On June 9,2025,CIIS held a launch event for its research report“Promoting Modernization Across Countries Through the Global Development Initiative.”The event was attended by CIIS President Chen Bo,Ambassador of Barb...On June 9,2025,CIIS held a launch event for its research report“Promoting Modernization Across Countries Through the Global Development Initiative.”The event was attended by CIIS President Chen Bo,Ambassador of Barbados to China Hallam Henry,Ambassador of Grenada to China Ma Yan,Ambassador of Timor-Leste to China Loro Horta,Ambassador of Bolivia to China Hugo Siles,Ambassador of Venezuela to China Remigio Ceballos Ichaso,Ambassador of Nepal to China Krishna Prasad Oli,Vice Director of the China Foreign Languages Publishing Administration and President of the Institute of Contemporary China and the World Yu Yunquan,Director of the Institute of International Strategy at Party School of the Central Committee(National Academy of Governance)Wu Zhicheng,and Vice Chairman of the National Global Strategy Think Tank at Chinese Academy of Social Sciences Wang Lei,all of whom delivered remarks at the launch.展开更多
In the era of global space industry’s rapid expansion,reusable launch technology has the advantage of cost reduction,but makes launch frequency and flight reliability remain critical.This study proposes that Artifici...In the era of global space industry’s rapid expansion,reusable launch technology has the advantage of cost reduction,but makes launch frequency and flight reliability remain critical.This study proposes that Artificial Intelligence(AI)would be the potential disruptive technology to solve these challenges.AI enables transformative capabilities for launch vehicles which are pointed out in four domains:Agile launch operations enabling automate testing,fault diagnosis,and decision-making for targeting hour-level launch cycles and minute-level fault resolution;high-reliability flight enabling real-time autonomous fault diagnosis,mission replanning,and fault-tolerant control within seconds during anomalies,potentially improving reliability by 1–2 orders of magnitude;rapid maintenance enabling real-time health monitoring and lifespan prediction for swift relaunch decisions;efficient space traffic management enabling predict/resolve orbital conflicts amid growing congestion from satellites and debris.The key challenges for AI applications are analyzed as well,including multi-system coupling,uncertain failure modes and narrow flight corridors,limited sensor data,and massive heterogeneous data processing.Finally,the study also proposes that AI promises substantial efficiency gains in launch vehicle design,manufacturing,and testing through multidisciplinary optimization and reduced reliance on physical testing.展开更多
High-altitude rescue is dangerous and difficult.A new rescue method is proposed here based on electromagnetically launched tethered nets.Four electromagnetic launching units are attached to a revolving platform,from w...High-altitude rescue is dangerous and difficult.A new rescue method is proposed here based on electromagnetically launched tethered nets.Four electromagnetic launching units are attached to a revolving platform,from which four projectiles are launched.The four projectiles are connected to a tethered net,bringing it into motion.As the tethered net approaches and comes into contact with the object,the object will be trapped,and the rescue task will then be completed as long as the tethered net can be restored along with the trapped object.The structural design of the electromagnetic launching unit is presented with the established mathematical model.The motion characteristics of the launched projectiles are studied and their exit velocities are modeled and measured.Terminal velocities of these projectiles are characterized,and the final shape and position of the projected tethered net are obtained.This study validates the feasibility of using electromagnetically launched tethered nets to perform high-altitude rescues.展开更多
As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canist...As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.展开更多
Sea-based rocket launches encounter significant challenges stemming from dynamic marine environmental interactions.During the hot launch phase,characterized by low-velocity ascent,the departure of the rocket from the ...Sea-based rocket launches encounter significant challenges stemming from dynamic marine environmental interactions.During the hot launch phase,characterized by low-velocity ascent,the departure of the rocket from the oscillatory platform exhibits heightened sensitivity to external disturbances.In the development stage,assessing the launch dynamics and the clearance between the rocket and framed launcher are crucial for improving the reliability of sea-based rocket launches in rough sea conditions.This study presents a high-fidelity dynamic model of maritime hot launch system,demonstrating 3.21%prediction error through rigorous validation against experimental datasets from comprehensive modal analyses and the full-scale rocket flight test.To mitigate collision risks,we develop a computational method employing spatial vector analysis for dynamic measurement of rocket-launcher clearance during departure.Systematic investigations reveal that in rough sea conditions,optimal departure dynamics are achieved at θ_(thrust)=270°nozzle azimuth configuration,reducing failure probability compared to conventional orientations.The developed assessment framework not only resolves critical safety challenges in current sea launch systems but also establishes foundational principles for optimizing adapter axial configuration patterns in future designs.展开更多
