Laser shock-processing (LSP) is of particular advantage for improving fa-tigue behavior of small holes and blind holes. Because there are not good accessibility andpassage, these holes cannot be treated by shot peenin...Laser shock-processing (LSP) is of particular advantage for improving fa-tigue behavior of small holes and blind holes. Because there are not good accessibility andpassage, these holes cannot be treated by shot peening or cold extrusion. The fatigue livesof aircraft aluminum alloy 2024-T62 are increased greatly by means of optimization oflaser shocking parameters. With 95 % confidence, the mean fatigue life of LSP specimensis 4. 35~7, 75 times larger than that of the un-shocked ones.展开更多
The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measu...The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measured by X-ray diffraction method. Fatigue experiments of specimens with and without LSP were performed, and the microstructural features of fracture of specimens were characterized by scanning electron microscopy (SEM). The results indicate that the compressive residual stress can be induced into the surface of specimen, and the fatigue life of the specimen with LSP is 3.5 times as long as that of specimen without LSP. The location of fatigue crack initiation is transferred from the top surface to the sub-surface after LSP, and the fatigue striation spacing of the treated specimen during the expanding fatigue crack is narrower than that of the untreated specimen. Furthermore, the diameters of the dimples on the fatigue crack rupture zone of the specimen with LSP are relatively bigger, which is related to the serious plastic deformation in the material with LSP.展开更多
With the rapid development of engineering component with integration,high-speed and multi-parameter,traditional techniques haven't met practical needs in extreme service environment.Laser welding,a new welding techno...With the rapid development of engineering component with integration,high-speed and multi-parameter,traditional techniques haven't met practical needs in extreme service environment.Laser welding,a new welding technology,has been widely used.However,it would generate the drop of mechanical properties for laser welded joint due to its thermal effect.Laser shock processing(LSP) is one of the most effective methods to improve the mechanical properties of laser welded ANSI 304 stainless steel joint.In this paper,the effects of LSP on the mechanical properties of laser welded ANSI 304 stainless steel joint have been investigated.The welded joint on the front of the tensile samples is treated by LSP impacts,and the overlapping rate of the laser spot is 50%.The tensile test of the laser welded joint with and without LSP impacts is carried out,and the fracture morphology of the tensile samples is analyzed by scanning electron microscope(SEM).Compared with the yield strength of 11.70 kN,the tensile strength of 37.66 kN,the yield-to-tensile strength ratio of 0.310 7,the elongation of 25.20%,the area reduction of 32.68% and the elastic modulus of 13 063.876 MPa,the corresponding values after LSP impacts are 14.25 kN,38.74 kN,0.367 8,26.58%,42.29% and 14 754.394 MPa,respectively.Through LSP impacts,the increasing ratio of the yield strength and tensile strength are 121.79% and 102.87%,respectively;the elongation and area reduction are improved by 5.48% and 29.38%,respectively.By comparing with coarse fracture surface of the welded joint,the delamination splitting with some cracks in the sharp corner of the welded joint and asymmetric dimples,LSP can cause brighter fracture surface,and finer and more uniform dimples.Finally,the schematic illustration of dimple formation with LSP is clearly described.The proposed research ensures that the LSP technology can clearly improve the yield strength,tensile strength,yield-to-tensile strength ratio,elongation,area reduction and elastic modulus of the welded joint.The enhancement mechanism of LSP on laser welded ANSI 304 stainless steel joint is mainly due to the fact that the refined and uniform dimples effectively delay the fracture of laser welded joints.展开更多
By means of laser shock processing (LSP) treatment,a nanostructured surface layer was formed on 1Cr11Ni2W2MoV stainless steel.Group contrastive high cycle fatigue tests were carried out in 1Cr11Ni2W2MoV stainless stee...By means of laser shock processing (LSP) treatment,a nanostructured surface layer was formed on 1Cr11Ni2W2MoV stainless steel.Group contrastive high cycle fatigue tests were carried out in 1Cr11Ni2W2MoV stainless steel before and after LSP treated.The experimental data was analyzed by mathematical statistics method and the influence mechanism of fatigue properties affected by LSP treatment was also researched.The results indicate that LSP treatment can improve the high cycle fatigue life of 1Cr11Ni2W2MoV stainless steel effectively.The ultra-fine grained surface layer with residual compressive stress and nanostructured surface layer make great contributions to the improvement in fatigue properties of 1Cr11Ni2W2MoV stainless steel.展开更多
