitance(CA)at high rates is crucial but challenging for flexible supercapacitors.CA is the product of areal loading mass(MA)and gravimetric capacitance(CW).Finding and understanding the balance between MA and CW of supercapacitor materials is significant for designing high-CA electrodes.Herein,we have systematically studied the correlation between MA and CW of the nanosheet arrays of NiCo-layered double hydroxide(NiCo-LDH),which were electrodeposited on carbon cloth with different heights to adjust the MA,accompanied by the interlayer distance regulation to improve the CW.The optimal CW performance is achieved at the best charge transfer kinetics for each of MA series.The NiCo-LDH electrode with the suitable MA(2.58 mg cm^(-2))and the relatively high CW(1918 F g^(-1) at 5 A g^(-1) and 400 F g^(-1) at 150 A g^(-1))present a high CA of 4948 mF cm^(-2) at 12.9 mA cm^(-2) and a record-high 1032 mF cm^(-2) among LDHs-based flexible electrodes at an ultrahigh current density of 387 mA cm^(-2).The corresponding flexible supercapacitor coupled with activated carbon delivers a high energy density of 0.28 mWh cm^(-2) at an ultrahigh power density of 712 mW cm^(-2),showing great potential applications. 展开更多
关键词 layered double hydroxides Areal performance Interlayer distance Array height Flexible supercapacitors
在线阅读 下载PDF
Synthesis and highly efficient photocatalytic activity of mixed oxides derived from ZnNiAl layered double hydroxides 被引量:6
18
作者 张丽 戴超华 +2 位作者 张秀秀 刘又年 阎建辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2380-2389,共10页
ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered d... ZnO/NiO/ZnAl2O4 mixed-metal oxides were successfully synthesized through a hydrotalcite-like precursor route, in which appropriate amounts of metal salts solutions were mixed to obtain a new series of ZnNiAl layered double hydroxides(LDHs) as precursors, followed by calcination under different temperatures. The as-obtained samples were characterized by SEM, HRTEM, TEM, XRD, BET, TG-DTA, and UV-Vis spectra techniques. The photocatalytic activities of the samples were evaluated by degradation of methyl orange(MO) under the simulated sunlight irradiation. The effects of Zn/Ni/Al mole ratio and calcination temperature on the composition, morphology and photocatalytic activity of the samples were investigated in detail. The results indicated that compared with ZnNiAl-LDHs, the mixed-metal oxide showed superior photocatalytic performance for the degradation of MO. A maximum of 97.3% photocatalytic decoloration rate within 60 min was achieved from the LDH with the Zn/Ni/Al mole ratio of 2:1:1 and the calcination temperature of 500 ℃, which much exceeded that of Degussa P25 under the same conditions. The possible mechanism of photocatalytic degradation over ZnO/NiO/ZnAl2O4 was discussed. 展开更多
关键词 ZnNiAl layered double hydroxide mixed oxide photocatalytic degradation phototatalytic activity
在线阅读 下载PDF
Adsorption of glutamic acid from aqueous solution with calcined layered double Mg-Fe-CO_3 hydroxide 被引量:1
19
作者 焦飞鹏 帅丽 +3 位作者 于金刚 蒋新宇 陈晓青 杜邵龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3971-3978,共8页
Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as... Layered double Mg-Fe-CO3 hydroxide (Mg-Fe-LDH) with a mole ratio of Mg to Fe of 3 was synthesized by coprecipitation method and calcined product Mg-Fe-CLDH was obtained by heating Mg-Fe-LDH at 500 ℃ for 6 h. The as prepared Mg-Fe-LDH and calcined Mg-Fe-CLDH were used for removal of glutamic acid (Glu) from aqueous solution, respectively. Batch studies were carried out to address various experimental parameters such as contact time, pH, initial glutamic acid (Glu) concentration, co-existing anions and temperature. Glu was removed effectively (99.9%) under the optimized experimental conditions with Mg-Fe-CLDH. The adsorption kinetics follows the Ho’s pseudo second-order model. Isotherms for adsorption with Mg-Fe-CLDH at different solution temperatures were well described using the Langmuir model with a good correlation coefficient. The intraparticle diffusion model fitted the data well, which suggests that the intraparticle diffusion is not only the rate-limiting step. 展开更多
关键词 calcined layered double hydroxides glutamic acid ADSORPTION
在线阅读 下载PDF
Removal of vanadate anion by calcined Mg/Al-CO_3 layered double hydroxide in aqueous solution 被引量:3
20
作者 宋海磊 焦飞鹏 +3 位作者 蒋新宇 于金刚 陈晓青 杜邵龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3337-3345,共9页
Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773... Mg/Al-CO3 layered double hydroxide (LDH2) with Mg(II):Al(III) molar ratio of 2:1 was synthesized by co-precipitation method and its calcined product Mg2Al-CLDH(CLDH2) was prepared by heating Mg2Al-LDH at 773 K for 6 h. Removal of vanadate anion ( 3-4VO ) from aqueous solution on CLDH2 was studied. Batch studies were carried out to address various experimental parameters such as Mg/Al molar ratio, adsorbent dosage, initial concentration of solution, contact time and temperature. Vanadate was removed effectively at the optimized experimental conditions. The adsorption kinetics data fitted the pseudo-first-order model. Isotherms for adsorption vanadate by CLDH2 at different solution temperatures were well described using the Langmuir and Freundlich equations, and the isotherm parameters were calculated using linear regression analysis. The adsorption data fitted the langmuir model with good values of the correlation coefficient (R2〉0.999). The negative value ofΔGΘand the positive value ofΔHΘindicate that the adsorption processes are spontaneous endothermic in nature. The mechanism of adsorption suggests that the surface adsorption is the main process. 展开更多
关键词 layered double hydroxide VANADATE adsorption KINETICS THERMODYNAMICS
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部