期刊文献+
共找到134,534篇文章
< 1 2 250 >
每页显示 20 50 100
Microstructure and Wear/corrosion Resistance of Stainless Steel Laser-alloyed with Mn+W_(2)C, Mn+NiWC and Mn+SiC 被引量:1
1
作者 ZHOU Rui DIAO Xiaogang SUN Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期283-294,共12页
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder... In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers. 展开更多
关键词 laser surface alloying stainless steel carbide type MICROSTRUCTURE wear and corrosion resistance
原文传递
CW laser damage of ceramics induced by air filament 被引量:1
2
作者 Chuan Guo Kai Li +9 位作者 Zelin Liu Yuyang Chen Junyang Xu Zhou Li Wenda Cui Changqing Song Cong Wang Xianshi Jia Ji'an Duan Kai Han 《Opto-Electronic Advances》 2025年第7期23-35,共13页
Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target dama... Combined pulsed laser(CPL),introduced in 1975 for target damage,integrates different lasers to achieve high peak power and pulse energy.However,despite decades of research,CPL remains unused for long-range target damage due to the challenge of maintaining high peak power density over long distances.We note that a potential solution lies in leveraging the air filament generated by femtosecond laser,which can transmit peak power densities higher than 1014 W/cm^(2)under the power clamping effect.To address this,a concept of a femtosecond laser induced air filament-CW CPL for surface damage of ceramics was introduced.We found no surface changes in ceramic targets when irradiated with a CW laser alone.By way of contrast,the target can be penetrated in a very short time(20 ms)with the assistance of the femtosecond laser induced air filament.In this context,we employ high-speed shadow imaging,cross-timescale simulation models and macro-microscopic characterization,to elucidate the CPL damage mechanism.The optimal CPL,combining a 1 mJ femtosecond laser and a 500 W CW laser,yields a damage rate of 1.51×10^(7)μm^(3)/J,representing an improvement of approximately 175%compared to single femtosecond laser ablation and around 59%enhancement compared to coating-assisted CW laser ablation.Furthermore,the efficacy of the proposed femtosecond-CW CPL method is demonstrated in causing penetration damage of ceramic/metal composite material or direct damage of sapphire,showcasing its versatility in damaging applications.Consequently,the femtosecond-CW CPL ablation method presented in this paper holds great promise as a new type of damage method for transparent hard and brittle materials. 展开更多
关键词 laser damage femtosecond laser CW laser combined pulse laser CERAMICS
在线阅读 下载PDF
Corrosion and Copper Foil Formation Behavior of Laser-Welded Joint and Spin-Formed Materials of Commercially Pure Titanium in H_(2)SO_(4)/CuSO_(4) Electrolyte 被引量:1
3
作者 Ren Lina Song Yanfei +4 位作者 Qi Liang Yang Jian Yang Jiadian Lei Xiaowei Zhang Jianxun 《稀有金属材料与工程》 北大核心 2025年第6期1467-1477,共11页
Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosio... Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties. 展开更多
关键词 Ti cathode laser beam welding spin forming CORROSION Cu foil electroplating
原文传递
Femtosecond laser rotary drilling for SiC_(f)/SiC composites 被引量:3
4
作者 Feng YANG Zhigang DONG +3 位作者 Renke KANG Hongbin MA Guangyi MA Yan BAO 《Chinese Journal of Aeronautics》 2025年第2期478-490,共13页
SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quali... SiC_(f)/SiC ceramic matrix composites(SiC_(f)/SiC composites)are difficult to drill small holes due to their heterogeneity,high hardness,and low electrical conductivity.In order to solve the difficulties of poor quality and low efficiency when drilling small holes,a novel femtosecond laser rotary drilling(FLRD)technique is proposed.Beam kinematic paths and experimental studies were carried out to analyze the effects of processing parameters on the drilling results in the two-step drilling process.In the through-hole drilling stage,the material removal rate increases with increasing laser power,decreasing feed speed and decreasing pitch.As for the finishing stage of drilling,the exit diameter increased with increasing laser power and decreasing feed speed.The drilling parameters were selected by taking the processing efficiency of through-hole and the quality of finished hole as the constraint criteria.Holes with a diameter of 500μm were drilled using FLRD in 3 mm thick SiC_(f)/SiC composites with a drilling time<150 s.The hole aspect ratio was 6,the taper<0.2°,and there was no significant thermal damage at the orifice or the wall of the hole.The FLRD provides a solution for precision machining of small holes in difficult-to-machine materials by offering the advantages of high processing quality and short drilling times. 展开更多