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ...The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes.展开更多
On January 15,2025,the China Road and Bridge Corporation(CRBC)Kenya Office and Africa Star Railway Operation Company Limited(Afristar),in collaboration with the Dream Building Service Association(DBSA),held the launch...On January 15,2025,the China Road and Bridge Corporation(CRBC)Kenya Office and Africa Star Railway Operation Company Limited(Afristar),in collaboration with the Dream Building Service Association(DBSA),held the launching ceremony for the International Free Lunch Programme at a school in the Mathare slum community of Nairobi.展开更多
On August 20,the Xi Jinping Thought on Diplomacy Studies Center held a book launch event“Hand in Hand,Heart to Heart-Toward a Shared Future”for Stories of the SCO in the New Era in Beijing.China's Assistant Mini...On August 20,the Xi Jinping Thought on Diplomacy Studies Center held a book launch event“Hand in Hand,Heart to Heart-Toward a Shared Future”for Stories of the SCO in the New Era in Beijing.China's Assistant Minister of Foreign Affairs Liu Bin and Deputy Secretary-General of the Shanghai Cooperation Organization(SCO)Ahmad Saidmurodzoda delivered speeches at the event,which was also attended by Zhang Deguang,China's former Vice Foreign Minister and the SCO's inaugural Secretary-General.展开更多
Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon d...Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon dioxide is close to room temperature,making SCD a potential new working medium for pneumatic launch.To analyze the feasibility of this conception,an analytical model of a pneumatic catapult is established on basis of the conservations of mass and energy.The model consists of a high-pressure chamber and a low-pressure chamber connected by multiple valves,and there is a movable piston in the low-pressure chamber that can push an aircraft to accelerate.The effects of the launch readiness state of SCD in the high-pressure chamber,the initial volume of the low-pressure chamber and the valve control on the movement of the aircraft are analyzed.It is found that there is a restrictive relation between the temperature and pressure of the launch readiness state of SCD,i.e.,there is a maximum allowable launch readiness pressure when the launch readiness temperature is fixed.If this restrictive relation is not satisfied,the working medium in the low-pressure chamber will drop to its triple point within a few milliseconds,leading to a launch failure.Owing to this restrictive relation,there is an optimal launch readiness state of SCD with the highest working capacity for any allowable launch readiness temperature.The pressure of the low-pressure chamber will decrease significantly as the initial volume increases,leading to a decreased acceleration of the aircraft.The acceleration can be controlled below a critical value by a designed sequential blasting technique of multiple valves.The calculated results show that a 500 kg aircraft can be accelerated from 0 to 58 m/s in 0.9 s with 36 kg of carbon dioxide.This research provides a new technique for the controllable cold launch of an aircraft.展开更多
This paper introduces the sea-launch technology of a cryogenic liquid-fueled medium-lift rocket.It first reviews the current state of sea launch technology,and then gives a brief introduction of China’s New Generatio...This paper introduces the sea-launch technology of a cryogenic liquid-fueled medium-lift rocket.It first reviews the current state of sea launch technology,and then gives a brief introduction of China’s New Generation Medium-lift Launch Vehicle(NGMLV).The innovations in the NGMVL,such as responsive test and launch control,a H3 launch model,and unmanned operations,provide convenience for sea launches.Based on these innovations,this paper proposes a sea launch scheme,including the system configuration,test and launch processes,and an improved adaptive design for the rocket.Then,the launch platform is discussed in detail,which integrates the functions of sea transportation,assembly and test,as well as technical and launch areas.The layout and function divisions,fluid filling,gas supply and distribution systems,and lossless storage technology of LH2 are described in order.This breakthrough in sea launch technology will enable China to launch medium and large satellites and constellations‘both on land and sea’,especially into low-inclination Low-Earth Orbits(LEOs),and it allows China to remain competitive in the fast-paced space industry.展开更多
Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include...Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include the business process construction of launching mission planning,validation of the effectiveness of the launching scheme,etc.This paper pro-poses the agile space emergency launching mission planning simulation and verification method,which systematically con-structs the overall technical framework of space emergency launching mission planning with multi-field area,multi-platform and multi-task parallel under the constraint of resource schedul-ing for the first time.It supports flexible reconstruction of mis-sion planning processes such as launching target planning,tra-jectory planning,path planning,action planning and launching time analysis,and can realize on-demand assembly of operation links under different mission scenarios and different plan condi-tions,so as to quickly modify and generate launching schemes.It supports the fast solution of rocket trajectory data and the accurate analysis of multi-point salvo time window recheck and can realize the fast conflict resolution of launching missions in the dimensions of launching position and launching window sequence.It supports lightweight scenario design,modular flexi-ble simulation,based on launching style,launching platform,launching rules,etc.,can realize the independent mapping of mission planning results to two-dimensional and three-dimen-sional visual simulation models,so as to achieve a smooth con-nection between mission planning and simulation.展开更多
Following the successful maiden flight of the Long March 11(LM-11) launch vehicle from the Jiuquan Satellite Launch Center in September 2015, the first sea-launched carrier rocket dedicated to provide a launch service...Following the successful maiden flight of the Long March 11(LM-11) launch vehicle from the Jiuquan Satellite Launch Center in September 2015, the first sea-launched carrier rocket dedicated to provide a launch service for small satellites and their constellations, the Long March 11 Sea Launch(LM-11 SL) has been under development by the China Academy of Launch Vehicle Technology(CALT) and the China Great Wall Industry Corporation(CGWIC). It is planned to commence launch service in 2018. Based on the LM-11, a land-launched four-staged solid launch vehicle which has entered the market and accomplished launch missions for several small satellites in the past 3 years, the newly adopted sea launch technology enables transport and launch of LM-11 SL from maritime ships, providing flexible launch location selection.After inheriting the mature launch vehicle technologies from previous members of the Long March launch vehicle family and adopting a new way of launching from the sea, the LM-11 SL is capable of sending payloads into low Earth orbits with all altitudes and inclinations, from 200 km to 1000 km, from equatorial to sun synchronous, within a shortduration launch campaign. The LM-11 SL provides a flexible, reliable and economical launch service for the global small satellite industry.展开更多
This paper introduces a launch vehicle scheme for the new generation of cryogenic and quick-launch launch vehicle(LM-6). The main technical innovations of LM-6 launch vehicle include the capability of twenty satellite...This paper introduces a launch vehicle scheme for the new generation of cryogenic and quick-launch launch vehicle(LM-6). The main technical innovations of LM-6 launch vehicle include the capability of twenty satellites launched by one vehicle, high-pressure staged combustion cycle engine and oxygen tank self-pressurization, sandwich bulkhead tank with 200 K temperature difference, and 7-day quick-launch using the "three horizontals" test and launch mode with integral transportation and erection. The future development of the quick-launch launch vehicle is predicted based upon the need for vehicle mission coverage improvement, better response speed, and stronger market competiveness.展开更多
With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as ...With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.展开更多
Satellite launch vehicle lies at the cross-road of multiple challenging technologies and its design and optimization present a typical example of multidisciplinary design and optimization(MDO) process.The complexity...Satellite launch vehicle lies at the cross-road of multiple challenging technologies and its design and optimization present a typical example of multidisciplinary design and optimization(MDO) process.The complexity of problem demands highly effi-cient and effective algorithm that can optimize the design.Hyper heuristic approach(HHA) based on meta-heuristics is applied to the optimization of air launched satellite launch vehicle(ASLV).A non-learning random function(NLRF) is proposed to con-trol low-level meta-heuristics(LLMHs) that increases certainty of global solution,an essential ingredient required in product conceptual design phase of aerospace systems.Comprehensive empirical study is performed to evaluate the performance advan-tages of proposed approach over popular non-gradient based optimization methods.Design of ASLV encompasses aerodynamics,propulsion,structure,stages layout,mass distribution,and trajectory modules connected by multidisciplinary feasible design approach.This approach formulates explicit system-level goals and then forwards the design optimization process entirely over to optimizer.This distinctive approach for launch vehicle system design relieves engineers from tedious,iterative task and en-ables them to improve their component level models.Mass is an impetus on vehicle performance and cost,and so it is considered as the core of vehicle design process.Therefore,gross launch mass is to be minimized in HHA.展开更多