Laser shock processing (LSP) is an effective surface treatment technology to increase the resistance of metallic components to high-cycle fatigue (HCF),stress corrosion cracking (SCC),wear,etc.,through imparting compr...Laser shock processing (LSP) is an effective surface treatment technology to increase the resistance of metallic components to high-cycle fatigue (HCF),stress corrosion cracking (SCC),wear,etc.,through imparting compressive residual stress on the surface.The requirement for aeroengine blade treatment and the principle of LSP were introduced at the beginning of this paper.The key theories and technologies for LSP were analyzed,including improving the pressure model and introducing the technique of eliminating wave reflection at the back of blade during treatment.The nanocrystallation of titanium alloy surface was realized for the first time using the method of laser shocking at the same time no impurity particles were introduced.Through treating one kind of aeroengine blade using LSP,the technology parameters were confirmed.The nature frequency,fatigue life and residual stress were measured.The results showed the blade performance was improved obviously,which established the theory and experiment base of laser shock processing on blisk.展开更多
In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on or...In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data.展开更多
Surface microstructure and microhardness of (ferrite+ cementite) microduplex structure of the ultrafine- grained high carbon steel after laser shock processing (LSP) with different impact times were investigated ...Surface microstructure and microhardness of (ferrite+ cementite) microduplex structure of the ultrafine- grained high carbon steel after laser shock processing (LSP) with different impact times were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness measurements. Equiaxed ferrite grains were refined from 400 to 150 nm, and the cementite lamellae were fully spheroidized, with a decrease of the particle diameter from 150 to 100 nm as the impact times increased. The cementite dissolution was enhanced significantly. Correspondingly, the lattice parameter of α-Fe and microhard- hess increased with the impact times.展开更多
The coupling strengthening principle of the double physical effect of plasma shock−cavitation was proposed,and the rationality of the cavitation effect in pulsed laser shock treatment under liquid−confined conditions ...The coupling strengthening principle of the double physical effect of plasma shock−cavitation was proposed,and the rationality of the cavitation effect in pulsed laser shock treatment under liquid−confined conditions needs to be confirmed urgently.The XRD testing method and 304 stainless steel,which is easy to obtain diffraction peaks,were selected to quantitatively detect and characterize the residual stress distribution in the action area of a single pulse laser beam.The test results and literature analysis show that the different process conditions of laser shock processing bring about different strength matching of the two stress effects of plasma shock and cavitation,and the main source of stress effect of femtosecond laser shock without coating is the cavitation effect.The actual effects of the laser pulse width and other process parameters such as the absorption layer and the constraint layer affect or determine the material modification principle of the pulsed laser surface treatment.展开更多
Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corro...Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corrosion and wea rresistance of metals.Finite element analysis(FEA) simulation using ABAQUS software has been applied to predict residualstresses induced by LSP on Ti-6Al-4V titanium alloy with laser pulse duration 30 ns and water confined ablation mode.The residual stress field generated by different shape laser spots was studied,and the square laser spot is shown the most suitability for avoiding stress lack phenomenon and overlapping LSP.Surface residual stresses and plastically affected depth within single square spot both increased with the increase of laser intensity and laser shock times.Furthermore,compared with circle and ellipse spot,the residual stress distribution in overlapping square spots is very uniform only with small overlapping ratio.LSP with square spot can process advantageous residual stress field,and this technique will be used widely.展开更多
Application of laser shock processing (LSP) on 6061-T6 aluminum was made in order to evaluate its response to the erosive wear by silica sand. Impact angles of 15° , 30° , 60° and 90° were tes...Application of laser shock processing (LSP) on 6061-T6 aluminum was made in order to evaluate its response to the erosive wear by silica sand. Impact angles of 15° , 30° , 60° and 90° were tested, two particle speeds (37 and 58 m/s) and two LSP irradiation conditions were used. Erosion marks were characterized by 3D profilometry and SEM analysis was conducted to identify the erosion mechanisms for each tested angle. The results showed a maximum erosive wear at low impact angles (ductile type behavior). Erosion strength and the erosion mechanisms were not affected by the application of LSP and they were attributed to the high strain rate of the erosion phenomena. A few differences encountered on the erosion plots were explained on the basis of the surface roughness left by the LSP process. The maximum mass loss and the maximum erosion penetration happened in different impact angles (15° and 30° , respectively). Finally, a well-defined erosion mechanism transition was observed, from cutting action at low impact angle, to crater formation at 90° of incidence.展开更多