关键词 Ceramic matrix composites Femtosecond lasers DRILLING HIGH-QUALITY Film cooling holes
原文传递
Recent progress on in-situ characterization of laser additive manufacturing process by synchrotron radiation 被引量:2
5
作者 Wenquan Lu Liang Zhao +2 位作者 Zhun Su Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第14期29-46,共18页
Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex ... Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed. 展开更多
关键词 laser additive manufacturing Synchrotron radiation Melt pool DEFECT
原文传递
Laser shock processing of titanium alloys:A critical review on the microstructure evolution and enhanced engineering performance 被引量:2
6
作者 Qian Liu Shuangjie Chu +6 位作者 Xing Zhang Yuqian Wang Haiyan Zhao Bohao Zhou Hao Wang Genbin Wu Bo Mao 《Journal of Materials Science & Technology》 2025年第6期262-291,共30页
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ... Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends. 展开更多
关键词 laser shock peening Titanium alloys Microstructure evolution Mechanical properties
原文传递
Combined effects of local residual stresses,internal pores,and microstructures on the mechanical properties of laser-welded Ti-6Al-4V sheets 被引量:2
7
作者 Wei Sun Haoyi Niu +5 位作者 Yiping Xia Kesong Miao Xingrui Jiang Min Chen Maulik Patel Guohua Fan 《Journal of Materials Science & Technology》 2025年第13期178-191,共14页
Laser-welded Ti-6Al-4 V is prone to severe residual stresses,microstructural variation,and structural de-fects which are known detrimental to the mechanical properties of weld joints.Residual stress removal is typical... Laser-welded Ti-6Al-4 V is prone to severe residual stresses,microstructural variation,and structural de-fects which are known detrimental to the mechanical properties of weld joints.Residual stress removal is typically applied to weld joints for engineering purposes via heat treatment,in order to avoid prema-ture failure and performance degradation.In the present work,we found that proper welding residual stresses in laser-welded Ti-6Al-4 V sheets can maintain better ductility during uniaxial tension,as op-posed to the stress-relieved counterparts.A detailed experimental investigation has been performed on the deformation behaviours of Ti-6Al-4 V butt welds,including residual stress distribution characteriza-tions by focused ion beam ring-coring coupled with digital image correlation(FIB-DIC),X-ray comput-erized tomography(CT)for internal voids,and in-situ DIC analysis of the subregional strain evolutions.It was found that the pores preferentially distributed near the fusion zone(FZ)boundary,where the compressive residual stress was up to-330 MPa.The removal of residual stress resulted in a changed failure initiation site from the base material to the FZ boundary,the former with ductile and the latter with brittle fracture characteristics under tensile deformation.The combined effects of residual stresses,microstructures,and internal pores on the mechanical responses are discussed in detail.This work high-lights the importance of inevitable residual stress and pores in laser weld pieces,leading to key insights for post-welding treatment and service performance evaluations. 展开更多
关键词 Residual stresses FIB-DIC Deformation behavior Local strain laser welding X-ray CT
原文传递
In situ preparation of nano cone-like structures on 3D printed titanium alloy implants via one-step femtosecond laser manufacturing for better osseointegration,anti-corrosion,and anti-fatigue 被引量:2
8
作者 Yazhou Hu Hongshui Wang +5 位作者 Donghui Wang Xiaomei Xia Ning Liu Tai Yang Baoe Li Chunyong Liang 《Journal of Materials Science & Technology》 2025年第3期88-99,共12页
