Empathy is one of the most important abilities for social animals.In a world that is largely socially constructed,when encountering altered affective states of others,particularly negative states,individuals often exh...Empathy is one of the most important abilities for social animals.In a world that is largely socially constructed,when encountering altered affective states of others,particularly negative states,individuals often exhibit evolutionarily conserved empathic behaviors,such as mirroring,consolation,and helping[l,2].Appropriate empathic behaviors can foster the consolidation of social relationships.Previous studies have suggested that both male and female rodents show some empathic behaviors when facing affective conspecifics[1].However,the role of sex in different empathic behaviors remains largely unexplored.Therefore,there is a need to probe whether animals show sex-dependent empathic behavior and which neural circuits modulate these distinct behaviors.展开更多
The largely bending bilayer electrode model battery has been widely used to measure the mechanical properties of composite electrode materials.The assumption used in the method that lithium is uniformly distributed in...The largely bending bilayer electrode model battery has been widely used to measure the mechanical properties of composite electrode materials.The assumption used in the method that lithium is uniformly distributed in the active layer lacks quantitative evaluation,and the uniformity of concentration distribution is crucial for accurate in-situ measurements of concentration-related material properties and stress in bilayer electrodes.Therefore,this paper proposes a mechanical-electrochemical coupled model to study the lithium concentration distribution in the active layer during lithiation.This model includes lithium concentration diffusion and active layer deformation.By comparing experimental and simulated curvature evolution of the active layer during lithiation and delithiation,the reliability of this simulation model is verified.We then derive the precise concentration distribution inside the active layer and suggest using relative error to quantitatively evaluate the uniformity of lithium concentration in the active layer.Results show that a low relative error in lithium concentration can be achieved in the middle region of the active layer.Additionally,the effects of different rates and geometric parameters on the lithium concentration distribution in the active layer are discussed.Results indicate that reduced rates,thinner active layers,shorter active layer lengths,and increased spacing between the working and counter electrodes can lead to a more uniform distribution of lithium concentration in the active layer.These insights help improve experimental methods and equipment,promoting uniform distribution of lithium in the active layer and enhancing measurement accuracy.展开更多
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua...Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.展开更多
As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social syste...As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ...Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations.展开更多
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De...The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.展开更多
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn...Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.展开更多
BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patie...BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided.展开更多
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ...Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.展开更多
Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-...Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.展开更多
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec...ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.展开更多
The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure cas...The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure casting gating system of a large thin-walled cabin casting.A high-quality dataset was established through orthogonal experiments combined with design criteria for the gating system.Spearman’s correlation analysis was used to select high-quality features.The gating system dimensions were predicted using a gated recurrent unit(GRU)recurrent neural network and an elastic network model.Using EasyCast and ProCAST casting software,a comparative analysis of the flow field,temperature field,and solidification field can be conducted to demonstrate the achievement of steady filling and top-down sequential solidification.Compared to the empirical formula method,this method eliminates trial-and-error iterations,reduces porosity,reduces casting defect volume from 11.23 cubic centimeters to 2.23 cubic centimeters,eliminates internal casting defects through the incorporation of an internally cooled iron,fulfilling the goal of intelligent gating system design.展开更多
Rheumatoid arthritis(RA)is an autoimmune disease characterized by inflammation and abnormal osteoclast activation,leading to bone destruction.We previously demonstrated that the large extracellular loop(LEL)of Tm4sf19...Rheumatoid arthritis(RA)is an autoimmune disease characterized by inflammation and abnormal osteoclast activation,leading to bone destruction.We previously demonstrated that the large extracellular loop(LEL)of Tm4sf19 is important for its function in osteoclast differentiation,and LEL-Fc,a competitive inhibitor of Tm4sf19,effectively suppresses osteoclast multinucleation and prevent bone loss associated with osteoporosis.This study aimed to investigate the role of Tm4sf19 in RA,an inflammatory and abnormal osteoclast disease,using a mouse model of collagen-induced arthritis(CIA).Tm4sf19 expression was observed in macrophages and osteoclasts within the inflamed synovium,and Tm4sf19 expression was increased together with inflammatory genes in the joint bones of CIA-induced mice compared with the sham control group.Inhibition of Tm4sf19 by LEL-Fc demonstrated both preventive and therapeutic effects in a CIA mouse model,reducing the CIA score,swelling,inflammation,cartilage damage,and bone damage.Knockout of Tm4sf19 gene or inhibition of Tm4sf19 activity by LEL-Fc suppressed LPS/IFN-γ-induced TLR4-mediated inflammatory signaling in macrophages.LEL-Fc disrupted not only the interaction between Tm4sf19 and TLR4/MD2,but also the interaction between TLR4 and MD2.μCT analysis showed that LEL-Fc treatment significantly reduced joint bone destruction and bone loss caused by hyperactivated osteoclasts in CIA mice.Taken together,these findings suggest that LELFc may be a potential treatment for RA and RA-induced osteoporosis by simultaneously targeting joint inflammation and bone destruction caused by abnormal osteoclast activation.展开更多
Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different ...Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed.展开更多
In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach th...In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development.展开更多
As new-generation intelligent technologies rapidly evolve,enhancing artificial intelligence(AI)education has become a global consensus,and improving AI literacy is a key focus in higher education.To address the lack o...As new-generation intelligent technologies rapidly evolve,enhancing artificial intelligence(AI)education has become a global consensus,and improving AI literacy is a key focus in higher education.To address the lack of relevant knowledge among non-computer science students,the complexity of the material,which leads to low interest and high difficulty in learning,this paper proposes a three-pronged teaching design model:“BOPPPS model+large language models(LLMs)+mind maps with 3w2h”.This model aims to assist teachers in designing practical teaching cases and engaging,interactive activities,and provides examples of its application to help teachers better teach AI and improve the AI literacy of non-computer science students.展开更多
Background:The prognostic significance of the chemokine receptor CCR7 in diffuse large B-cell lymphoma(DLBCL)has been reported previously.However,the detailed mechanisms of CCR7 in DLBCL,particularly regarding its int...Background:The prognostic significance of the chemokine receptor CCR7 in diffuse large B-cell lymphoma(DLBCL)has been reported previously.However,the detailed mechanisms of CCR7 in DLBCL,particularly regarding its interaction with lenalidomide treatment,are not fully understood.Methods:Our study utilized bioinformatics approaches to identify hub genes in SU-DHL-2 cell lines treated with lenalidomide compared to control groups.Immunohistochemical data and clinical information from 122 patients with DLBCL were analyzed to assess the correlation of CCR7 and p-ERK1/2 expression with the prognosis of DLBCL.Furthermore,in vitro and in vivo experiments were conducted to clarify the role of CCR7 in the response of DLBCL to lenalidomide treatment.Results:Our bioinformatics analysis pinpointed CCR7 as a hub gene in the context of lenalidomide treatment in DLBCL.Notably,31.14%and 36.0%(44/122)of DLBCL cases showed positive expression for CCR7 and ERK1/2 respectively,establishing them as independent prognostic factors for adverse outcomes in DLBCL via multivariate Cox regression analysis.Additionally,our studies demonstrated that the external application of the protein CCL21 promoted proliferation,migration,invasion,and activation of the ERK1/2 pathway in SU-DHL-2 and OCI-LY3 cell lines with high levels of CCR7 expression.This effect was mitigated by CCR7 silencing through siRNA,application of ERK inhibitors,or lenalidomide treatment.In vivo experiments reinforced the efficacy of lenalidomide,significantly reducing tumor growth rate,tumor mass,serum total LDH levels,and expression of CCR7 and p-ERK1/2 in a SUDHL-2 xenograft model in nude mice(p<0.05).Conclusion:Our study clarifies the potential role of the CCL21/CCR7/ERK1/2 axis in the therapeutic effects of lenalidomide in DLBCL treatment.展开更多
In this paper,large deviations principle(LDP)and moderate deviations principle(MDP)of record numbers in random walks are studied under certain conditions.The results show that the rate functions of LDP and MDP are dif...In this paper,large deviations principle(LDP)and moderate deviations principle(MDP)of record numbers in random walks are studied under certain conditions.The results show that the rate functions of LDP and MDP are different from those of weak record numbers,which are interesting complements of the conclusions by Li and Yao[1].展开更多
基金supported by grants from the National Natural Science Foundation of China(32125018 and 32071005)the National Key Research and Development Program of China(2021YFA1101701)+5 种基金Zhejiang Provincial Natural Science Foundation of China(LD24H090002)the Nanhu Brain-computer Interface Institute(010904008)the Fundamental Research Funds for the Central Universities(226-2024-00133)the Key R&D Program of Zhejiang(2024SSYS0016)the Non-profit Central Research Institute Fund of the Chinese Academy of Medical Sciences(2023-PT310-01)the MOE Frontiers Science Center for Brain Science&Brain-Machine Integration of Zhejiang University.
文摘Empathy is one of the most important abilities for social animals.In a world that is largely socially constructed,when encountering altered affective states of others,particularly negative states,individuals often exhibit evolutionarily conserved empathic behaviors,such as mirroring,consolation,and helping[l,2].Appropriate empathic behaviors can foster the consolidation of social relationships.Previous studies have suggested that both male and female rodents show some empathic behaviors when facing affective conspecifics[1].However,the role of sex in different empathic behaviors remains largely unexplored.Therefore,there is a need to probe whether animals show sex-dependent empathic behavior and which neural circuits modulate these distinct behaviors.
