Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was ac...Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was achieved at mild condition using cetyltfimethylammonium bromide as structure-directing agents. The resulting samples were characterized by XRD, SEM, FTIR nitrogen adsorption-desorption isotherms and catalytic performance in bulky molecular involved reaction. The results revealed that synthesized mesoporous materials derived from the silinaite exhibited an ordered hexagonal crystal structure with average pore diameter 2.7 nm and BET surface area 817m^2/g. The SDM-supported ZnCl2 catalyst, prepared by impregnationevaporation method, retained the mesoporous structure and showed high selectivity in alkylation of benzene with benzyl chloride.展开更多
To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultras...To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultrasonic testing is widely utilized for detecting and characterizing internal defects in materials, thanks to its strong penetration ability, wide testing area, and fast scanning speed. However, traditional ultrasonic testing primarily relies on one-dimensional waveforms or two-dimensional images to analyze internal defects in billets, which hinders intuitive characterization of defect quantity, size, spatial distribution, and other relevant information. Consequently, a three-dimensional (3D) layered characterization method of billets internal quality based on scanning acoustic microscope (SAM) is proposed. The method starts with a layered focus scanning of the billet using SAM and pre-processing the obtained sequence of ultrasonic images. Next, the ray casting is employed to reconstruct 3D shape of defects in billets, allowing for characterization of their quality by obtaining characteristic information on defect spatial distributions, quantity, and sizes. To validate the effectiveness of the proposed method, specimens of 42CrMo billets are prepared using five different processes, and the method is employed to evaluate their internal quality. Finally, a comparison between the ultrasonic image and the metallographic image reveals a difference in dimensional accuracy of only 2.94%. The results indicate that the new method enables visualization of internal defect information in billets, serving as a valuable complement to the traditional method of characterizing their internal quality.展开更多
1 Introduction In the present paper,MgCl2·6H2O,FeCl3·6H2O,and CeCl3·6H2O were used as raw materials in the precipitationhydrothermal method to synthesize MgF eC e hydrotalcite.The effects of the Fe:Ce m...1 Introduction In the present paper,MgCl2·6H2O,FeCl3·6H2O,and CeCl3·6H2O were used as raw materials in the precipitationhydrothermal method to synthesize MgF eC e hydrotalcite.The effects of the Fe:Ce molar ratio on the composition,crystal structure,and thermal stability of hydrotalcite are examined.Energy-dispersive X-ray spectroscopy(EDS),X-展开更多
X oilfield is a typical layered reservoir with a large vertical span and many oil-bearing formations. There are significant differences in reservoir types and fluid properties among various formations. The interlayer ...X oilfield is a typical layered reservoir with a large vertical span and many oil-bearing formations. There are significant differences in reservoir types and fluid properties among various formations. The interlayer interference is severe in the development process. At present, the interlayer interference research based on dynamic monitoring data cannot meet development adjustment needs. Combined with the field test results, through the indoor physical simulation experiment method, dynamic inversion method, and reservoir engineering method, this paper analyzes the main control factors and interference mechanism of interlayer interference, studies the variation law of interference coefficient, improves and forms the quantitative characteristic Theory of interlayer interference in multi-layer commingled production, and provides theoretical guidance for the total adjustment of the middle strata division in the oilfield.展开更多
The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we...The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we report our measurements of key parameters for detector modeling in a commercial p-type BEGe detector.Point-like sources are used to investigate energy resolution and linearity of the detector.A cylindrical volume source is used for efficiency calibration.With an assembled device for source positioning and a collimated ^(133)Ba source,the detector is scanned to check its active volume.Using an^(241)Am point-like source,the dead layer thicknesses is measured at about 0.17 mm on the front and 1.18 mm on the side.The detector characterization is of importance for BEGe detectors to be used in the ovββ experiments at China JinPing underground Laboratory(CJPL).展开更多
