期刊文献+
共找到261,940篇文章
< 1 2 250 >
每页显示 20 50 100
Laser/Electron Beam Processing of As-cast Nd_2Fe_(14)B Alloy
1
作者 胡建东 张绪军 石朱生 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第6期435-438,共4页
It was found that the free Fe in the melted zone of the as—cast Nd_2Fe_(14)B alloy could be dissolved by Iaser/electron beam.The growth direction of Nd_2Fe_(14)B grains is nearly perpendicular to the sur- face of the... It was found that the free Fe in the melted zone of the as—cast Nd_2Fe_(14)B alloy could be dissolved by Iaser/electron beam.The growth direction of Nd_2Fe_(14)B grains is nearly perpendicular to the sur- face of the samples.EDX examination showed that Fe element was homogeneously distributed in the melted zone.Results presented in this paper have giv- en hint to remove free Fe in as—cast Nd_2Fe_(14)B alloy. 展开更多
关键词 Nd-Fe-B alloy laser/electron beam processing
在线阅读 下载PDF
Laser‑Induced Highly Stable Conductive Hydrogels for Robust Bioelectronics
2
作者 Yibo Li Hao Zhou +1 位作者 Huayong Yang Kaichen Xu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期117-120,共4页
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H... Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1) with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics. 展开更多
关键词 laser processing Conductive hydrogels Stable interface Bio-interfacing electrodes Bioelectronic application
在线阅读 下载PDF
Design and start-to-end beam dynamics simulation of the first super-radiant THz free-electron laser source in Thailand
3
作者 Natthawut Chaisueb Sakhorn Rimjaem 《Nuclear Science and Techniques》 2025年第7期222-235,共14页
A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation... A super-radiant terahertz free-electron laser(THz-FEL)light source was developed for the first time in Thailand and Southeast Asia at the PBP-CMU Electron Linac Laboratory(PCELL)of Chiang Mai University.This radiation source requires relatively ultrashort electron bunches to produce intense coherent THz pulses.Three electron bunch compression processes are utilized in the PCELL accelerator system comprising pre-bunch compression in an alpha magnet,velocity bunching in a radio-frequency(RF)linear accelerator(linac),and magnetic bunch compression in a 180°acromat system.Electron bunch compression in the magnetic compressor system poses considerable challenges,which are addressed through the use of three quadrupole doublets.The strengths of the quadrupole fields significantly influence the rotation of the beam line longitudinal phase space distribution along the bunch compressor.Start-to-end beam dynamics simulations using the ASTRA code were performed to optimize the electron beam properties for generating super-radiant THz-FEL radiation.The operational parameters considered in the simulations comprise the alpha magnet gradient,linac RF phase,and quadrupole field strengths.The optimization results show that 10-16MeV femtosecond electron bunches with a low energy spread(~0.2%),small normalized emittance(~15πmm·mrad),and high peak current(165-247A)can be produced by the PCELL accelerator system at the optimal parameters.A THz-FEL with sub-microjoule pulse energies can thus be obtained at the optimized electron beam parameters.The physical and conceptual design of the THz-FEL beamline were completed based on the beam dynamics simulation results.The construction and installation of this beamline are currently underway and expected to be completed by mid-2024.The commissioning of the beamline will then commence. 展开更多
关键词 THz radiation THz free-electron laser Super-radiant free-electron laser Pre-bunched free-electron laser Beam dynamic simulation Femtosecond electron bunches
在线阅读 下载PDF
Diagnosis of focal spots at relativistic intensity utilizing coherent radiation from laser-driven flying electron sheets
4
作者 Shirui Xu Zhuo Pan +22 位作者 Ying Gao Jiarui Zhao Shiyou Chen Zhusong Mei Xun Chen Ziyang Peng Xuan Liu Yulan Liang Tianqi Xu Tan Song Qingfan Wu Yujia Zhang Zhipeng Liu Zihao Zhang Haoran Chen Qihang Han Jundong Shen Chenghao Hua Kun Zhu Yanying Zhao Chen Lin Xueqing Yan Wenjun Ma 《Matter and Radiation at Extremes》 2025年第2期16-23,共8页
Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challe... Experimental validation of laser intensity is particularly important for the study of fundamental physics at extremely high intensities.However,reliable diagnosis of the focal spot and peak intensity faces huge challenges.In this work,we demonstrate for the firs time that the coherent radiation farfiel patterns from laser–foil interactions can serve as an in situ,real-time,and easy-to-implement diagnostic for an ultraintense laser focus.The laser-driven electron sheets,curved by the spatially varying laser fiel and leaving the targets at nearly the speed of light,produce doughnut-shaped patterns depending on the shapes of the focal spot and the absolute laser intensities.Assisted by particle-in-cell simulations,we can achieve measurements of the intensity and the focal spot,and provide immediate feedback to optimize the focal spots for extremely high intensity. 展开更多