TC4 titanium tungsten inert gas arc (TIG) weld beads were treated by laser shock processing (LSP) technology.After a single and multiple times LSP introduced,surface hardness,tensile mechanical properties and fatigue ...TC4 titanium tungsten inert gas arc (TIG) weld beads were treated by laser shock processing (LSP) technology.After a single and multiple times LSP introduced,surface hardness,tensile mechanical properties and fatigue life of those weld joints were measured.The results showed that:compared with TC4 titanium alloy TIG joints without LSP treatment,those weld beads surface hardness on weld zone and heat affected zone are nearly uniform.The fatigue life of those TC4 TIG weld joints treated by a single time LSP process is enhanced.With the LSP times increased,TC4 titanium alloy weld beads tensile strength and yield strength are not obviously changed.The special elongation of these welding joints treated by different times LSP treatment will be influenced observably.Special elongation of those joints is decreased with the LSP treatment times increased from one to three.The welding joint special elongation was reduced to the least degree since three times LSP treatment had been introduced.展开更多
The effects of laser shock processing(LSP)and warm laser shock processing(WLSP)on the microstructure of surface hardening layer and high-cycle fatigue performance at room temperature and high temperature(600°C)of...The effects of laser shock processing(LSP)and warm laser shock processing(WLSP)on the microstructure of surface hardening layer and high-cycle fatigue performance at room temperature and high temperature(600°C)of IN718 alloy were investigated.It has been revealed that the grain refined hardening layer with greater residual compression stresses,higher fraction of coincidence site lattice(CSL)boundaries and dislocation densities was formed in WLSP-treated alloy than in LSP-treated alloys.Moreover,microtwins includedγ″phase/high density dislocation complex was found in the surface of WLSP-treated alloy.These characters caused the significant enhancement of the medium value fatigue strength of WLSP-treated alloy at room temperature and elevated temperature.Apparently,the microtwins includedγ″phase/high density dislocation complex formed in the surface hardening layer of LSP-treated alloy has more complicated steric structure and more stable at elevated temperature thanγ″phase/low density dislocation complex formed in LSP-treated alloy,leading to the slow recovery process.Therefore,the surface hardening layer in the WLSP-treated alloy remained more ideal strengthening effect under high-cycle fatigue at elevated temperature than that in LSP-treated alloy.This resulted in the much longer fatigue crack initiation incubation and longer high-cycle life of WLSP-treated IN718 alloy under cycling load at 600℃.This discovery provides a new cognition of fatigue resistance by WLSP treatment of precipitation strengthening superalloy.展开更多
An austenitic stainless steel 1Cr18Ni9Ti and a solid solution-strengthened Ni-base superalloy GH30 were shock processed using a Q-switched pulsed Nd-glass laser. Microstructure, hardness and residual stress of the las...An austenitic stainless steel 1Cr18Ni9Ti and a solid solution-strengthened Ni-base superalloy GH30 were shock processed using a Q-switched pulsed Nd-glass laser. Microstructure, hardness and residual stress of the laser shock processed surface were investigated as functions of laser processing parameters. Results show that high density of dislocations and fine deformation twins are produced in the laser shock processed surface layers in both the austenitic stainless steel and the nickel-base superalloy. Extensive strain-induced martensite was also observed in the laser shock processed zone of the austenitic steel. The hardness of the laser shock processed surface was significantly enhanced and compressive stress as high as 400 MPa was produced in the laser shock processed surface.展开更多
Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstr...Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstructure and fracture morphology were characterized by using an optical microscope(OM), a scanning electron microscope(SEM), and a transmission electron microscope(TEM). The results indicated that the maximum residual compressive stress was at about 1 mm from the shocking spot center, where the residual compressive stress was slightly lower. High density tangling dislocations, dislocation walls, and dislocation cells in the microstructure of the specimens treated with LSP effectively prevented fatigue cracks propagation. The fatigue life was roughly twice as long as that of the specimens without LSP. The fatigue crack initiation(FCI) in specimens treated with LSP was observed in the lateral section and the subsurface simultaneously. The fatigue striation in the fracture treated with LSP was narrower than that in the untreated specimens. Moreover, dimples with tear ridges were found in the fatigued zones of the LSP treated specimens, which would be caused by severe plastic deformation.展开更多
(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to singl...(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to single-phaseβ-NiA l.In this paper,we aim to improve the oxidation resistance,whereby Ni-34Al-0.1Dy,a(γ’+β)two-phase Ni-Al alloy,was treated by laser shock processing(LSP)and the oxidation behavior at 1150℃ was investigated.The results showed that after oxidation,Al_(2)O_(3)scale formed on the originalβphase of the untreated alloy with a small grain size(200-800 nm),while for the LSP-treated samples,the scale grown on the originalβphase was dominantly composed of larger Al_(2)O_(3)grains with a size of 2-3μm.The distinction was attributed to the promotion ofθ-Al_(2)O_(3)toα-Al_(2)O_(3)transformation induced by the LSP,because the dislocation density,as well as surface roughness,were increased during LSP treatment which can provide heterogeneous nucleation sites forα-Al_(2)O_(3).In addition,the larger-size Al_(2)O_(3)particles,derived from the direct conversion of needle-likeθ-Al_(2)O_(3)in the initial oxidation stage,could rapidly overspread the wholeβphase surface thus reducing the scale growth rate.展开更多
