期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Active non-bonding oxygen mediate lattice oxygen oxidation on NiFe_(2)O_(4)achieving efficient and stable water oxidation
1
作者 Jiangyu Tang Xiao Wang +5 位作者 Yunfa Wang Min Shi Peng Huo Jianxiang Wu Qiaoxia Li Qunjie Xu 《Chinese Journal of Catalysis》 2025年第5期164-175,共12页
The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically appl... The oxygen evolution reaction(OER)serves as a fundamental half–reaction in the electrolysis of water for hydrogen production,which is restricted by the sluggish OER reaction kinetics and unable to be practically applied.The traditional lattice oxygen oxidation mechanism(LOM)offers an advantageous route by circumventing the formation of M-OOH^(*)in the adsorption evolution mechanism(AEM),thus enhancing the reaction kinetics of the OER but resulting in possible structural destabilization due to the decreased M–O bond order.Fortunately,the asymmetry of tetrahedral and octahedral sites in transition metal spinel oxides permits the existence of non-bonding oxygen,which could be activated by rational band structure design for direct O-O coupling,where the M–O bond maintains its initial bond order.Here,non-bonding oxygen was introduced into NiFe_(2)O_(4)via annealing in an oxygen-deficient atmosphere.Then,in-situ grown sulfate species on octahedral nickel sites significantly improved the reactivity of the non-bonding oxygen electrons,thereby facilitating the transformation of the redox center from metal to oxygen.LOM based on non-bonding oxygen(LOMNB)was successfully activated within NiFe_(2)O_(4),exhibiting a low overpotential of 206 mV to achieve a current density of 10 mA cm^(-2)and excellent durability of stable operation for over 150 h.Additionally,catalysts featuring varying band structures were synthesized for comparative analysis,and it was found that the reversible redox processes of non-bonding oxygen and the accumulation of non-bonding oxygen species containing 2p holes are critical prerequisites for triggering and sustaining the LOMNB pathway in transition metal spinel oxides.These findings may provide valuable insights for the future development of spinel-oxide-based LOM catalysts. 展开更多
关键词 Non-bonding oxygen lattice oxygen oxidation mechanism oxygen evolution reaction NiFe_(2)O_(4) Spinel oxide
在线阅读 下载PDF
Recent Advances in the Comprehension and Regulation of Lattice Oxygen Oxidation Mechanism in Oxygen Evolution Reaction 被引量:4
2
作者 Xiaokang Liu Zexing He +6 位作者 Muhammad Ajmal Chengxiang Shi Ruijie Gao Lun Pan Zhen‑Feng Huang Xiangwen Zhang Ji‑Jun Zou 《Transactions of Tianjin University》 EI CAS 2023年第4期247-253,共7页
Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution... Water electrolysis,a process for producing green hydrogen from renewable energy,plays a crucial role in the transition toward a sustainable energy landscape and the realization of the hydrogen economy.Oxygen evolution reaction(OER)is a critical step in water electrolysis and is often limited by its slow kinetics.Two main mechanisms,namely the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM),are commonly considered in the context of OER.However,designing efficient catalysts based on either the AEM or the LOM remains a topic of debate,and there is no consensus on whether activity and stability are directly related to a certain mechanism.Considering the above,we discuss the characteristics,advantages,and disadvantages of AEM and LOM.Additionally,we provide insights on leveraging the LOM to develop highly active and stable OER catalysts in future.For instance,it is essential to accurately differentiate between reversible and irreversible lattice oxygen redox reactions to elucidate the LOM.Furthermore,we discuss strategies for effectively activating lattice oxygen to achieve controllable steady-state exchange between lattice oxygen and an electrolyte(OH^(-)or H_(2)O).Additionally,we discuss the use of in situ characterization techniques and theoretical calculations as promising avenues for further elucidating the LOM. 展开更多