Four Cu2+ complexes of salicylidene-amino acid Schiff base with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) were successfully intercalated in interlayer galleries of Mg/AI-NO3-1ayered double hydroxide ...Four Cu2+ complexes of salicylidene-amino acid Schiff base with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) were successfully intercalated in interlayer galleries of Mg/AI-NO3-1ayered double hydroxide (LDH) by the swelling-restored method. The hybrids were characterized by elemental analysis, X-ray diffraction, FT-IR spectra, UV-vis DRS, TG-DTA and SEM observation. Good protection of the complexes by LDH in neutral and weak acidic solutions was revealed by UV spectra, cyclic voltammograms and luminescence spectra.展开更多
Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-re...Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.展开更多
The preparation of ZnAlLa-hydrotalcite-like compounds [ZnAlLa-HTLcs] wasstudied. ZnAlLa-HTLcs were synthesized by a method of variable pH with the raw materials ofZn(NO_3)_2, Al(NO_3)_3, La(NO_3)_3, and NaOH. The eS...The preparation of ZnAlLa-hydrotalcite-like compounds [ZnAlLa-HTLcs] wasstudied. ZnAlLa-HTLcs were synthesized by a method of variable pH with the raw materials ofZn(NO_3)_2, Al(NO_3)_3, La(NO_3)_3, and NaOH. The eS'ccts of some factors (i.e. pH values, the moleratio of Al^(3+) to La^(3+), temperature and the period of hydrothermal treatment) on thepreparation of HTLcs were discussed systematically. XRD, TG-DTA, FT-IR spectroscopy, and ICP wereperformed to characterize ZnAlLa-HTLcs samples, and the thermal stability of HTLcs was alsodiscussed. It was shown that unique ZnAlLa-HTLcs with high crystallinity can be prepared, under theconditions of pH = 5.5-6.5, n(Zn^(2+))/n(Al^(3+) + La^(3+))=2 and the atomic ratio of La^(3+) toAl^(3+) ranging from 0.07 to 2, hydrothermal treatment at 120 ℃ for 5 h. When the calcination ofthe HTLcs is performed at temperatures above 200 ℃, ZnO phase is detected with Al_2O_3 and La_2O_3spreading on its top. The complex metal oxides derived from ZnAlLa-HTLcs at 500 ℃ have highercatalytic activity and selectivity than those from ZnAl-HTLcs for the esterification of acetic acidwith n-butanol under the same reaction conditions.展开更多
Tars from two Mongolian coals (Tavan Tolgoi and Baganuur) produced by simple distillation have been characterized using size exclusion chromatography (SEC) with elution in both 1-methyl-2-pyrrolidinone (NMP) and a mix...Tars from two Mongolian coals (Tavan Tolgoi and Baganuur) produced by simple distillation have been characterized using size exclusion chromatography (SEC) with elution in both 1-methyl-2-pyrrolidinone (NMP) and a mixed solvent (NMP and chloroform), UV-fluorescence in chloroform and NMP, gas chromatography (GC), mass spectrometry (GC-MS, probe-MS and LD-MS with thin layer chromatography) and infra-red spectroscopy. The SEC chromatograms using NMP and the solvent mixture NMP: chloroform indicates that similar conclusions can be drawn from using either eluent. The synchronous UV-fluorescence spectra were shifted to longer wavelengths in chloroform solution than in NMP and chloroform may be the better solvent for these tars prepared without extensive secondary thermal treatment. Infra-red spectra indicated differences between the two coal tars that reflected their different ranks, with more oxygenate groups in the lower rank Baganuur coal. Mass spectrometry (GC-MS and probe-MS) of both coal tars confirmed the presence of aliphatic components as well as aromatics and the relatively extensive alkylation of aromatics. Molecular mass ranges indicated for Baganuur tar by SEC compared well with the mass range by LD-MS although the LD-MS extended to higher mass values. The high mass fractions of the tars were revealed by fractionation by thin layer chromatography with the relevant sections of the developed plates inserted directly into the mass spectrometer;laser desorption was directly from the surface of the plate. LD-MS of the unfractionated samples failed to detect the high mass components because of mass discrimination effects. The high mass components were carried over in the distillation by mass transfer of vapours into the condenser.展开更多