In view of that existing opening technologies of front cover for rocket launch canister have disadvantages such as causing damage on the ground equipment,not being reused and easily broken.A novel reusable non-separat...In view of that existing opening technologies of front cover for rocket launch canister have disadvantages such as causing damage on the ground equipment,not being reused and easily broken.A novel reusable non-separation spring-driven opening scheme is proposed to achieve rapid and reliable opening of the front cover.The mathematical model of the opening process of the front cover is established by the rigid body dynamics theory.To establish a response surface model to optimize the opening scheme,three main influencing factors of the opening process are obtained through the designed experiments,including the pre-compression,the stiffness of the thrust spring,and the thrust spring force arm length.In addition,the prescribed kinematic law was taken as constraint,and the smaller thrust spring preliminary pressure and angular velocity was taken as optimization expectations.The results show that the opening scheme meets the design requirements on opening process well.It also shows that the optimized scheme can reduce the kinetic energy of the front cover,and the impact on the canister effectively,achieving a reliable and rapid opening of the front cover.展开更多
This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulat...This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulation.Taking a ground-borne multiple launch rocket systems(MLRS),the focus is on the launching subsystem comprising the rocket,flexible tube,and tube tail.The launching subsystem is treated as a coupled rigid-flexible multibody system,where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion.Firstly,the tube and tube tail can be elegantly handled by the MSTMM,a computationally efficient order-N formulation.Then,the equation of motion of the in-bore rocket with relative kinematics w.r.t.the tube using the Newton-Euler method is derived.Finally,the rocket,tube,and tube tail dynamics are coupled,yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems.The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks,self-propelled artilleries,and other air-borne and naval-borne weapons undergoing large motion.Numerical simulation results of LDMF are given and partially verified by the experiment.展开更多
In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure ...In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.展开更多
This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the R...This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.展开更多
文摘On June 9,2025,CIIS held a launch event for its research report“Promoting Modernization Across Countries Through the Global Development Initiative.”The event was attended by CIIS President Chen Bo,Ambassador of Barbados to China Hallam Henry,Ambassador of Grenada to China Ma Yan,Ambassador of Timor-Leste to China Loro Horta,Ambassador of Bolivia to China Hugo Siles,Ambassador of Venezuela to China Remigio Ceballos Ichaso,Ambassador of Nepal to China Krishna Prasad Oli,Vice Director of the China Foreign Languages Publishing Administration and President of the Institute of Contemporary China and the World Yu Yunquan,Director of the Institute of International Strategy at Party School of the Central Committee(National Academy of Governance)Wu Zhicheng,and Vice Chairman of the National Global Strategy Think Tank at Chinese Academy of Social Sciences Wang Lei,all of whom delivered remarks at the launch.
基金supported by the National Natural Science Foundation of China(Nos.52495000 and 52332012).
文摘In the era of global space industry’s rapid expansion,reusable launch technology has the advantage of cost reduction,but makes launch frequency and flight reliability remain critical.This study proposes that Artificial Intelligence(AI)would be the potential disruptive technology to solve these challenges.AI enables transformative capabilities for launch vehicles which are pointed out in four domains:Agile launch operations enabling automate testing,fault diagnosis,and decision-making for targeting hour-level launch cycles and minute-level fault resolution;high-reliability flight enabling real-time autonomous fault diagnosis,mission replanning,and fault-tolerant control within seconds during anomalies,potentially improving reliability by 1–2 orders of magnitude;rapid maintenance enabling real-time health monitoring and lifespan prediction for swift relaunch decisions;efficient space traffic management enabling predict/resolve orbital conflicts amid growing congestion from satellites and debris.The key challenges for AI applications are analyzed as well,including multi-system coupling,uncertain failure modes and narrow flight corridors,limited sensor data,and massive heterogeneous data processing.Finally,the study also proposes that AI promises substantial efficiency gains in launch vehicle design,manufacturing,and testing through multidisciplinary optimization and reduced reliance on physical testing.