关键词 diagnosis focal spot peak intensity laser foil interactions laser fi coherent radiation farfiel patterns laser driven electron sheets experimental validation laser intensity focal spot coherent radiation
在线阅读 下载PDF
Exploring chirped cosh-Gaussian laser beam for optimized electron acceleration in vacuum
5
作者 Vivek Sharma Vishal Thakur 《Communications in Theoretical Physics》 2025年第8期136-141,共6页
This research examines the dynamics of a cosh-Gaussian laser pulse travelling through a vacuum and its impact on electron acceleration. We examine the impact of several critical factors, such as laser electric field a... This research examines the dynamics of a cosh-Gaussian laser pulse travelling through a vacuum and its impact on electron acceleration. We examine the impact of several critical factors, such as laser electric field amplitude, decentered parameter, beam waist, and laser chirp parameter, on the energy gain of electrons using coupled momentum equations. Our results indicate that the energy acquisition of electrons escalates with the amplitude of the laser electric field, decentered parameter, and chirp parameter. An appropriate beam waist is essential for attaining energyefficient electron acceleration in a vacuum. Through the optimization of these parameters, we get a maximum electron energy gain of 2.80 Ge V. This study highlights the significance of customized laser pulse attributes in improving electron acceleration and aids in the progression of high-energy particle physics. 展开更多
关键词 electron acceleration in vacuum electron energy gain energy efficiency radially polarized laser frequency chirp cosh-Gaussian profile
原文传递
Impact of free electron laser coherence on imaging quality
6
作者 Shuang Wei Shuang Gong +1 位作者 Yang Bu Zi-Jian Song 《Chinese Physics B》 2025年第5期385-397,共13页
The high temporal and spatial coherence of free electron lasers(FELs)reduces the uniformity of the illumination field,leading to scattering effects that blur the edges of patterns,resulting in diminished accuracy and ... The high temporal and spatial coherence of free electron lasers(FELs)reduces the uniformity of the illumination field,leading to scattering effects that blur the edges of patterns,resulting in diminished accuracy and clarity.Traditional imaging models regard the light source as fully incoherent,making it difficult to assess the impact of partially coherent light fields on imaging.If FELs are used in imaging systems,their coherence must be considered.To address this issue,this study explores the relationship between coherence,imaging quality and speckle contrast through a simulation method based on random phases.The method divides the light beam into temporal and spatial coherence cells,analyzes their interactions,and simulates imaging results under different coherence conditions.Additionally,speckle patterns for various illumination modes are calculated to evaluate their effects on speckle contrast and illumination uniformity.The results indicate that under different illumination modes,illumination uniformity decreases as coherence increases,while speckle contrast increases with higher coherence.In terms of imaging quality,higher coherence leads to an increase in both line edge roughness(LER)and line width roughness(LWR),thereby reducing the imaging quality.Additionally,the narrower the line width,the greater the impact of coherence on the imaging quality,resulting in poorer imaging performance. 展开更多
关键词 free electron laser COHERENCE IMAGING speckle contrast field uniformity
原文传递
Start-to-end simulation for a compact terahertz free electron laser with a beam chopper system
7
作者 Rui-Ying Luo Qu-Shan Chen 《Nuclear Science and Techniques》 2025年第7期113-123,共11页