AlON nanolayers are synthesized on Al substrate by the irradiation of energetic nitrogen ions using plasma focusing. Samples are exposed to multiple (5, 10, 15, 20 and 25) focus shots. Ion energy and ion number dens...AlON nanolayers are synthesized on Al substrate by the irradiation of energetic nitrogen ions using plasma focusing. Samples are exposed to multiple (5, 10, 15, 20 and 25) focus shots. Ion energy and ion number density range from 80 keV to 1.4 MeV and 5.6×10^19 m^- 3 to 1.3×10^19 m ^-3, respectively. Moreover, the effect of continuous annealing (473 K and 523 K) on an AlN surface layer synthesized with 25 focus shots is also examined. The main features of the X-ray diffraction (XRD) patterns with increasing focus shots are: (i) variation in the crystallinity of AlN along (111), (200) and (311) planes, (ii) increasing average crystallite size of AlN (111) plane, and (iii) stress relaxation observed in AlN (111) and (200) planes. The crystallinity of AlN surface layer is comparatively better at 473 K annealing temperature. A broadened diffraction peak related to an aluminium oxide phase showing weak crystallinity is observed for 15 focus shots while non-bounded oxides are present in all other deposited layers. Raman and Fourier transform infrared spectroscopy (FTIR) analysis confirm the presence of AlN and Al203 for the surface layer annealed at 473 K temperature. Raman analysis shows that the overlapping of AlN and Al2Oa results in the development of residual stresses. Scanning electron microscope (SEM) results demonstrate that the formation of rounded grains (range from 20 nm to 200 nm) and variations in their microstructures features depend on the increasing number of focus shots. Decomposition of larger clusters into smaller ones is observed.展开更多
基金Fund supports by the National Natural Science Foundation of China (No,20541002)Zhejiang Provincial Natural Science Foundation (No.Y405064) are acknowledged.
文摘Novel layered silinaite has been synthesized using an aqueous mixture of water glass, LiOH and NaOH under hydrothermal crystallization. Subsequently transformation of silinaite into mesoporous materials (SDM) was achieved at mild condition using cetyltfimethylammonium bromide as structure-directing agents. The resulting samples were characterized by XRD, SEM, FTIR nitrogen adsorption-desorption isotherms and catalytic performance in bulky molecular involved reaction. The results revealed that synthesized mesoporous materials derived from the silinaite exhibited an ordered hexagonal crystal structure with average pore diameter 2.7 nm and BET surface area 817m^2/g. The SDM-supported ZnCl2 catalyst, prepared by impregnationevaporation method, retained the mesoporous structure and showed high selectivity in alkylation of benzene with benzyl chloride.
基金supported by the joint funds of the National Natural Science Foundation of China (Grant No. U22A20186)the Open Foundation of Key Laboratory of Metallurgical Equipment and Control Technology (Wuhan University of Science and Technology) Ministry of Education (Grant No. MECOF2019804)the Foundation of Key Technologies R&D Program of Guangdong Province (Grant No. 2020B0101130007).
文摘To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultrasonic testing is widely utilized for detecting and characterizing internal defects in materials, thanks to its strong penetration ability, wide testing area, and fast scanning speed. However, traditional ultrasonic testing primarily relies on one-dimensional waveforms or two-dimensional images to analyze internal defects in billets, which hinders intuitive characterization of defect quantity, size, spatial distribution, and other relevant information. Consequently, a three-dimensional (3D) layered characterization method of billets internal quality based on scanning acoustic microscope (SAM) is proposed. The method starts with a layered focus scanning of the billet using SAM and pre-processing the obtained sequence of ultrasonic images. Next, the ray casting is employed to reconstruct 3D shape of defects in billets, allowing for characterization of their quality by obtaining characteristic information on defect spatial distributions, quantity, and sizes. To validate the effectiveness of the proposed method, specimens of 42CrMo billets are prepared using five different processes, and the method is employed to evaluate their internal quality. Finally, a comparison between the ultrasonic image and the metallographic image reveals a difference in dimensional accuracy of only 2.94%. The results indicate that the new method enables visualization of internal defect information in billets, serving as a valuable complement to the traditional method of characterizing their internal quality.