基金Zhejiang Provincial Natural Science Foundation of China(No.LY22E050013)China Postdoctoral Science Foundation(No.2021M690545)National Natural Science Foundation of China(No.51805124).
文摘High-altitude rescue is dangerous and difficult.A new rescue method is proposed here based on electromagnetically launched tethered nets.Four electromagnetic launching units are attached to a revolving platform,from which four projectiles are launched.The four projectiles are connected to a tethered net,bringing it into motion.As the tethered net approaches and comes into contact with the object,the object will be trapped,and the rescue task will then be completed as long as the tethered net can be restored along with the trapped object.The structural design of the electromagnetic launching unit is presented with the established mathematical model.The motion characteristics of the launched projectiles are studied and their exit velocities are modeled and measured.Terminal velocities of these projectiles are characterized,and the final shape and position of the projected tethered net are obtained.This study validates the feasibility of using electromagnetically launched tethered nets to perform high-altitude rescues.
基金supported by National Natural Science Foundation of China(Grant No.92266201).
文摘As the performance of the box-type multiple launch rocket system(BMLRS)improves,its mechanical structures,particularly the plane clearance design between the slider on the rocket and the guide inside the launch canister,have grown increasingly complex.However,deficiencies still exist in the current launch modeling theory for BMLRS.In this study,a multi-rigid-flexible-body launch dynamics model coupling the launch platform and rocket was established using the multibody system transfer matrix method and the Newton-Euler formulation.Furthermore,considering the bending of the launch canister,a detection algorithm for slider-guide plane clearance contact was proposed.To quantify the contact force and friction effect between the slider and guide,the contact force model and modified Coulomb model were introduced.Both the modal and launch tests were conducted.Additionally,the modal convergence was verified.By comparing the modal experiments and simulation results,the maximum relative error of the eigenfrequency is 3.29%.thereby verifying the accuracy of the developed BMLRS dynamics model.Furthermore,the launch test validated the proposed plane clearance contact model.Moreover,the study investigated the influence of various model parameters on the dynamic characteristics of BMLRS,including launch canister bending stiffness,slider and guide material,slider-guide clearance,slider length and layout.This analysis of influencing factors provides a foundation for future optimization in BMLRS design.
基金the experimental technology support provided by the China Academy of Launch Vehicle Technology
文摘Sea-based rocket launches encounter significant challenges stemming from dynamic marine environmental interactions.During the hot launch phase,characterized by low-velocity ascent,the departure of the rocket from the oscillatory platform exhibits heightened sensitivity to external disturbances.In the development stage,assessing the launch dynamics and the clearance between the rocket and framed launcher are crucial for improving the reliability of sea-based rocket launches in rough sea conditions.This study presents a high-fidelity dynamic model of maritime hot launch system,demonstrating 3.21%prediction error through rigorous validation against experimental datasets from comprehensive modal analyses and the full-scale rocket flight test.To mitigate collision risks,we develop a computational method employing spatial vector analysis for dynamic measurement of rocket-launcher clearance during departure.Systematic investigations reveal that in rough sea conditions,optimal departure dynamics are achieved at θ_(thrust)=270°nozzle azimuth configuration,reducing failure probability compared to conventional orientations.The developed assessment framework not only resolves critical safety challenges in current sea launch systems but also establishes foundational principles for optimizing adapter axial configuration patterns in future designs.
文摘The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes.
文摘On January 15,2025,the China Road and Bridge Corporation(CRBC)Kenya Office and Africa Star Railway Operation Company Limited(Afristar),in collaboration with the Dream Building Service Association(DBSA),held the launching ceremony for the International Free Lunch Programme at a school in the Mathare slum community of Nairobi.