The poor surface conditions and osseointegration capacity of 3D printed Ti6Al4V implants(3DPT)significantly influence their performance as orthopedic and dental implants.In this work,we creatively introduce a one-step... The poor surface conditions and osseointegration capacity of 3D printed Ti6Al4V implants(3DPT)significantly influence their performance as orthopedic and dental implants.In this work,we creatively introduce a one-step femtosecond laser treatment to improve the surface conditions and osteointegration.The surface characterization,mechanical properties,corrosion resistance,and biological responses were investigated.These results found that femtosecond laser eliminated defects like embedded powders and superficial cracks while forming the nano cones-like structures surface on 3DPT,leading to enhanced osseointegration,anti-corrosion,and anti-fatigue performance.Molecular dynamics simulations revealed the ablation removal mechanism and the formation of nano cone-like structures.These findings were further supported by the in vivo studies,showing that the FS-treated implants had superior bone-implant contact and osseointegration.Hence,the one-step femtosecond laser method is regarded as a promising surface modification method for improving the functional performance of Ti-based orthopedic implants. 展开更多
关键词 3D printed Femtosecond laser Surface modification MICRO/NANOSTRUCTURE OSSEOINTEGRATION
原文传递
High peak power mini-array quantum cascade lasers operating in pulsed mode 被引量:1
9
作者 Yuhang Zhang Yupei Wang +6 位作者 Xiaoyue Luo Chenhao Qian Yang Cheng Wu Zhao Fangyuan Sun Jun Wang Zheng-Ming Sun 《Chinese Physics B》 2025年第1期339-342,共4页
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo... Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on. 展开更多
关键词 quantum cascade laser mini-array thermal management
原文传递
In-situ observation and analysis of high temperature behavior of carbides in GCr15 bearing steel by confocal laser scanning microscopy 被引量:2
10
作者 Jun Ren Yue Teng +4 位作者 Xiang Liu Xi Xu Hui-gai Li Ke Han Qi-jie Zhai 《Journal of Iron and Steel Research International》 2025年第2期409-417,共9页
The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution ki... The high-temperature dissolution behavior of primary carbides in samples taken from GCr15 continuous-casting bloom was observed in-situ by confocal laser scanning microscopy.Equations were fitted to the dissolution kinetics of primary carbides during either heating or soaking.Dissolution of carbides proceeded in three stages(fast→slow→faster)as either temperature or holding time was increased.During the heating process and during the first and third stages of the soaking process,the original size of the carbides determined the steepness of the slope,but during the middle(“slow”)stage of the soaking process,the slope remained zero.The initial size of the carbides varied greatly,but their final dissolution temperature fell within the narrow range of 1210-1235℃,and the holding time remained within 50 min.Fractal analysis was used to study the morphological characteristics of small and medium-sized carbides during the dissolution process.According to changes in the fractal dimension before and after soaking,the carbides tended to evolve towards a more regular morphology. 展开更多
关键词 Bearing steel High-temperature confocal laser scanning microscope In-situ observation Primary carbide Fractal analysis
原文传递
In-situ observation of nonmetallic inclusions in steel using confocal scanning laser microscopy:A review 被引量:1
11
作者 Ying Ren Lifeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第5期975-991,共17页
The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are revi... The characteristics of nonmetallic inclusions formed during steel production have a significant influence on steel performance.In this paper,studies on inclusions using confocal scanning laser microscopy(CSLM)are reviewed and summarized,particularly the col-lision of various inclusions,dissolution of inclusions in liquid slag,and reactions between inclusions and steel.Solid inclusions exhibited a high collision tendency,whereas pure liquid inclusions exhibited minimal collisions because of the small attraction force induced by their<90°contact angle with molten steel.The collision of complex inclusions in molten steel was not included in the scope of this study and should be evaluated in future studies.Higher CaO/Al_(2)O_(3)and CaO/SiO_(2)ratios in liquid slag promoted the dissolution