基金supported by China Postdoctoral Science Foundation(No.118918)West Light Foundation of the Chinese Academy of Science
文摘1 Introduction In the present paper,MgCl2·6H2O,FeCl3·6H2O,and CeCl3·6H2O were used as raw materials in the precipitationhydrothermal method to synthesize MgF eC e hydrotalcite.The effects of the Fe:Ce molar ratio on the composition,crystal structure,and thermal stability of hydrotalcite are examined.Energy-dispersive X-ray spectroscopy(EDS),X-
文摘X oilfield is a typical layered reservoir with a large vertical span and many oil-bearing formations. There are significant differences in reservoir types and fluid properties among various formations. The interlayer interference is severe in the development process. At present, the interlayer interference research based on dynamic monitoring data cannot meet development adjustment needs. Combined with the field test results, through the indoor physical simulation experiment method, dynamic inversion method, and reservoir engineering method, this paper analyzes the main control factors and interference mechanism of interlayer interference, studies the variation law of interference coefficient, improves and forms the quantitative characteristic Theory of interlayer interference in multi-layer commingled production, and provides theoretical guidance for the total adjustment of the middle strata division in the oilfield.
基金supported by National Natural Science Foundation of China(Nos.11175099&11355001)Tsinghua University Initiative Scientific Research Program(Nos.20151080354&2014Z21016)
文摘The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we report our measurements of key parameters for detector modeling in a commercial p-type BEGe detector.Point-like sources are used to investigate energy resolution and linearity of the detector.A cylindrical volume source is used for efficiency calibration.With an assembled device for source positioning and a collimated ^(133)Ba source,the detector is scanned to check its active volume.Using an^(241)Am point-like source,the dead layer thicknesses is measured at about 0.17 mm on the front and 1.18 mm on the side.The detector characterization is of importance for BEGe detectors to be used in the ovββ experiments at China JinPing underground Laboratory(CJPL).
基金supported by Beijing Municipal Natural Science Foundation(No.2112022)Key Laboratory of Radiopharmaceuticals of Ministry of Education(College of Chemistry, Beijing Normal University) and Analytical and Testing Center of Beijing Normal University
文摘Four Cu2+ complexes of salicylidene-amino acid Schiff base with 1,10-phenanthroline (Phen) or 2,2'- bipyridine (Bipy) were successfully intercalated in interlayer galleries of Mg/AI-NO3-1ayered double hydroxide (LDH) by the swelling-restored method. The hybrids were characterized by elemental analysis, X-ray diffraction, FT-IR spectra, UV-vis DRS, TG-DTA and SEM observation. Good protection of the complexes by LDH in neutral and weak acidic solutions was revealed by UV spectra, cyclic voltammograms and luminescence spectra.
基金granted by the National Basic Research Program of China(grant no.2014CB239205)National Science and Technology Major Project of China (grant no.20011ZX05030-005-003)
文摘Multi-layer sandstone reservoirs occur globally and are currently in international production. The 3D characteristics of these reservoirs are too complicated to be accurately delineated by general structural-facies-reservoir modelling. In view of the special geological features, such as the vertical architecture of sandstone and mudstone interbeds, the lateral stable sedimentation and the strong heterogeneity of reservoir poroperm and fluid distribution, we developed a new three-stage and six-phase procedure for 3D characterization of multi-layer sandstone reservoirs. The procedure comprises two-phase structural modelling, two-phase facies modelling and modelling of two types of reservoir properties. Using this procedure, we established models of the formation structure, sand body structure and microfacies, reservoir facies and properties including porosity, permeability and gas saturation and provided a 3D fine-scale, systematic characterization of the Sebei multi-layer sandstone gas field, China. This new procedure, validated by the Sebei gas field, can be applied to characterize similar multi-layer sandstone reservoirs.