文摘On August 20,the Xi Jinping Thought on Diplomacy Studies Center held a book launch event“Hand in Hand,Heart to Heart-Toward a Shared Future”for Stories of the SCO in the New Era in Beijing.China's Assistant Minister of Foreign Affairs Liu Bin and Deputy Secretary-General of the Shanghai Cooperation Organization(SCO)Ahmad Saidmurodzoda delivered speeches at the event,which was also attended by Zhang Deguang,China's former Vice Foreign Minister and the SCO's inaugural Secretary-General.
基金This work was funded by the National Natural Science Foundation of China(No.51576188).
文摘Compared with the conventionally gaseous or liquid working media,the specific internal energy of supercritical carbon dioxide(SCD)is higher at the same temperature and pressure,and the critical temperature of carbon dioxide is close to room temperature,making SCD a potential new working medium for pneumatic launch.To analyze the feasibility of this conception,an analytical model of a pneumatic catapult is established on basis of the conservations of mass and energy.The model consists of a high-pressure chamber and a low-pressure chamber connected by multiple valves,and there is a movable piston in the low-pressure chamber that can push an aircraft to accelerate.The effects of the launch readiness state of SCD in the high-pressure chamber,the initial volume of the low-pressure chamber and the valve control on the movement of the aircraft are analyzed.It is found that there is a restrictive relation between the temperature and pressure of the launch readiness state of SCD,i.e.,there is a maximum allowable launch readiness pressure when the launch readiness temperature is fixed.If this restrictive relation is not satisfied,the working medium in the low-pressure chamber will drop to its triple point within a few milliseconds,leading to a launch failure.Owing to this restrictive relation,there is an optimal launch readiness state of SCD with the highest working capacity for any allowable launch readiness temperature.The pressure of the low-pressure chamber will decrease significantly as the initial volume increases,leading to a decreased acceleration of the aircraft.The acceleration can be controlled below a critical value by a designed sequential blasting technique of multiple valves.The calculated results show that a 500 kg aircraft can be accelerated from 0 to 58 m/s in 0.9 s with 36 kg of carbon dioxide.This research provides a new technique for the controllable cold launch of an aircraft.
基金supported by the Research on Design Technology of Sea Launch and Recovery Platform(Ship),one High Tech Research Project of MIIT,China。
文摘This paper introduces the sea-launch technology of a cryogenic liquid-fueled medium-lift rocket.It first reviews the current state of sea launch technology,and then gives a brief introduction of China’s New Generation Medium-lift Launch Vehicle(NGMLV).The innovations in the NGMVL,such as responsive test and launch control,a H3 launch model,and unmanned operations,provide convenience for sea launches.Based on these innovations,this paper proposes a sea launch scheme,including the system configuration,test and launch processes,and an improved adaptive design for the rocket.Then,the launch platform is discussed in detail,which integrates the functions of sea transportation,assembly and test,as well as technical and launch areas.The layout and function divisions,fluid filling,gas supply and distribution systems,and lossless storage technology of LH2 are described in order.This breakthrough in sea launch technology will enable China to launch medium and large satellites and constellations‘both on land and sea’,especially into low-inclination Low-Earth Orbits(LEOs),and it allows China to remain competitive in the fast-paced space industry.
文摘Space emergency launching is to send a satellite into space by using a rapid responsive solid rocket in the bounded time to implement the emergency Earth observation mission.The key and difficult points mainly include the business process construction of launching mission planning,validation of the effectiveness of the launching scheme,etc.This paper pro-poses the agile space emergency launching mission planning simulation and verification method,which systematically con-structs the overall technical framework of space emergency launching mission planning with multi-field area,multi-platform and multi-task parallel under the constraint of resource schedul-ing for the first time.It supports flexible reconstruction of mis-sion planning processes such as launching target planning,tra-jectory planning,path planning,action planning and launching time analysis,and can realize on-demand assembly of operation links under different mission scenarios and different plan condi-tions,so as to quickly modify and generate launching schemes.It supports the fast solution of rocket trajectory data and the accurate analysis of multi-point salvo time window recheck and can realize the fast conflict resolution of launching missions in the dimensions of launching position and launching window sequence.It supports lightweight scenario design,modular flexi-ble simulation,based on launching style,launching platform,launching rules,etc.,can realize the independent mapping of mission planning results to two-dimensional and three-dimen-sional visual simulation models,so as to achieve a smooth con-nection between mission planning and simulation.