A thermionic gun is endowed with a long bunch tail,which presents challenges for the compact terahertz free electron laser(FEL)facility at the Huazhong University of Science and Technology.Owing to a large energy spre... A thermionic gun is endowed with a long bunch tail,which presents challenges for the compact terahertz free electron laser(FEL)facility at the Huazhong University of Science and Technology.Owing to a large energy spread,the tail particles do not contribute to the radiation.In the original design,an x-direction slit is used in the dispersive section of the transport line to remove the tail particles.This paper presents an improved scheme to remove the tail by introducing an RF beam chopper system at the exit of the electron gun,to prevent a significant number of tail particles from entering the linac.The facility remains compact while effectively removing the tail of the bunch.The parameters of the beam chopper system are designed.Bunch parameters and radiation performance are analyzed via a start-to-end simulation.The findings indicate that 43%of the particles can pass through the beam chopper system for subsequent acceleration and transport,which saves the RF power,reduces beam loss in the linac,reduces background noise,and suppresses the sideband instability.Simultaneously,the beam chopper system causes an increase in beam emittance,energy spread,and an offset in the center of the bunch.These effects can be mitigated by a solenoid,linac,and steering coils.The simulation results for the FEL show that the micro-pulse energy is greater than 1.1μJ in the frequency range of 2.8-9.7 THz,and the maximum micro-pulse energy is 1.28μJ. 展开更多
关键词 Beam chopper Beam tail Free electron laser Start-to-end simulation
在线阅读 下载PDF
3D laser structuring of supermetalphobic microstructures inside elastomer for multilayer high-density interconnect soft electronics
8
作者 Chengjun Zhang Qing Yang +5 位作者 Haoyu Li Zexiang Luo Yu Lu Jialiang Zhang Cheng Li Feng Chen 《International Journal of Extreme Manufacturing》 2025年第3期337-348,共12页
High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human... High-density interconnect(HDI)soft electronics that can integrate multiple individual functions into one miniaturized monolithic system is promising for applications related to smart healthcare,soft robotics,and human-machine interactions.However,despite the recent advances,the development of three-dimensional(3D)soft electronics with both high resolution and high integration is still challenging because of the lack of efficient manufacturing methods to guarantee interlayer alignment of the high-density vias and reliable interlayer electrical conductivity.Here,an advanced 3D laser printing pathway,based on femtosecond laser direct writing(FLDW),is demonstrated for preparing liquid metal(LM)-based any layer HDI soft electronics.FLDW technology,with the characteristics of high spatial resolution and high precision,allows the maskless fabrication of high-resolution embedded LM microchannels and high-density vertical interconnect accesses for 3D integrated circuits.High-aspect-ratio blind/through LM microstructures are formed inside the elastomer due to the supermetalphobicity induced during laser ablation.The LM-based HDI circuit featuring high resolution(~1.5μm)and high integration(10-layer electrical interconnection)is achieved for customized soft electronics,including various customized multilayer passive electric components,soft multilayer circuit,and cross-scale multimode sensors.The 3D laser printing method provides a versatile approach for developing chip-level soft electronics. 展开更多
关键词 3D soft electronics liquid metal high-density interconnection femtosecond laser direct writing supermetalphobicity
在线阅读 下载PDF
Improvement of photon energy at X-ray free-electron lasers using plasma-based afterburner
9
作者 Letian Liu Qianyi Ma +11 位作者 Yuhui Xia Zhenan Wang Yuekai Chen Zhiyan Yang Dongchi Cai Zewei Xu Ziyao Tang Jianghao Hu Weiming An Chao Feng Xueqing Yan Xinlu Xu 《Matter and Radiation at Extremes》 2025年第4期35-43,共9页
X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast scien... X-ray free-electron lasers(XFELs)can generate bright X-ray pulses with short durations and narrow bandwidths,leading to extensive applica-tions in many disciplines such as biology,materials science,and ultrafast science.Recently,there has been a growing demand for X-ray pulses with high photon energy,especially from developments in“diffraction-before-destruction”applications and in dynamic mesoscale materials science.Here,we propose utilizing the electron beams at XFELs to drive a meter-scale two-bunch plasma wakefield accelerator and double the energy of the accelerated beam in a compact and inexpensive way.Particle-in-cell simulations are performed to study the beam quality degradation under different beam loading scenarios and nonideal issues,and the results show that more than half of the accelerated beam can meet the requirements of XFELs.After its transport to the undulator,the accelerated beam can improve the photon energy to 22 keV by a factor of around four while maintaining the peak power,thus offering a promising pathway toward high-photon-energy XFELs. 展开更多
关键词 plasma based afterburner electron beams photon energy x ray free electron lasers dynamic mesoscale materials science diffraction destruction dynamic mesoscale materials scienceherewe plasma wakefield accelerator