of Al_(2)O_(3)-based in-clusions.The formation of solid phases in the slag should be prevented to improve dissolution of inclusions.To accurately simulate the dissolution of inclusions in liquid slag,in-situ observation of the dissolution of inclusions at the steel-slag interface is necessary.Using a combination of CSLM and scanning electron microscopy-energy dispersive spectroscopy,the composition and morphological evolution of the inclusions during their modification by the dissolved elements in steel were observed and analyzed.Although the in-situ observa-tion of MnS and TiN precipitations has been widely studied,the in-situ observation of the evolution of oxide inclusions in steel during so-lidification and heating processes has rarely been reported.The effects of temperature,heating and cooling rates,and inclusion character-istics on the formation of acicular ferrites(AFs)have been widely studied.At a cooling rate of 3-5 K/s,the order of AF growth rate in-duced by different inclusions,as reported in literature,is Ti-O<Ti-Ca-Zr-Al-O<Mg-O<Ti-Zr-Al-O<Mn-Ti-Al-O<Ti-Al-O<Zr-Ti-Al-O.Further comprehensive experiments are required to investigate the quantitative relationship between the formation of AFs and inclusions. 展开更多
关键词 INCLUSION STEEL in-situ observation confocal scanning laser microscopy
在线阅读 下载PDF
Glass catfish inspired subaquatic abrasion-resistant anti-fouling window fabricated by femtosecond laser electrodeposition 被引量:1
12
作者 Jialiang Zhang Fangzheng Ren +6 位作者 Qing Yang Qingyun Ma Jie Liang Yizhao Meng Xiaodan Gou Chongxiao Xia Feng Chen 《International Journal of Extreme Manufacturing》 2025年第1期383-393,共11页
Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced... Transparent materials utilized as underwater optical windows are highly vulnerable to various forms of pollution or abrasion due to their intrinsic hydrophilic properties.This susceptibility is particularly pronounced in underwater environments where pollutants can impede the operation of these optical devices,significantly degrading or even compromising their optical properties.The glass catfish,known for its remarkable transparency in water,maintains surface cleanliness and clarity despite exposure to contaminants,impurities abrasion,and hydraulic pressure.Inspired by the glass catfish’s natural attributes,this study introduces a new solution named subaquatic abrasion-resistant and anti-fouling window(SAAW).Utilizing femtosecond laser ablation and electrodeposition,the SAAW is engineered by embedding fine metal bone structures into a transparent substrate and anti-fouling sliding layer,akin to the sturdy bones among catfish’s body.This approach significantly bolsters the window’s abrasion resistance and anti-fouling performance while maintaining high light transmittance.The sliding layer on the SAAW’s surface remarkably reduces the friction of various liquids,which is the reason that SAAW owns the great anti-fouling property.The SAAW demonstrates outstanding optical clarity even after enduring hundreds of sandpaper abrasions,attributing to the fine metal bone structures bearing all external forces and protecting the sliding layer of SAAW.Furthermore,it exhibits exceptional resistance to biological adhesion and underwater pressure.In a green algae environment,the window remains clean with minimal change in transmittance over one month.Moreover,it retains its wettability and anti-fouling properties when subjected to a depth of 30 m of underwater pressure for 30 d.Hence,the SAAW prepared by femtosecond laser ablation and electrodeposition presents a promising strategy for developing stable optical windows in liquid environments. 展开更多
关键词 ANTI-FOULING femtosecond laser subaquatic window slippery surface abrasion resistance
在线阅读 下载PDF
Microstructure and wear property of laser cladded WC particles reinforced CoCrFeNiMo composite coatings on Cr 12 MoV steel 被引量:1
13
作者 LIU Xing-yi YANG Xiao +6 位作者 CHEN Zu-bin GUO Chun-huan LI Hai-xin YANG Zhen-lin DONG Tao JIANG Feng-chun QIAO Zhu-hui 《Journal of Central South University》 2025年第1期49-70,共22页
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o... WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness. 展开更多
关键词 laser cladding CoCrFeNiMo coating WC particles MICROSTRUCTURE wear resistance