文摘Following the successful maiden flight of the Long March 11(LM-11) launch vehicle from the Jiuquan Satellite Launch Center in September 2015, the first sea-launched carrier rocket dedicated to provide a launch service for small satellites and their constellations, the Long March 11 Sea Launch(LM-11 SL) has been under development by the China Academy of Launch Vehicle Technology(CALT) and the China Great Wall Industry Corporation(CGWIC). It is planned to commence launch service in 2018. Based on the LM-11, a land-launched four-staged solid launch vehicle which has entered the market and accomplished launch missions for several small satellites in the past 3 years, the newly adopted sea launch technology enables transport and launch of LM-11 SL from maritime ships, providing flexible launch location selection.After inheriting the mature launch vehicle technologies from previous members of the Long March launch vehicle family and adopting a new way of launching from the sea, the LM-11 SL is capable of sending payloads into low Earth orbits with all altitudes and inclinations, from 200 km to 1000 km, from equatorial to sun synchronous, within a shortduration launch campaign. The LM-11 SL provides a flexible, reliable and economical launch service for the global small satellite industry.
文摘This paper introduces a launch vehicle scheme for the new generation of cryogenic and quick-launch launch vehicle(LM-6). The main technical innovations of LM-6 launch vehicle include the capability of twenty satellites launched by one vehicle, high-pressure staged combustion cycle engine and oxygen tank self-pressurization, sandwich bulkhead tank with 200 K temperature difference, and 7-day quick-launch using the "three horizontals" test and launch mode with integral transportation and erection. The future development of the quick-launch launch vehicle is predicted based upon the need for vehicle mission coverage improvement, better response speed, and stronger market competiveness.
基金Aeronautical Science Foundation of China (2006ZA51004)
文摘With the aid of multi-agent based modeling approach to complex systems, the hierarchy simulation models of carrier-based aircraft catapult launch are developed. Ocean, carrier, aircraft, and atmosphere are treated as aggregation agents, the detailed components like catapult, landing gears, and disturbances are considered as meta-agents, which belong to their aggregation agent. Thus, the model with two layers is formed i.e. the aggregation agent layer and the meta-agent layer. The information communication among all agents is described. The meta-agents within one aggregation agent communicate with each other directly by information sharing, but the meta-agents, which belong to different aggregation agents exchange their information through the aggregation layer first, and then perceive it from the sharing environment, that is the aggregation agent. Thus, not only the hierarchy model is built, but also the environment perceived by each agent is specified. Meanwhile, the problem of balancing the independency of agent and the resource consumption brought by real-time communication within multi-agent system (MAS) is resolved. Each agent involved in carrier-based aircraft catapult launch is depicted, with considering the interaction within disturbed atmospheric environment and multiple motion bodies including carrier, aircraft, and landing gears. The models of reactive agents among them are derived based on tensors, and the perceived messages and inner frameworks of each agent are characterized. Finally, some results of a simulation instance are given. The simulation and modeling of dynamic system based on multi-agent system is of benefit to express physical concepts and logical hierarchy clearly and precisely. The system model can easily draw in kinds of other agents to achieve a precise simulation of more complex system. This modeling technique makes the complex integral dynamic equations of multibodies decompose into parallel operations of single agent, and it is convenient to expand, maintain, and reuse the program codes.
基金supported by National Natural Science Foundation of China(61425008,61333004,61273054)Top-Notch Young Talents Program of China,and Aeronautical Foundation of China(2015ZA51013)
文摘Satellite launch vehicle lies at the cross-road of multiple challenging technologies and its design and optimization present a typical example of multidisciplinary design and optimization(MDO) process.The complexity of problem demands highly effi-cient and effective algorithm that can optimize the design.Hyper heuristic approach(HHA) based on meta-heuristics is applied to the optimization of air launched satellite launch vehicle(ASLV).A non-learning random function(NLRF) is proposed to con-trol low-level meta-heuristics(LLMHs) that increases certainty of global solution,an essential ingredient required in product conceptual design phase of aerospace systems.Comprehensive empirical study is performed to evaluate the performance advan-tages of proposed approach over popular non-gradient based optimization methods.Design of ASLV encompasses aerodynamics,propulsion,structure,stages layout,mass distribution,and trajectory modules connected by multidisciplinary feasible design approach.This approach formulates explicit system-level goals and then forwards the design optimization process entirely over to optimizer.This distinctive approach for launch vehicle system design relieves engineers from tedious,iterative task and en-ables them to improve their component level models.Mass is an impetus on vehicle performance and cost,and so it is considered as the core of vehicle design process.Therefore,gross launch mass is to be minimized in HHA.