在线阅读 下载PDF
Hot-electron generation in high-intensity laser-matter experiments with copper targets
10
作者 O.Renner O.Klimo +4 位作者 M.Krus Ph.Nicolaï A.Poletaeva N.Bukharskii V.T.Tikhonchuk 《Matter and Radiation at Extremes》 2025年第3期75-88,共14页
We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion.Using K... We investigate the spatial and temporal correlations of hot-electron generation in high-intensity laser interaction with massive and thin copper targets under conditions relevant to inertial confinement fusion.Using Ka time-resolved imaging,it is found that in the case of massive targets,the hot-electron generation follows the laser pulse intensity with a short delay needed for favorable plasma formation.Conversely,a significant delay in the x-ray emission compared with the laser pulse intensity profile is observed in the case of thin targets.Theoretical analysis and numerical simulations suggest that this is related to radiation preheating of the foil and the increase in hot-electron lifetime in a hot expanding plasma. 展开更多
关键词 laser matter interaction massive targetsthe inertial confinement fusion massive targets massive thin copper targets inertial confinement fusionusing hot electrons k time resolved imaging
在线阅读 下载PDF
Application of holographic laser scanning to determine the electron concentration in the plasma forming the apokamp
11
作者 Anastasiia KOZHEVNIKOVA Igor ALEKSEENKO +1 位作者 Viktor TARASENKO Dmitry SCHITZ 《Plasma Science and Technology》 2025年第4期74-80,共7页
Streamer discharges that do not transition to a spark channel are now being widely investigated.One of these discharges is the apokamp discharge,in which streamers start from a diffuse spark channel having a curved sh... Streamer discharges that do not transition to a spark channel are now being widely investigated.One of these discharges is the apokamp discharge,in which streamers start from a diffuse spark channel having a curved shape at a high repetition rate of voltage pulse.In this work,to estimate the electron concentration in the plasma forming the apokamp a digital holographic laser scanning method is applied for the first time.The method is based on a comparison of the phases of two optical wavefronts,registered at different time instants in the form of digital holograms.The result of the phase comparison between the wavefronts is presented in the form of a numerically calculated map of the phase difference of the reconstructed wavefronts.A gas-discharge plasma is a phase(transparent)object,and the interference fringes are formed as a result of the change in the refractive index introduced by the plasma with respect to the original unperturbed medium.The obtained value of the refractive index allows estimation of the concentration of electrons in the spark channel plasma.It is shown that at as the voltage pulse repetition rate increases from 5 to 50 kHz the concentration of electrons in the plasma forming the apokamp decreases by an estimated four times. 展开更多
关键词 digital holography plasma diagnostics apokamp spark channel electron concentration
在线阅读 下载PDF
Laser-Induced Nanowire Percolation Interlocking for Ultrarobust Soft Electronics
12
作者 Yeongju Jung Kyung Rok Pyun +8 位作者 Sejong Yu Jiyong Ahn Jinsol Kim Jung Jae Park Min Jae Lee Byunghong Lee Daeyeon Won Junhyuk Bang Seung Hwan Ko 《Nano-Micro Letters》 2025年第6期40-54,共15页
Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties.However,weak adhesion and low mechanical robustness of nanowire networks ... Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties.However,weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability,necessitating the use of an insulating protective layer,which greatly limits their utility.Herein,we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer.In this method,the laser-induced photothermal energy at the interface between the nanowire network and the substrate facilitates the interpenetration of the nanowire network and the polymer matrix,resulting in mechanical interlocking through percolation.This mechanism is broadly applicable across different metallic nanowires and thermoplastic substrates,significantly enhancing its universality in diverse applications.Thereby,we demonstrated the mechanical robustness of nanowires in reusable wearable physiological sensors on the skin without compromising the performance of the sensor.Furthermore,enhanced robustness and electrical conductivity by the laser-induced interlocking enables a stable functionalization of conducting polymers in a wet environment,broadening its application into various electrochemical devices. 展开更多