Laser shock processing is a very new technique and an emerging modern process that generates compressive stresses much deeper into the surfaces of metals or alloys. A brief parametric study of the effect of laser para...Laser shock processing is a very new technique and an emerging modern process that generates compressive stresses much deeper into the surfaces of metals or alloys. A brief parametric study of the effect of laser parameters on fatigue behavior and residual stress state generated in 6061-T651 alloy specimens was summarized. Residual stress of 6061-T651 alloy was analyzed both before and after laser processing with multishocks. The material remains in compressive residual stress of approximate 1mm in depth which is approximately 10 times deeper than that can be achieved with the conventional technique, and the maximal compressive residual stress at the surface of the sample is about -350MPa. Near the surface, yield strength and hardness are found to be increased by the laser shock. The ratio of fatigue crack initiation life for the laser-shocked to unshocked specimens is found to be 4.9 for specimens. The results clearly show that LSP is an effective surface treatment technique for improving the fatigue performance of aluminum alloys.展开更多
The aim of this paper was to address the effect of laser shock processing (LSP) on the microstructure of ultrafine-grained commercially pure aluminium which was produced through severe cold rolling and annealing. The ...The aim of this paper was to address the effect of laser shock processing (LSP) on the microstructure of ultrafine-grained commercially pure aluminium which was produced through severe cold rolling and annealing. The microstructure characteristics of ultrafine-grained commercially pure aluminium were experimentally investigated by TEM during ultra-high strain rate loading. The results show that microstructure was obviously refined due to ultra-high plastic strain induced by a single pass LSP impacts. The grain sizes decrease from 0.6 μm after severe cold rolling and annealing to 0.3 μm at the center of the laser shock wave after a single pass LSP. There is a distinct increase in the dislocation density at the edge of the laser shock wave. These experiments have guide meaning to the practical engineering applications of LSP technique.展开更多
In order to study the mechanism of grain refinement induced by laser shock processing (LSP) in AZ31 magnesium alloy, the specimens were processed with Nd:glass pulse laser shocking and the microstructures of LSP sp...In order to study the mechanism of grain refinement induced by laser shock processing (LSP) in AZ31 magnesium alloy, the specimens were processed with Nd:glass pulse laser shocking and the microstructures of LSP specimens near the surface were examined by optical microscopy and transmission electron microscopy. Optical microstructure pictures show that the size of grains formed in the top surface layer is about 4-6 μm, which is obviously different from the original grains (with an average size of 20-30 μm) in the substrate in AZ31 magnesium alloy. Transmission electron microscopic observations show that the grain refinement process of AZ31 alloy by laser shock processing includes three stages. At the early stage of LSP, the lower strain and strain rate activates the three dislocation slip systems which include basal plane system, prismatic plane system and pyramidal plane system, with the deformation governed mainly by dislocation. At the intermediary stage, dislocation slip is hindered at grain boundaries and becomes more difficult to continue during LSP. Then, parallel twins appear, which divide the original coarse grains into finer twin platelets. Finally, high-density dislocation walls are formed and subdivide twins into sub-grains. Dynamic recrystallization occurs in the process of further deformation and forms recrystallized grains when strain energy reaches the value needed by recrystallization, which leads to refinement of the grains in the top surface layer.展开更多
Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal cha...Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal channel angular pressing (ECAP), the LSP-treated lamellar pearlite was transferred to irregular ferrite matrix and incompletely broken cementite particles. With ECAP, LSP leads to refinements of the equiaxed ferrite grain in ultrafine-grained microduplex structure from 400 to 150 nm, and the completely spheroidized cementite particles from 150 to 100 nm. Consequentially, enhancements of mechanical properties were found in strength, microhardness and elongations of samples consisting of lamellar pearlite and ultrafine-grained microduplex structure. After LSP, a mixture of quasi-cleavage and ductile fracture was formed, different from the typical quasi-cleavage fracture from the original lamellar pearlite and the ductile fracture of the microduplex structure.展开更多
文摘Laser shock-processing (LSP) is of particular advantage for improving fa-tigue behavior of small holes and blind holes. Because there are not good accessibility andpassage, these holes cannot be treated by shot peening or cold extrusion. The fatigue livesof aircraft aluminum alloy 2024-T62 are increased greatly by means of optimization oflaser shocking parameters. With 95 % confidence, the mean fatigue life of LSP specimensis 4. 35~7, 75 times larger than that of the un-shocked ones.