基金supported by the National Natural Science Foundation of China(Grant No.11872236).
文摘The largely bending bilayer electrode model battery has been widely used to measure the mechanical properties of composite electrode materials.The assumption used in the method that lithium is uniformly distributed in the active layer lacks quantitative evaluation,and the uniformity of concentration distribution is crucial for accurate in-situ measurements of concentration-related material properties and stress in bilayer electrodes.Therefore,this paper proposes a mechanical-electrochemical coupled model to study the lithium concentration distribution in the active layer during lithiation.This model includes lithium concentration diffusion and active layer deformation.By comparing experimental and simulated curvature evolution of the active layer during lithiation and delithiation,the reliability of this simulation model is verified.We then derive the precise concentration distribution inside the active layer and suggest using relative error to quantitatively evaluate the uniformity of lithium concentration in the active layer.Results show that a low relative error in lithium concentration can be achieved in the middle region of the active layer.Additionally,the effects of different rates and geometric parameters on the lithium concentration distribution in the active layer are discussed.Results indicate that reduced rates,thinner active layers,shorter active layer lengths,and increased spacing between the working and counter electrodes can lead to a more uniform distribution of lithium concentration in the active layer.These insights help improve experimental methods and equipment,promoting uniform distribution of lithium in the active layer and enhancing measurement accuracy.
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
基金supported by National Natural Science Foundation of China(62376219 and 62006194)Foundational Research Project in Specialized Discipline(Grant No.G2024WD0146)Faculty Construction Project(Grant No.24GH0201148).
文摘Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.
基金supported by the National Key Research and Development Program of China(2021YFB1714300)the National Natural Science Foundation of China(62233005,U2441245,62173141)+3 种基金CNPC Innovation Found(2024DQ02-0507)Shanghai Natural Science(24ZR1416400)Shanghai Baiyu Lan Talent Program Pujiang Project(24PJD020)the Programme of Introducing Talents of Discipline to Universities(the 111 Project)(B17017)
文摘As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
文摘Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations.
基金supported by the National Key R&D Program of China under Grant No.2022YFB3103500the National Natural Science Foundation of China under Grants No.62402087 and No.62020106013+3 种基金the Sichuan Science and Technology Program under Grant No.2023ZYD0142the Chengdu Science and Technology Program under Grant No.2023-XT00-00002-GXthe Fundamental Research Funds for Chinese Central Universities under Grants No.ZYGX2020ZB027 and No.Y030232063003002the Postdoctoral Innovation Talents Support Program under Grant No.BX20230060.
文摘The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats.
基金the National Natural Science Foundation of China(No.52205468)China Postdoctoral Science Foundation(No.2022M710061 and No.2023T160277)Natural Science Foundation of Jiangsu Province(No.BK20210755)。
文摘Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts.
基金Supported by the China Health Promotion Foundation Young Doctors'Research Foundation for Inflammatory Bowel Disease,the Taishan Scholars Program of Shandong Province,China,No.tsqn202306343National Natural Science Foundation of China,No.82270578.
文摘BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided.
文摘Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research.
基金The National Natural Science Foundation of China(62136008,62293541)The Beijing Natural Science Foundation(4232056)The Beijing Nova Program(20240484514).
文摘Cooperative multi-agent reinforcement learning(MARL)is a key technology for enabling cooperation in complex multi-agent systems.It has achieved remarkable progress in areas such as gaming,autonomous driving,and multi-robot control.Empowering cooperative MARL with multi-task decision-making capabilities is expected to further broaden its application scope.In multi-task scenarios,cooperative MARL algorithms need to address 3 types of multi-task problems:reward-related multi-task,arising from different reward functions;multi-domain multi-task,caused by differences in state and action spaces,state transition functions;and scalability-related multi-task,resulting from the dynamic variation in the number of agents.Most existing studies focus on scalability-related multitask problems.However,with the increasing integration between large language models(LLMs)and multi-agent systems,a growing number of LLM-based multi-agent systems have emerged,enabling more complex multi-task cooperation.This paper provides a comprehensive review of the latest advances in this field.By combining multi-task reinforcement learning with cooperative MARL,we categorize and analyze the 3 major types of multi-task problems under multi-agent settings,offering more fine-grained classifications and summarizing key insights for each.In addition,we summarize commonly used benchmarks and discuss future directions of research in this area,which hold promise for further enhancing the multi-task cooperation capabilities of multi-agent systems and expanding their practical applications in the real world.