关键词 Nanowire percolation network laser processing Mechanical interlocking FUNCTIONALIZATION Conducting polymer
在线阅读 下载PDF
Influence of quasi-electrostatic support on amplification of space charge waves in amplification section of a superheterodyne free electron laser
13
作者 A.V.Lysenko S.S.Ilin 《Chinese Physics B》 2025年第1期308-313,共6页
A theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave(SCW) in the amplification section of a superheterodyne free electron laser(FEL) was carrie... A theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave(SCW) in the amplification section of a superheterodyne free electron laser(FEL) was carried out. One of the ways to significantly increase the saturation level of the slow SCW is maintaining the conditions of a three-wave parametric resonance between the slow, fast SCWs and the resulting pump electric field. This can be done by introducing the quasielectrostatic support in the superheterodyne FEL amplification section. Also, it was found that the generated pump electric field significantly influences the maintenance of parametric resonance conditions. As a result, this increases the saturation level of the slow SCW by 70%. Finally, the quasi-electrostatic support significantly reduces the maximum value of the electrostatic undulator pump field strength, which is necessary to achieve the maximum saturation level of the slow SCW. 展开更多
关键词 superheterodyne free-electron lasers space charge waves electrostatic undulator quasielectrostatic support
原文传递
Unraveling post-growth mechanisms of monolayer CsPbBr3 nanocubes:Laser-enhanced transformations and cathodoluminescence-electron microscopy correlations
14
作者 Mingxing Li Xiaoge Wang +5 位作者 Xiaofan Cao Zhiqun He Chunjun Liang Mingxing Chen Jing Ju Fangtian You 《Journal of Energy Chemistry》 2025年第1期146-156,共11页
Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability prese... Lead-halide perovskite nanoparticles(LHP NPs) are highly promising materials for next-generation displays and solid-state lighting due to their exceptional optical properties. However, their inherent instability presents a significant challenge. Recent advances have demonstrated that optoelectronic devices based on monolayer nanoparticle films exhibit both high luminescence efficiency and long-term stability.Our research demonstrates that mobility limitations and anisotropic alignments in CsPbBr3nanocube monolayer films are key to their stabilization, hindering spontaneous growth through face-to-face fusion and resulting in the formation of connecting necks in a diagonal direction. Introducing laser irradiation confirmed this by significantly accelerating nanocubes growth, increasing mobility, and enhancing local structural ordering, leading to larger and more regularly shaped nanosheets. Fourier transform infrared spectroscopy and energy dispersive spectroscopy line-scan analyses indicated that laser irradiation did not disrupt the ligand structure. Transmission electron microscopy and correlative cathodoluminescence electron microscopy revealed the effects of post-growth and heterogeneous structures, including enhanced luminescence and inhomogeneous intensity in the nanosheets. These findings deepen the understanding of the post-growth mechanism of monolayer nanoparticles and the structure-emission correlation and highlight the unique role of laser irradiation in directing the formation of well-defined and regular nanostructures. 展开更多
关键词 CsPbBr3 nanocubes Post-growth mechanism Heterogeneous structure Single-particle spectroscopy laser irradiation
在线阅读 下载PDF
Doping evolution of nodal electron dynamics in trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)revealed by laser-based angle-resolved photoemission spectroscopy
15
作者 Hao Chen Jumin Shi +22 位作者 Xiangyu Luo Yinghao Li Yiwen Chen Chaohui Yin Yingjie Shu Jiuxiang Zhang Taimin Miao Bo Liang Wenpei Zhu Neng Cai Xiaolin Ren Chengtian Lin Shenjin Zhang Zhimin Wang Fengfeng Zhang Feng Yang Qinjun Peng Zuyan Xu Guodong Liu Hanqing Mao Xintong Li Lin Zhao X.J.Zhou 《Chinese Physics B》 2025年第7期141-146,共6页
The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectr... The doping evolution of the nodal electron dynamics in the trilayer cuprate superconductor Bi_(2)Sr_(2)Ca_(2)Cu_(3)O_(10+δ)(Bi2223)is investigated using high-resolution laser-based angle-resolved photoemission spectroscopy(ARPES).Bi2223single crystals with different doping levels are prepared by controlled annealing,which cover the underdoped,optimallydoped and overdoped regions.The electronic phase diagram of Bi2223 is established which describes the Tcdependence on the sample doping level.The doping dependence of the nodal Fermi momentum for the outer(OP)and inner(IP)CuO_(2)planes is determined.Charge distribution imbalance between the OP and IP CuO_(2)planes is quantified,showing enhanced disparity with increasing doping.Nodal band dispersions demonstrate a prominent kink at~94 meV in the IP band,attributed to the unique Cu coordination in the IP plane,while a weaker~60 meV kink is observed in the OP band.The nodal Fermi velocity of both OP and IP bands is nearly constant at~1.62 eV·A independent of doping.These results provide important information to understand the origin of high Tcand superconductivity mechanism in high temperature cuprate superconductors. 展开更多