基金Project (51175002) supported by the National Natural Science Foundation of ChinaProject (090414156) supported by the Natural Science Foundation of Anhui Province,China
文摘The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measured by X-ray diffraction method. Fatigue experiments of specimens with and without LSP were performed, and the microstructural features of fracture of specimens were characterized by scanning electron microscopy (SEM). The results indicate that the compressive residual stress can be induced into the surface of specimen, and the fatigue life of the specimen with LSP is 3.5 times as long as that of specimen without LSP. The location of fatigue crack initiation is transferred from the top surface to the sub-surface after LSP, and the fatigue striation spacing of the treated specimen during the expanding fatigue crack is narrower than that of the untreated specimen. Furthermore, the diameters of the dimples on the fatigue crack rupture zone of the specimen with LSP are relatively bigger, which is related to the serious plastic deformation in the material with LSP.
基金supported by National Natural Science Foundation of China (Grant No. 50735001 and Grant No. 51105179)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2010352 and GrantNo. BK2011478)+1 种基金Natural Science Foundation of Jiangsu Higher Education Institutions,China (Grant No. 10KJB460001)Jiangsu Provincial Innovation Program of Graduated Student of China (Grant No.CXZZ11_0546 and Grant No. CX10B_250Z)
文摘With the rapid development of engineering component with integration,high-speed and multi-parameter,traditional techniques haven't met practical needs in extreme service environment.Laser welding,a new welding technology,has been widely used.However,it would generate the drop of mechanical properties for laser welded joint due to its thermal effect.Laser shock processing(LSP) is one of the most effective methods to improve the mechanical properties of laser welded ANSI 304 stainless steel joint.In this paper,the effects of LSP on the mechanical properties of laser welded ANSI 304 stainless steel joint have been investigated.The welded joint on the front of the tensile samples is treated by LSP impacts,and the overlapping rate of the laser spot is 50%.The tensile test of the laser welded joint with and without LSP impacts is carried out,and the fracture morphology of the tensile samples is analyzed by scanning electron microscope(SEM).Compared with the yield strength of 11.70 kN,the tensile strength of 37.66 kN,the yield-to-tensile strength ratio of 0.310 7,the elongation of 25.20%,the area reduction of 32.68% and the elastic modulus of 13 063.876 MPa,the corresponding values after LSP impacts are 14.25 kN,38.74 kN,0.367 8,26.58%,42.29% and 14 754.394 MPa,respectively.Through LSP impacts,the increasing ratio of the yield strength and tensile strength are 121.79% and 102.87%,respectively;the elongation and area reduction are improved by 5.48% and 29.38%,respectively.By comparing with coarse fracture surface of the welded joint,the delamination splitting with some cracks in the sharp corner of the welded joint and asymmetric dimples,LSP can cause brighter fracture surface,and finer and more uniform dimples.Finally,the schematic illustration of dimple formation with LSP is clearly described.The proposed research ensures that the LSP technology can clearly improve the yield strength,tensile strength,yield-to-tensile strength ratio,elongation,area reduction and elastic modulus of the welded joint.The enhancement mechanism of LSP on laser welded ANSI 304 stainless steel joint is mainly due to the fact that the refined and uniform dimples effectively delay the fracture of laser welded joints.
文摘By means of laser shock processing (LSP) treatment,a nanostructured surface layer was formed on 1Cr11Ni2W2MoV stainless steel.Group contrastive high cycle fatigue tests were carried out in 1Cr11Ni2W2MoV stainless steel before and after LSP treated.The experimental data was analyzed by mathematical statistics method and the influence mechanism of fatigue properties affected by LSP treatment was also researched.The results indicate that LSP treatment can improve the high cycle fatigue life of 1Cr11Ni2W2MoV stainless steel effectively.The ultra-fine grained surface layer with residual compressive stress and nanostructured surface layer make great contributions to the improvement in fatigue properties of 1Cr11Ni2W2MoV stainless steel.
文摘Laser shock processing (LSP) is an effective surface treatment technology to increase the resistance of metallic components to high-cycle fatigue (HCF),stress corrosion cracking (SCC),wear,etc.,through imparting compressive residual stress on the surface.The requirement for aeroengine blade treatment and the principle of LSP were introduced at the beginning of this paper.The key theories and technologies for LSP were analyzed,including improving the pressure model and introducing the technique of eliminating wave reflection at the back of blade during treatment.The nanocrystallation of titanium alloy surface was realized for the first time using the method of laser shocking at the same time no impurity particles were introduced.Through treating one kind of aeroengine blade using LSP,the technology parameters were confirmed.The nature frequency,fatigue life and residual stress were measured.The results showed the blade performance was improved obviously,which established the theory and experiment base of laser shock processing on blisk.