关键词 Water electrolysis oxygen evolution reaction(OER) Adsorbate evolution mechanism(AEM) lattice oxygen oxidation mechanism(LOM)
在线阅读 下载PDF
Selective Oxidation of Propane by Lattice Oxygen of Vanadium-Phosphorous Oxide in a Pulse Reactor 被引量:1
3
作者 RusongZhao JianWang +1 位作者 QunDong JianhongLiu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2005年第2期88-94,共7页
Selective oxidation of propane by lattice oxygen of vanadium-phosphorus oxide(VPO) catalysts was investigated with a pulse reactor in which the oxidation of propane and there-oxidation of catalyst were implemented alt... Selective oxidation of propane by lattice oxygen of vanadium-phosphorus oxide(VPO) catalysts was investigated with a pulse reactor in which the oxidation of propane and there-oxidation of catalyst were implemented alternately in the presence of water vapor. The principalproducts are acrylic acid (AA), acetic acid (HAc), and carbon oxides. In addition, small amounts ofC_1 and C_2 hydrocarbons were also found, molar ratio of AA to HAc is 1.4-2.2. The active oxygenspecies are those adsorbed on catalyst surface firmly and/or bound to catalyst lattice, i.e. latticeoxygen; the selective oxidation of propane on VPO catalysts can be carried out in a circulatingfluidized bed (CFB) riser reactor. For propane oxidation over VPO catalysts, the effects of reactiontemperature in a pulse reactor were found almost the same as in a steady-state flow reactor. Thatis, as the reaction temperature increases, propane conversion and the amount of C_1+C_2 hydrocarbonsin the product increase steadily, while selectivity to acrylic acid and to acetic acid increaseprior to 350℃ then begin to drop at temperatures higher than 350℃, and yields of acrylic acid andof acetic acid attained maximum at about 400℃. The maximum yields of acrylic acid and of aceticacid for a single-pass are 7.50% and 4.59% respectively, with 38.2% propane conversion. When theamount of propane pulsed decreases or the amount of catalyst loaded increases, the conversionincreases but the selectivity decreases. Increasing the flow rate of carrier gases causes theconversion pass through a minimum but selectivity and yields pass through a maximum. In a fixed bedreactor, it is hard to obtain high selectivity at a high reaction conversion due to the furtherdegradation of acrylic acid and acetic acid even though propane was oxidized by the lattice oxygen.The catalytic performance can be improved in the presence of excess propane. Propylene can beoxidized by lattice oxygen of VPO catalyst at 250℃, nevertheless, selectivity to AA and to HAc areeven lower, much more acetic acid was produced (molar ratio of AA to HAc is 0.19:1-0.83:1) thoughthe oxidation products are the same as from propane. 展开更多
关键词 propane oxidation acrylic acid acetic acid vanadium-phosphorus oxide lattice oxygen oxidation pulse reaction
在线阅读 下载PDF
Disordered Rocksalts with Lattice Oxygen Activation as Efficient Oxygen Evolution Electrocatalysts 被引量:1
4
作者 Zhengli Huan Haipeng Fu +1 位作者 Xuerong Zheng Huiming Ji 《Transactions of Tianjin University》 EI CAS 2023年第4期304-312,共9页
The lattice oxygen oxidation mechanism(LOM)provides an efficient pathway for accelerating the oxygen evolution reaction(OER)in certain electrocatalysts by activating and involving lattice oxygen in the catalytic OER p... The lattice oxygen oxidation mechanism(LOM)provides an efficient pathway for accelerating the oxygen evolution reaction(OER)in certain electrocatalysts by activating and involving lattice oxygen in the catalytic OER process.We investigated the potential of disordered rocksalts as catalysts for accelerating the OER through the LOM process,leveraging their unique metastable Li-O-Li bond states.Theoretical calculations were employed to predict the catalytic pathways and activities of disordered rocksalts(DRX),such as Li_(1.2)Co_(0.4)Ti_(0.5)O_(2)(LCTO).The results revealed that benefiting from the unhybridized Li-O electronic orbitals and the resulting metastable states of Li-O-Li bonds in DRX,LCTO exhibited a typical LOM pathway,and the lattice oxygen was easily activated and participated in the OER.The experimental results showed that LCTO exhibited a remarkable pH-dependent OER activity through the LOM pathway,with an overpotential of 241 mV at a current density of 10 mA/cm^(2),and excellent long-term stability.This work provides a novel chemical space for designing highly active and stable OER electrocatalysts by leveraging the LOM reaction pathway. 展开更多