关键词 BI2223 angle-resolved photoemission spectroscopy nodal electron dynamics doping evolution
原文传递
Characterization of bright betatron radiation generated by direct laser acceleration of electrons in plasma of near critical density 被引量:1
16
作者 J.Cikhardt M.Gyrdymov +9 位作者 S.Zähter P.Tavana M.M.Günther N.Bukharskii N.Borisenko J.Jacoby X.F.Shen A.Pukhov N.E.Andreev O.N.Rosmej 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期26-35,共10页
Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the ... Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities. 展开更多
关键词 laser ACCELERATION CRITICAL
在线阅读 下载PDF
Collective coherent emission of electrons in strong laser fields and perspective for hard x-ray lasers 被引量:1
17
作者 E.G.Gelfer A.M.Fedotov +1 位作者 O.Klimo S.Weber 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期1-3,共3页
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo... Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained. 展开更多
关键词 laser SCATTERING COHERENT
在线阅读 下载PDF
Manipulating the electron dynamics in the non-sequential double ionization process of Ar atoms by an orthogonal two-color laser field
18
作者 王鹏昭 钱丽洁 +1 位作者 孙真荣 杨岩 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期338-345,共8页
Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, w... Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel. 展开更多
关键词 non-sequential double ionization electron dynamics few-cycle orthogonal two-color laser field
原文传递
Divergence angle consideration in energy spread measurement for high-quality relativistic electron beam in laser wakefield acceleration
19
作者 卢光伟 李曜均 +5 位作者 胡曦辰 陈思宇 徐豪 祝铭阳 闫文超 陈黎明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期363-368,共6页
The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In thi... The thorough exploration of the transverse quality represented by divergence angle has been lacking yet in the energy spread measurement of the relativistic electron beam for laser wakefield acceleration(LWFA). In this work, we fill this gap by numerical simulations based on the experimental data, which indicate that in a C-shape magnet, magnetic field possesses the beam focusing effect, considering that the divergence angle will result in an increase in the full width at half maxima(FWHM) of the electron density distribution in a uniformly isotropic manner, while the length-to-width ratio decreases. This indicates that the energy spread obtained from the electron deflection distance is smaller than the actual value, regardless of the divergence angle. A promising and efficient way to accurately correct the value is presented by considering the divergence angle(for instance, for an electron beam with a length-to-width ratio of 1.12, the energy spread correct from 1.2% to 1.5%), providing a reference for developing the high-quality electron beam source. 展开更多
关键词 relativistic electron beams acceleration by laser–plasma interactions finite element analysis
原文传递
Electron density measurement by the three boundary channels of HCOOH laser interferometer on the HL-3 tokamak
20
作者 牟俊任 李永高 +5 位作者 李远 王再宏 丁宝钢 王浩西 易江 石中兵 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期88-93,共6页
Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 ... Far-infrared(FIR)interferometer is widely used to measure the electron density in the magnetically confined fusion plasma devices.A new FIR laser interferometer with a total of 13 channels(8 horizontal channels and 5 oblique channels)is under development on the HL-3tokamak by using the formic-acid laser(HCOOH,f=694 GHz).In order to investigate the boundary electron density activity during the divertor discharge,three horizontal interferometry channels located at Z=-97,-76,76.5 cm have been successfully developed on HL-3 in 2023,and put into operation in recent experimental campaign,with a time resolution of<1.0μs and lineintegrated electron density resolution of~7.0×10^(16) m^(-2).This paper mainly focuses on the optical design of the three-channel interferometry system,as well as optical elements and recent experimental result on HL-3. 展开更多
关键词 electron density INTERFEROMETER HL-3
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部