基金Projects(51875558,51471176)supported by the National Natural Science Foundation of ChinaProject(2017YFB1302802)supported by the National Key R&D Program of China。
文摘In this work,the nickel-based powder metallurgy superalloy FGH95 was selected as experimental material,and the experimental parameters in multiple overlap laser shock processing(LSP)treatment were selected based on orthogonal experimental design.The experimental data of residual stress and microhardness were measured in the same depth.The residual stress and microhardness laws were investigated and analyzed.Artificial neural network(ANN)with four layers(4-N-(N-1)-2)was applied to predict the residual stress and microhardness of FGH95 subjected to multiple overlap LSP.The experimental data were divided as training-testing sets in pairs.Laser energy,overlap rate,shocked times and depth were set as inputs,while residual stress and microhardness were set as outputs.The prediction performances with different network configuration of developed ANN models were compared and analyzed.The developed ANN model with network configuration of 4-7-6-2 showed the best predict performance.The predicted values showed a good agreement with the experimental values.In addition,the correlation coefficients among all the parameters and the effect of LSP parameters on materials response were studied.It can be concluded that ANN is a useful method to predict residual stress and microhardness of material subjected to LSP when with limited experimental data.
基金Sponsored by National Natural Science Foundation of China(50801021,51201061)Program for Young Key Teachers in Henan Province of China(2011GGJS-070)Program for Henan Province for Science and Technology Innovation Excellent Talents of China(144200510001)
文摘Surface microstructure and microhardness of (ferrite+ cementite) microduplex structure of the ultrafine- grained high carbon steel after laser shock processing (LSP) with different impact times were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness measurements. Equiaxed ferrite grains were refined from 400 to 150 nm, and the cementite lamellae were fully spheroidized, with a decrease of the particle diameter from 150 to 100 nm as the impact times increased. The cementite dissolution was enhanced significantly. Correspondingly, the lattice parameter of α-Fe and microhard- hess increased with the impact times.
基金supported by the National Natural Science Foundation of China(Nos.52171073,51801031,51775117)the Foshan Science and Technology Innovation Project,China(No.2018IT100112)+1 种基金the Research Fund of Key Laboratory of High Performance Manufacturing for Aero Engine(Northwestern Polytechnical University),Ministry of Industry and Information Technology,China(No.HPM-2020-06)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China(No.SKLSP202014).
文摘The coupling strengthening principle of the double physical effect of plasma shock−cavitation was proposed,and the rationality of the cavitation effect in pulsed laser shock treatment under liquid−confined conditions needs to be confirmed urgently.The XRD testing method and 304 stainless steel,which is easy to obtain diffraction peaks,were selected to quantitatively detect and characterize the residual stress distribution in the action area of a single pulse laser beam.The test results and literature analysis show that the different process conditions of laser shock processing bring about different strength matching of the two stress effects of plasma shock and cavitation,and the main source of stress effect of femtosecond laser shock without coating is the cavitation effect.The actual effects of the laser pulse width and other process parameters such as the absorption layer and the constraint layer affect or determine the material modification principle of the pulsed laser surface treatment.
基金Project supported by the Foundation of National Key Laboratory of Science and Technology on Power Beam Processing(Grant No.9140C4505020705)
文摘Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corrosion and wea rresistance of metals.Finite element analysis(FEA) simulation using ABAQUS software has been applied to predict residualstresses induced by LSP on Ti-6Al-4V titanium alloy with laser pulse duration 30 ns and water confined ablation mode.The residual stress field generated by different shape laser spots was studied,and the square laser spot is shown the most suitability for avoiding stress lack phenomenon and overlapping LSP.Surface residual stresses and plastically affected depth within single square spot both increased with the increase of laser intensity and laser shock times.Furthermore,compared with circle and ellipse spot,the residual stress distribution in overlapping square spots is very uniform only with small overlapping ratio.LSP with square spot can process advantageous residual stress field,and this technique will be used widely.
文摘Application of laser shock processing (LSP) on 6061-T6 aluminum was made in order to evaluate its response to the erosive wear by silica sand. Impact angles of 15° , 30° , 60° and 90° were tested, two particle speeds (37 and 58 m/s) and two LSP irradiation conditions were used. Erosion marks were characterized by 3D profilometry and SEM analysis was conducted to identify the erosion mechanisms for each tested angle. The results showed a maximum erosive wear at low impact angles (ductile type behavior). Erosion strength and the erosion mechanisms were not affected by the application of LSP and they were attributed to the high strain rate of the erosion phenomena. A few differences encountered on the erosion plots were explained on the basis of the surface roughness left by the LSP process. The maximum mass loss and the maximum erosion penetration happened in different impact angles (15° and 30° , respectively). Finally, a well-defined erosion mechanism transition was observed, from cutting action at low impact angle, to crater formation at 90° of incidence.