基金Supported by Shanxi Province Natural Science Funds.(20001015)
文摘The preparation of ZnAlLa-hydrotalcite-like compounds [ZnAlLa-HTLcs] wasstudied. ZnAlLa-HTLcs were synthesized by a method of variable pH with the raw materials ofZn(NO_3)_2, Al(NO_3)_3, La(NO_3)_3, and NaOH. The eS'ccts of some factors (i.e. pH values, the moleratio of Al^(3+) to La^(3+), temperature and the period of hydrothermal treatment) on thepreparation of HTLcs were discussed systematically. XRD, TG-DTA, FT-IR spectroscopy, and ICP wereperformed to characterize ZnAlLa-HTLcs samples, and the thermal stability of HTLcs was alsodiscussed. It was shown that unique ZnAlLa-HTLcs with high crystallinity can be prepared, under theconditions of pH = 5.5-6.5, n(Zn^(2+))/n(Al^(3+) + La^(3+))=2 and the atomic ratio of La^(3+) toAl^(3+) ranging from 0.07 to 2, hydrothermal treatment at 120 ℃ for 5 h. When the calcination ofthe HTLcs is performed at temperatures above 200 ℃, ZnO phase is detected with Al_2O_3 and La_2O_3spreading on its top. The complex metal oxides derived from ZnAlLa-HTLcs at 500 ℃ have highercatalytic activity and selectivity than those from ZnAl-HTLcs for the esterification of acetic acidwith n-butanol under the same reaction conditions.
文摘Tars from two Mongolian coals (Tavan Tolgoi and Baganuur) produced by simple distillation have been characterized using size exclusion chromatography (SEC) with elution in both 1-methyl-2-pyrrolidinone (NMP) and a mixed solvent (NMP and chloroform), UV-fluorescence in chloroform and NMP, gas chromatography (GC), mass spectrometry (GC-MS, probe-MS and LD-MS with thin layer chromatography) and infra-red spectroscopy. The SEC chromatograms using NMP and the solvent mixture NMP: chloroform indicates that similar conclusions can be drawn from using either eluent. The synchronous UV-fluorescence spectra were shifted to longer wavelengths in chloroform solution than in NMP and chloroform may be the better solvent for these tars prepared without extensive secondary thermal treatment. Infra-red spectra indicated differences between the two coal tars that reflected their different ranks, with more oxygenate groups in the lower rank Baganuur coal. Mass spectrometry (GC-MS and probe-MS) of both coal tars confirmed the presence of aliphatic components as well as aromatics and the relatively extensive alkylation of aromatics. Molecular mass ranges indicated for Baganuur tar by SEC compared well with the mass range by LD-MS although the LD-MS extended to higher mass values. The high mass fractions of the tars were revealed by fractionation by thin layer chromatography with the relevant sections of the developed plates inserted directly into the mass spectrometer;laser desorption was directly from the surface of the plate. LD-MS of the unfractionated samples failed to detect the high mass components because of mass discrimination effects. The high mass components were carried over in the distillation by mass transfer of vapours into the condenser.
基金supported by the Higher Education Commission of Pakistan
文摘AlON nanolayers are synthesized on Al substrate by the irradiation of energetic nitrogen ions using plasma focusing. Samples are exposed to multiple (5, 10, 15, 20 and 25) focus shots. Ion energy and ion number density range from 80 keV to 1.4 MeV and 5.6×10^19 m^- 3 to 1.3×10^19 m ^-3, respectively. Moreover, the effect of continuous annealing (473 K and 523 K) on an AlN surface layer synthesized with 25 focus shots is also examined. The main features of the X-ray diffraction (XRD) patterns with increasing focus shots are: (i) variation in the crystallinity of AlN along (111), (200) and (311) planes, (ii) increasing average crystallite size of AlN (111) plane, and (iii) stress relaxation observed in AlN (111) and (200) planes. The crystallinity of AlN surface layer is comparatively better at 473 K annealing temperature. A broadened diffraction peak related to an aluminium oxide phase showing weak crystallinity is observed for 15 focus shots while non-bounded oxides are present in all other deposited layers. Raman and Fourier transform infrared spectroscopy (FTIR) analysis confirm the presence of AlN and Al203 for the surface layer annealed at 473 K temperature. Raman analysis shows that the overlapping of AlN and Al2Oa results in the development of residual stresses. Scanning electron microscope (SEM) results demonstrate that the formation of rounded grains (range from 20 nm to 200 nm) and variations in their microstructures features depend on the increasing number of focus shots. Decomposition of larger clusters into smaller ones is observed.