文摘In view of that existing opening technologies of front cover for rocket launch canister have disadvantages such as causing damage on the ground equipment,not being reused and easily broken.A novel reusable non-separation spring-driven opening scheme is proposed to achieve rapid and reliable opening of the front cover.The mathematical model of the opening process of the front cover is established by the rigid body dynamics theory.To establish a response surface model to optimize the opening scheme,three main influencing factors of the opening process are obtained through the designed experiments,including the pre-compression,the stiffness of the thrust spring,and the thrust spring force arm length.In addition,the prescribed kinematic law was taken as constraint,and the smaller thrust spring preliminary pressure and angular velocity was taken as optimization expectations.The results show that the opening scheme meets the design requirements on opening process well.It also shows that the optimized scheme can reduce the kinetic energy of the front cover,and the impact on the canister effectively,achieving a reliable and rapid opening of the front cover.
基金The research is financially supported by the National Natural Science Foundation of China(No.11972193).
文摘This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire(LDMF)using a mixed formulation of the transfer matrix method for multibody systems(MSTMM)and Newton-Euler formulation.Taking a ground-borne multiple launch rocket systems(MLRS),the focus is on the launching subsystem comprising the rocket,flexible tube,and tube tail.The launching subsystem is treated as a coupled rigid-flexible multibody system,where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion.Firstly,the tube and tube tail can be elegantly handled by the MSTMM,a computationally efficient order-N formulation.Then,the equation of motion of the in-bore rocket with relative kinematics w.r.t.the tube using the Newton-Euler method is derived.Finally,the rocket,tube,and tube tail dynamics are coupled,yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems.The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks,self-propelled artilleries,and other air-borne and naval-borne weapons undergoing large motion.Numerical simulation results of LDMF are given and partially verified by the experiment.
文摘In this paper,a novel launch dynamics measurement system based on the photoelectric sensor pair is built.The actual muzzle time(i.e.a time duration that originates from the initial movement to the rocket’s departure from the muzzle)and the muzzle velocity are measured.Compared with the classical methods,the actual muzzle time is obtained by eliminating the ignition delay.The comparative analysis method is proposed with numerical simulations established by the transfer matrix method for multibody systems.The experiment results indicate that the proposed measurement system can effectively measure the actual muzzle time and reduce the error of classical methods,which match well with the simulation results showing the launch dynamics model is reliable and helpful for further analysis and design of the MLRS.
基金The Natural Science Foundation of China(No.11972193)the Science Challenge Project(No.TZ2016006-0104)。
文摘This study establishes the launch dynamics method,sensitivity analysis method,and multiobjective dynamic optimization method for the dynamic simulation analysis of the multiple launch rocket system(MLRS)based on the Riccati transfer matrix method for multibody systems(RMSTMM),direct differentiation method(DDM),and genetic algorithm(GA),respectively.Results show that simulation results of the dynamic response agree well with test results.The sensitivity analysis method is highly programming,the matrix order is low,and the calculation time is much shorter than that of the Lagrange method.With the increase of system complexity,the advantage of a high computing speed becomes more evident.Structural parameters that have the greatest influence on the dynamic response include the connection stiffness between the pitching body and the rotating body,the connection stiffness between the rotating body and the vehicle body,and the connection stiffnesses among 14^(#),16^(#),and 17^(#)wheels and the ground,which are the optimization design variables.After optimization,angular velocity variances of the pitching body in the revolving and pitching directions are reduced by 97.84%and 95.22%,respectively.