文摘TC4 titanium tungsten inert gas arc (TIG) weld beads were treated by laser shock processing (LSP) technology.After a single and multiple times LSP introduced,surface hardness,tensile mechanical properties and fatigue life of those weld joints were measured.The results showed that:compared with TC4 titanium alloy TIG joints without LSP treatment,those weld beads surface hardness on weld zone and heat affected zone are nearly uniform.The fatigue life of those TC4 TIG weld joints treated by a single time LSP process is enhanced.With the LSP times increased,TC4 titanium alloy weld beads tensile strength and yield strength are not obviously changed.The special elongation of these welding joints treated by different times LSP treatment will be influenced observably.Special elongation of those joints is decreased with the LSP treatment times increased from one to three.The welding joint special elongation was reduced to the least degree since three times LSP treatment had been introduced.
基金This work was supported by the National Natural Science Foundation of China(Nos.51874090 and U1708253)the National Research Council of Science and Technology Major Project(No.2017-VI-0002).
文摘The effects of laser shock processing(LSP)and warm laser shock processing(WLSP)on the microstructure of surface hardening layer and high-cycle fatigue performance at room temperature and high temperature(600°C)of IN718 alloy were investigated.It has been revealed that the grain refined hardening layer with greater residual compression stresses,higher fraction of coincidence site lattice(CSL)boundaries and dislocation densities was formed in WLSP-treated alloy than in LSP-treated alloys.Moreover,microtwins includedγ″phase/high density dislocation complex was found in the surface of WLSP-treated alloy.These characters caused the significant enhancement of the medium value fatigue strength of WLSP-treated alloy at room temperature and elevated temperature.Apparently,the microtwins includedγ″phase/high density dislocation complex formed in the surface hardening layer of LSP-treated alloy has more complicated steric structure and more stable at elevated temperature thanγ″phase/low density dislocation complex formed in LSP-treated alloy,leading to the slow recovery process.Therefore,the surface hardening layer in the WLSP-treated alloy remained more ideal strengthening effect under high-cycle fatigue at elevated temperature than that in LSP-treated alloy.This resulted in the much longer fatigue crack initiation incubation and longer high-cycle life of WLSP-treated IN718 alloy under cycling load at 600℃.This discovery provides a new cognition of fatigue resistance by WLSP treatment of precipitation strengthening superalloy.
文摘An austenitic stainless steel 1Cr18Ni9Ti and a solid solution-strengthened Ni-base superalloy GH30 were shock processed using a Q-switched pulsed Nd-glass laser. Microstructure, hardness and residual stress of the laser shock processed surface were investigated as functions of laser processing parameters. Results show that high density of dislocations and fine deformation twins are produced in the laser shock processed surface layers in both the austenitic stainless steel and the nickel-base superalloy. Extensive strain-induced martensite was also observed in the laser shock processed zone of the austenitic steel. The hardness of the laser shock processed surface was significantly enhanced and compressive stress as high as 400 MPa was produced in the laser shock processed surface.
基金Funded by the Key Program Project of National Natural Science Foundation of China(NSFC)(No.51641102)Natural Science Foundation of Jiangsu Province(No.16KJB430035)+1 种基金Qing Lan Project of Jiangsu Province in ChinaNational Key Laboratory of Science and Technology on Power Beam Processes of Beijing Aeronautical Manufacturing Technology Research Institute
文摘Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing(LSP) was investigated. The residual stress of the specimens treated with LSP was assessed by X-ray diffraction method. The microstructure and fracture morphology were characterized by using an optical microscope(OM), a scanning electron microscope(SEM), and a transmission electron microscope(TEM). The results indicated that the maximum residual compressive stress was at about 1 mm from the shocking spot center, where the residual compressive stress was slightly lower. High density tangling dislocations, dislocation walls, and dislocation cells in the microstructure of the specimens treated with LSP effectively prevented fatigue cracks propagation. The fatigue life was roughly twice as long as that of the specimens without LSP. The fatigue crack initiation(FCI) in specimens treated with LSP was observed in the lateral section and the subsurface simultaneously. The fatigue striation in the fracture treated with LSP was narrower than that in the untreated specimens. Moreover, dimples with tear ridges were found in the fatigued zones of the LSP treated specimens, which would be caused by severe plastic deformation.