关键词 lattice oxygen oxidation Disordered rocksalts oxygen evolution reaction ELECTROCATALYSTS
在线阅读 下载PDF
Antagonism effect of residual S triggers the dual-path mechanism for water oxidation 被引量:1
5
作者 Li Liu Jinming Cao +5 位作者 Siqi Hu Tinghui Liu Can Xu Wensheng Fu Xinguo Ma Xiaohui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期568-579,I0014,共13页
Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of ... Transition metal chalcogenides(TMCs)are recognized as pre-catalysts,and their(oxy)hydroxides derived from electrochemical reconstruction are the active species in the water oxidation.However,understanding the role of the residual chalcogen in the reconstructed layer is lacking in detail,and the corresponding catalytic mechanism remains controversial.Here,taking Cu_(1-x)Co_(x)S as a platform,we explore the regulating effect and existence form of the residual S doped into the reconstructive layer for oxygen evolution reaction(OER),where a dual-path OER mechanism is proposed.First-principles calculations and operando~(18)O isotopic labeling experiments jointly reveal that the residual S in the reconstructive layer of Cu_(1-x)Co_(x)S can wisely balance the adsorbate evolution mechanism(AEM)and lattice oxygen oxidation mechanism(LOM)by activating lattice oxygen and optimizing the adsorption/desorption behaviors at metal active sites,rather than change the reaction mechanism from AEM to LOM.Following such a dual-path OER mechanism,Cu_(0.4)Co_(0.6)S-derived Cu_(0.4)Co_(0.6)OSH not only overcomes the restriction of linear scaling relationship in AEM,but also avoids the structural collapse caused by lattice oxygen migration in LOM,so as to greatly reduce the OER potential and improved stability. 展开更多
关键词 Electrochemical reconstruction Adsorbate evolution mechanism lattice oxygen oxidation mechanism oxygen evolution reaction Residual sulfur
在线阅读 下载PDF
Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship 被引量:9
6
作者 Jiangtian Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期86-117,共32页
The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relat... The oxygen evolution reaction(OER)is the essential module in energy conversion and storage devices such as electrolyzer,rechargeable metal–air batteries and regenerative fuel cells.The adsorption energy scaling relations between the reaction intermediates,however,impose a large intrinsic overpotential and sluggish reaction kinetics on OER catalysts.Developing advanced electrocatalysts with high activity and stability based on non-noble metal materials is still a grand challenge.Central to the rational design of novel and high-efficiency catalysts is the development and understanding of quantitative structure–activity relationships,which correlate the catalytic activities with structural and electronic descriptors.This paper comprehensively reviews the benchmark descriptors for OER electrolysis,aiming to give an in-depth understanding on the origins of the electrocatalytic activity of the OER and further contribute to building the theory of electrocatalysis.Meanwhile,the cutting-edge research frontiers for proposing new OER paradigms and crucial strategies to circumvent the scaling relationship are also summarized.Challenges,opportunities and perspectives are discussed,intending to shed some light on the rational design concepts and advance the development of more efficient catalysts for enhancing OER performance. 展开更多
关键词 oxygen evolution Energy conversion and storage Scaling relationship Catalytic descriptors lattice oxygen oxidation
在线阅读 下载PDF
Remarkable promotion effect of trace sulfation on OMS-2nanorod catalysts for the catalytic combustion of ethanol 被引量:9
7