在线阅读 下载PDF
Ultrafast laser welding of transparent materials:from principles to applications 被引量:1
14
作者 Xianshi Jia Jinlin Luo +6 位作者 Kai Li Cong Wang Zhou Li Mengmeng Wang Zhengyi Jiang Vadim P Veiko Ji’an Duan 《International Journal of Extreme Manufacturing》 2025年第3期2-47,共46页
The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection propert... The ultrafast laser-matter interaction is explored to induce new pioneering principles and technologies into the realms of fundamental science and industrial production.The local thermal melting and connection properties of the ultrafast laser welding technology offer a novel method for welding of diverse transparent materials,thus having wide range of potential applications in aerospace,opto-mechanical systems,sensors,microfluidic,optics,etc.In this comprehensive review,tuning the transient electron activation processes,high-rate laser energy deposition,and dynamic evolution of plasma morphology by the temporal/spatial shaping methods have been demonstrated to facilitate the transition from conventional homogeneous transparent material welding to the more intricate realm of transparent/metal heterogeneous material welding.The welding strength and stability are also improvable through the implementation of real-time,in-situ monitoring techniques and the prompt diagnosis of welding defects.The principles of ultrafast laser welding,bottleneck problems in the welding,novel welding methods,advances in welding performance,in-situ monitoring and diagnosis,and various applications are reviewed.Finally,we offer a forward-looking perspective on the fundamental challenges within the field of ultrafast laser welding and identify key areas for future research,underscoring the imperative need for ongoing innovation and exploration. 展开更多
关键词 ultrafast laser WELDING transparent materials spatial/temporal shaping
在线阅读 下载PDF
Factors affecting the thermal effects of lasers in lithotripsy:A literature review 被引量:1
15
作者 Kiron Krishnaprasad Ravi Teja Pathi Mustafa Nazar 《Asian Journal of Urology》 2025年第1期23-32,共10页
Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective ... Objective The use of lasers has been an important part of urology in the treatment of stone and prostate disease.The thermal effects of lasers in lithotripsy have been a subject of debate over the years.The objective of this review was to assess the current state of knowledge available on the thermal effects of lasers in lithotripsy,as well as explore any new areas where studies are needed.Methods In August 2022,a keyword search on Google Scholar,PubMed,and Scopus for all papers containing the phrases“thermal effects”AND“laser”AND“lithotripsy”AND“urology”was done followed by citation jumping to other studies pertaining to the topic and 35 relevant papers were included in our study.The data from relevant papers were segregated into five groups according to the factor studied and type of study,and tables were created for a comparison of data.Results Temperature above the threshold of 43℃ was reached only when the power was>40 W and when there was adequate irrigation(at least 15–30 mL/min).Shorter lasing time divided by lithotripsy time or operator duty cycles less than 70%also resulted in a smaller temperature rise.Conclusion At least eight factors modify the thermal effects of lasers,and most importantly,the use of chilled irrigation at higher perfusion rates,lower power settings of<40 W,and with a shorter operator duty cycle will help to prevent thermal injuries from occurring.Stones impacted in the ureter or pelvi-ureteric junction further increase the probability of thermal injuries during laser firing. 展开更多
关键词 Stone disease laser lithotripsy IRRIGATION Thermal effect Operator duty cycle
暂未订购
Higher entropy-induced strengthening in mechanical property of Cantor alloys/Zr-3 joints by laser in-situ eutectic high-entropy transformation 被引量:1
16
作者 Nan Jiang Hong Bian +7 位作者 Xiaoguo Song Hyeonseok Kwon Xin Xi Danyang Lin Bo Chen Weimin Long Hyoung Seop Kim Lianhui Jia 《Journal of Materials Science & Technology》 2025年第8期110-122,共13页