基金financially supported by the National Natural Science Foundation of China(Grant No.51901011)the National Science and Technology Major Project(Grant Nos.2017-Ⅵ-0002-0072 and 2017-VII-0007-0100)+1 种基金the Fundamental Research Funds for Central Universities(Grant No.YWF-21-BJ-J-1034)the support from Youth Talent Support Program of Beihang University。
文摘(γ’+β)two-phase Ni-Al is a promising high-temperature protective coating material used on Ni-base superalloys since it has good interfacial compatibility with superalloys due to the low Al content compared to single-phaseβ-NiA l.In this paper,we aim to improve the oxidation resistance,whereby Ni-34Al-0.1Dy,a(γ’+β)two-phase Ni-Al alloy,was treated by laser shock processing(LSP)and the oxidation behavior at 1150℃ was investigated.The results showed that after oxidation,Al_(2)O_(3)scale formed on the originalβphase of the untreated alloy with a small grain size(200-800 nm),while for the LSP-treated samples,the scale grown on the originalβphase was dominantly composed of larger Al_(2)O_(3)grains with a size of 2-3μm.The distinction was attributed to the promotion ofθ-Al_(2)O_(3)toα-Al_(2)O_(3)transformation induced by the LSP,because the dislocation density,as well as surface roughness,were increased during LSP treatment which can provide heterogeneous nucleation sites forα-Al_(2)O_(3).In addition,the larger-size Al_(2)O_(3)particles,derived from the direct conversion of needle-likeθ-Al_(2)O_(3)in the initial oxidation stage,could rapidly overspread the wholeβphase surface thus reducing the scale growth rate.
基金Project(50275068) supported by the National Natural Science Foundation of China
文摘Laser shock processing is a very new technique and an emerging modern process that generates compressive stresses much deeper into the surfaces of metals or alloys. A brief parametric study of the effect of laser parameters on fatigue behavior and residual stress state generated in 6061-T651 alloy specimens was summarized. Residual stress of 6061-T651 alloy was analyzed both before and after laser processing with multishocks. The material remains in compressive residual stress of approximate 1mm in depth which is approximately 10 times deeper than that can be achieved with the conventional technique, and the maximal compressive residual stress at the surface of the sample is about -350MPa. Near the surface, yield strength and hardness are found to be increased by the laser shock. The ratio of fatigue crack initiation life for the laser-shocked to unshocked specimens is found to be 4.9 for specimens. The results clearly show that LSP is an effective surface treatment technique for improving the fatigue performance of aluminum alloys.
基金National Nature Science Foundation of China (50801021)
文摘The aim of this paper was to address the effect of laser shock processing (LSP) on the microstructure of ultrafine-grained commercially pure aluminium which was produced through severe cold rolling and annealing. The microstructure characteristics of ultrafine-grained commercially pure aluminium were experimentally investigated by TEM during ultra-high strain rate loading. The results show that microstructure was obviously refined due to ultra-high plastic strain induced by a single pass LSP impacts. The grain sizes decrease from 0.6 μm after severe cold rolling and annealing to 0.3 μm at the center of the laser shock wave after a single pass LSP. There is a distinct increase in the dislocation density at the edge of the laser shock wave. These experiments have guide meaning to the practical engineering applications of LSP technique.
基金Funded by National Natural Science Foundation of China(Nos.51275221 and 51175231)the Natural Science Foundation of Jiangsu Province,China(No.BK2011261)+1 种基金Qing Lan Project,Jiangsu Province,Chinathe Applied Science Foundation of Changzhou City,Jiangsu Province,China(No.CJ20159051)
文摘In order to study the mechanism of grain refinement induced by laser shock processing (LSP) in AZ31 magnesium alloy, the specimens were processed with Nd:glass pulse laser shocking and the microstructures of LSP specimens near the surface were examined by optical microscopy and transmission electron microscopy. Optical microstructure pictures show that the size of grains formed in the top surface layer is about 4-6 μm, which is obviously different from the original grains (with an average size of 20-30 μm) in the substrate in AZ31 magnesium alloy. Transmission electron microscopic observations show that the grain refinement process of AZ31 alloy by laser shock processing includes three stages. At the early stage of LSP, the lower strain and strain rate activates the three dislocation slip systems which include basal plane system, prismatic plane system and pyramidal plane system, with the deformation governed mainly by dislocation. At the intermediary stage, dislocation slip is hindered at grain boundaries and becomes more difficult to continue during LSP. Then, parallel twins appear, which divide the original coarse grains into finer twin platelets. Finally, high-density dislocation walls are formed and subdivide twins into sub-grains. Dynamic recrystallization occurs in the process of further deformation and forms recrystallized grains when strain energy reaches the value needed by recrystallization, which leads to refinement of the grains in the top surface layer.
文摘Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal channel angular pressing (ECAP), the LSP-treated lamellar pearlite was transferred to irregular ferrite matrix and incompletely broken cementite particles. With ECAP, LSP leads to refinements of the equiaxed ferrite grain in ultrafine-grained microduplex structure from 400 to 150 nm, and the completely spheroidized cementite particles from 150 to 100 nm. Consequentially, enhancements of mechanical properties were found in strength, microhardness and elongations of samples consisting of lamellar pearlite and ultrafine-grained microduplex structure. After LSP, a mixture of quasi-cleavage and ductile fracture was formed, different from the typical quasi-cleavage fracture from the original lamellar pearlite and the ductile fracture of the microduplex structure.