作者 Jie Zhang Changbin Zhang Hong He 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第9期69-75,共7页
OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentratio... OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using Mn SO4(OMS-2-SO4) and Mn(CH3COO)2(OMS-2-AC) as precursors. SO4^2--doped OMS-2-AC catalysts with different SO4^2-concentrations were prepared next by adding(NH4)2SO4solution into OMS-2-AC samples to investigate the effect of the anion SO4^2-on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4^2-doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4^2-(SO4/catalyst = 0.5% W/W). The samples were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), X-ray photoelectron spectroscopy(XPS),inductively coupled plasma optical emission spectroscopy(ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4^2-species in the OMS-2-AC catalyst could decrease the Mn–O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4^2-species in OMS-2-SO4 samples. 展开更多
关键词 Manganese oxide Octahedral molecular sieves(OMS-2) Catalytic oxidation VOCs lattice oxygen
原文传递
Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution 被引量:3
8
作者 Dazhong Zhong Tan Li +6 位作者 Dong Wang Lina Li Jiancheng Wang Genyan Hao Guang Liu Qiang Zhao Jinping Li 《Nano Research》 SCIE EI CSCD 2022年第1期162-169,共8页
Oxygen evolution reaction(OER)is crucial for hydrogen production as well as other energy storage technologies.CoFe-layered double hydroxide(CoFe-OH)has been widely considered as one of the most efficient electrocataly... Oxygen evolution reaction(OER)is crucial for hydrogen production as well as other energy storage technologies.CoFe-layered double hydroxide(CoFe-OH)has been widely considered as one of the most efficient electrocatalysts for OER in basic aqueous solution.However,it still suffers from low activity in neutral electrolyte.This paper describes partially oxidized CoFe-OH(PO-CoFe-OH)with enhanced covalency of M-O bonds and displays enhanced OER performance under mild condition.Mechanism studies reveal the suitably enhanced M-O covalency in PO-CoFe-OH shifts the OER mechanism to lattice oxygen oxidation mechanism and also promotes the rate-limiting deprotonation,providing superior OER performance.It just requires the overpotentials of 186 and 365 mV to drive the current density densities of 1 and 10 mA·cm^(-2) in 0.1 M KHCO_(3) aqueous solution(pH=8.3),respectively.It provides a new process for rational design of efficient catalysts for water oxidation in mild conditions. 展开更多
关键词 lattice oxygen oxidation metal-oxygen covalency neutral oxygen evolution reaction
原文传递
Switchable metal and oxygen redox chemistry for highly-efficient oxygen evolution reaction 被引量:2
9
作者 Pei Wang Yongli Dong Jun-Ye Zhang 《Advanced Sensor and Energy Materials》 2023年第1期32-34,共3页
The sluggish electron transfer process in the oxygen evolution reaction(OER)greatly restrict the large-scale application of water electrolysis for hydrogen generation.The modification of the electronic states around t... The sluggish electron transfer process in the oxygen evolution reaction(OER)greatly restrict the large-scale application of water electrolysis for hydrogen generation.The modification of the electronic states around the Fermi level of the electrocatalysts is significant for accelerating the sluggish OER kinetics.So far,the OER kinetics solely involve either an adsorbate evolution mechanism(AEM),or a lattice oxygen oxidation mechanism(LOM).In a paper recently published in Nature,Xue and coworkers report an electron transfer mechanism that involves a switchable AEM and LOM in nickel-oxyhydroxide-based materials triggered by the light[1].In contrast with previously reported electrocatalysts,the electrocatalyst proceeding through this mechanism shows a better OER activity.Hence,the reported light-triggered mechanism that couples AEM and LOM pioneers an innovative pathway towards the exploration of OER kinetics. 展开更多
关键词 oxygen evolution reaction Adsorbate evolution mechanism lattice oxygen oxidation mechanism Coupled oxygen evolution mechanism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部