To effectively regulate the grain boundary infiltration in CoCrFeMnNi high-entropy alloy(Cantor alloys,HEA)caused by the violent atomic interdiffusion,the higher configuration entropy on Cantor alloys surface was desi... To effectively regulate the grain boundary infiltration in CoCrFeMnNi high-entropy alloy(Cantor alloys,HEA)caused by the violent atomic interdiffusion,the higher configuration entropy on Cantor alloys surface was designed and realized via eutectic high-entropy(EHEA)transformation.Meanwhile,to effectively alleviate the residual stress caused by the notable difference in the thermal expansion coefficient(CTE)between Cantor alloys and Zr-3 alloys,a cladding layer was applied to the HEA surface using laser cladding technology of Nb,followed by brazing to Zr-3 alloys with Zr63.2Cu filler.The cladding layer’s microstructure comprised Nbss and FCC+(Co,Ni)_(2) Nb eutectic structure,resulting from an in-situ reaction between Cantor alloys and Nb.The Nbss and FCC demonstrated good plasticity,and the(Co,Ni)_(2) Nb Laves phase provided increased strength,endowing both good plastic deformation ability and strength of the cladding layer.Notably,the existence of EHEA in the laser cladding layer made the Cantor alloy entropy from 1.61 R to 1.77 R,greatly enhancing its thermal stability and suppressing the grave grain boundary infiltration.Joints produced via laser cladding with Nb-assisted brazing exhibited a complex microstructure(HEA/Nbss+FCC+(Co,Ni)_(2)Nb/(Zr,Nb)(Cr,Mn)_(2)+(Zr,Nb)ss/(Zr,Nb)_(2)(Cu,Ni,Co,Fe)+(Zr,Nb)(Cr,Mn)_(2)+(Zr,Nb)ss/Zr-3) and a significantly improved shear strength of 242.8 MPa at 1010℃ for 10 min,42.4%higher than that of directly brazed joints.This improvement was attributed to reduced grain boundary infiltration,alleviated residual stress due to CTE disparity,and eliminated micro-cracks in the brazing seam.This study presents an effective solution for reducing residual stresses and achieving reliable bonding between Cantor alloys and Zr-3 alloys,with potential applications in brazing CoCrFeNi-based HEA and Zr-3 due to the beneficial eutectic reaction between CoCrFeNi and Nb. 展开更多
关键词 laser in-situ preparation High-Entropy Grain boundary infiltration Brazing Residual stress Strengthening mechanism
原文传递
Anisotropy Evolution of Tensile Properties in Laser Powder Bed Fusion-Fabricated Inconel 625 Alloy at High Temperature 被引量:1
17
作者 Jiaqing Liu Libo Zhou +5 位作者 Zeai Peng Boyi Chen Yijie Tan Jian Chen Weiying Huang Cong Li 《Acta Metallurgica Sinica(English Letters)》 2025年第4期555-569,共15页
This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature... This work investigated the anisotropy tensile properties of Inconel 625 alloy fabricated by laser powder bed fusion (LPBF) under various tests temperature, focusing the anisotropy evolution during the high temperature. The microstructure contained columnar grains with (111) texture in the vertical plane (90° sample), while a large equiaxed grain with (100) texture was produced in the horizontal plane (0° sample). As for 45° sample, a large number of equiaxed grains and a few columnar grains with (111) texture can be observed. The sample produced at a 0° orientation demonstrates the highest tensile strength, whereas the 90° sample exhibits the greatest elongation. Conversely, the 45° sample displays the least favorable overall performance. As the tests temperature increased from room temperature to 600℃, the anisotropy rate of ultimate tensile strength, yield strength and ductility between 0° and 45° samples, decreased from 8.98 to 6.96%, 2.36 to 1.28%, 19.93 to 12.23%, as well as between 0° and 90° samples decreased from 4.87 to 4.03%, 11.88 to 7.21% and 14.11 to 6.89%, respectively, because of the recovery of oriented columnar grains. 展开更多
关键词 laser powder bed fusion Inconel 625 alloy Anisotropy evolution High temperature
原文传递
275 nm ultraviolet laser with 351 mW continuous-wave output in a Pr:YLF laser pumped by a blue laser diode at 444.2 nm
18
作者 ZHENG Quan XIAO Hui-dong +6 位作者 CHEN Xi WANG Yan WANG Yu-ning LIU Hui-zhen TIAN Dong-he WANG Jin-yan YAO Yi 《中国光学(中英文)》 北大核心 2025年第2期376-381,共6页
This paper describes what is thought to be the first generation of a continuous wave deep ultraviolet laser at 275 nm by efficient frequency doubling of a blue-diode-pumped Pr:YLF laser at 550 nm.By employing a novel ... This paper describes what is thought to be the first generation of a continuous wave deep ultraviolet laser at 275 nm by efficient frequency doubling of a blue-diode-pumped Pr:YLF laser at 550 nm.By employing a novel fast-axis collimated blue semiconductor laser as the pump source,combined with a folded cavity and innovation coating technology,and utilizing a Brewster-cut BBO crystal for intracavity frequency doubling,TEM00 mode deep UV laser radiation at 275 nm with an output power of 351 mW is obtained.This marks the first report of achieving 275 nm laser generation based on Pr:LiYF4 to date. 展开更多
关键词 CW ultraviolet laser 275 nm laser Pr:YLF frequency doubling
在线阅读 下载PDF
Laser‑Induced Highly Stable Conductive Hydrogels for Robust Bioelectronics
19
作者 Yibo Li Hao Zhou +1 位作者 Huayong Yang Kaichen Xu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期117-120,共4页
Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung H... Despite the promising progress in conductive hydrogels made with pure conducting polymer,great challenges remain in the interface adhesion and robustness in longterm monitoring.To address these challenges,Prof.Seung Hwan Ko and Taek-Soo Kim’s team introduced a laserinduced phase separation and adhesion method for fabricating conductive hydrogels consisting of pure poly(3,4-ethylenedioxythiophene):polystyrene sulfonate on polymer substrates.The laser-induced phase separation and adhesion treated conducting polymers can be selectively transformed into conductive hydrogels that exhibit wet conductivities of 101.4 S cm^(−1) with a spatial resolution down to 5μm.Moreover,they maintain impedance and charge-storage capacity even after 1 h of sonication.The micropatterned electrode arrays demonstrate their potential in long-term in vivo signal recordings,highlighting their promising role in the field of bioelectronics. 展开更多
关键词 laser processing Conductive hydrogels Stable interface Bio-interfacing electrodes Bioelectronic application
在线阅读 下载PDF
Achieving balanced mechanical properties in laser powder bed fusion processed Inconel 718 superalloy through a simplified heat treatment process 被引量:1
20
作者 Ziyi Ding Kesong Miao +5 位作者 Qi Chao Xinliang Xie Xia Ji Hao Wu Xiaojun Wang Guohua Fan 《Journal of Materials Science & Technology》 2025年第15期54-70,共17页
Laser additively manufactured(LAM)Ni-based superalloys commonly exhibit low strength and high residual stress in the as-built state,requiring post-heat treatment to improve mechanical properties.We propose a modified ... Laser additively manufactured(LAM)Ni-based superalloys commonly exhibit low strength and high residual stress in the as-built state,requiring post-heat treatment to improve mechanical properties.We propose a modified heat treatment(MHT)process that only involves a single-step aging at 650℃ for 4 h to achieve high strength,high ductility,and low residual stress simultaneously in a laser powder bed fusion(LPBF)-processed Inconel 718(IN718)alloy.The MHT treated alloy exhibits comparable tensile strength(1368 MPa)to the conventional solution plus two-step aging(SA)treated alloy(1398 MPa),while the tensile elongation(∼21.7%for MHT treated alloy and 13.4%for SA treated alloy)is 60%higher and the residual stress(∼195 MPa)is 20%lower than the SA treated alloy.The balanced high performance of the MHT IN718 alloy was mainly attributed to the precipitation of abundantγ’’phase with a size of∼5 nm,while the original nano-sized Laves precipitates and dislocation cells were mostly retained.The finer size and higher fraction ofγ”of the MHT sample mainly result from the dislocation structure and compositional variations in the as-built IN718,which promotes precipitation during aging.The retention of Laves phase,and cellular dislocation network in the MHT alloy also contributes to work hardening during tension and suspends the occurrence of necking.This study unveils a unique strengthening and toughening mechanism in the Ni-based superalloy produced by LAM with the presence of abundant Laves precipitates and provides a simple,low energy-consumption and cost-effective heat treatment route for achieving desirable mechanical properties. 展开更多
关键词 Inconel 718 laser powder bed fusion Heat treatment Strengthening mechanism Deformation behavior
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部