文摘ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users.
基金supported by the National Natural Science Foundation of China(Nos.52074246,52275390,52375394)the National Defense Basic Scientific Research Program of China(No.JCKY2020408B002)the Key R&D Program of Shanxi Province(No.202102050201011).
文摘The design of casting gating system directly determines the solidification sequence,defect severity,and overall quality of the casting.A novel machine learning strategy was developed to design the counter pressure casting gating system of a large thin-walled cabin casting.A high-quality dataset was established through orthogonal experiments combined with design criteria for the gating system.Spearman’s correlation analysis was used to select high-quality features.The gating system dimensions were predicted using a gated recurrent unit(GRU)recurrent neural network and an elastic network model.Using EasyCast and ProCAST casting software,a comparative analysis of the flow field,temperature field,and solidification field can be conducted to demonstrate the achievement of steady filling and top-down sequential solidification.Compared to the empirical formula method,this method eliminates trial-and-error iterations,reduces porosity,reduces casting defect volume from 11.23 cubic centimeters to 2.23 cubic centimeters,eliminates internal casting defects through the incorporation of an internally cooled iron,fulfilling the goal of intelligent gating system design.
基金supported by GILO Foundation.This research is in part supported by Korea Drug Development Fund funded by Ministry of Science and ICT,Ministry of Trade,Industry,and Energy,and Ministry of Health and Welfare(RS-2023-00282595,Republic of Korea).
文摘Rheumatoid arthritis(RA)is an autoimmune disease characterized by inflammation and abnormal osteoclast activation,leading to bone destruction.We previously demonstrated that the large extracellular loop(LEL)of Tm4sf19 is important for its function in osteoclast differentiation,and LEL-Fc,a competitive inhibitor of Tm4sf19,effectively suppresses osteoclast multinucleation and prevent bone loss associated with osteoporosis.This study aimed to investigate the role of Tm4sf19 in RA,an inflammatory and abnormal osteoclast disease,using a mouse model of collagen-induced arthritis(CIA).Tm4sf19 expression was observed in macrophages and osteoclasts within the inflamed synovium,and Tm4sf19 expression was increased together with inflammatory genes in the joint bones of CIA-induced mice compared with the sham control group.Inhibition of Tm4sf19 by LEL-Fc demonstrated both preventive and therapeutic effects in a CIA mouse model,reducing the CIA score,swelling,inflammation,cartilage damage,and bone damage.Knockout of Tm4sf19 gene or inhibition of Tm4sf19 activity by LEL-Fc suppressed LPS/IFN-γ-induced TLR4-mediated inflammatory signaling in macrophages.LEL-Fc disrupted not only the interaction between Tm4sf19 and TLR4/MD2,but also the interaction between TLR4 and MD2.μCT analysis showed that LEL-Fc treatment significantly reduced joint bone destruction and bone loss caused by hyperactivated osteoclasts in CIA mice.Taken together,these findings suggest that LELFc may be a potential treatment for RA and RA-induced osteoporosis by simultaneously targeting joint inflammation and bone destruction caused by abnormal osteoclast activation.
基金supported by the ONR Vannevar Bush Faculty Fellowship(Grant No.N00014-22-1-2795).
文摘Large language models(LLMs)have emerged as powerful tools for addressing a wide range of problems,including those in scientific computing,particularly in solving partial differential equations(PDEs).However,different models exhibit distinct strengths and preferences,resulting in varying levels of performance.In this paper,we compare the capabilities of the most advanced LLMs—DeepSeek,ChatGPT,and Claude—along with their reasoning-optimized versions in addressing computational challenges.Specifically,we evaluate their proficiency in solving traditional numerical problems in scientific computing as well as leveraging scientific machine learning techniques for PDE-based problems.We designed all our experiments so that a nontrivial decision is required,e.g,defining the proper space of input functions for neural operator learning.Our findings show that reasoning and hybrid-reasoning models consistently and significantly outperform non-reasoning ones in solving challenging problems,with ChatGPT o3-mini-high generally offering the fastest reasoning speed.
基金National Natural Science Foundation of china(No.42371446)Natural Science Foundatiorof Hubei Province(No.2024AFD412)Fundamental Research Funds for National Universities,China University of Geosciences(Wuhan)(No.2024XLA17).
文摘In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development.
文摘As new-generation intelligent technologies rapidly evolve,enhancing artificial intelligence(AI)education has become a global consensus,and improving AI literacy is a key focus in higher education.To address the lack of relevant knowledge among non-computer science students,the complexity of the material,which leads to low interest and high difficulty in learning,this paper proposes a three-pronged teaching design model:“BOPPPS model+large language models(LLMs)+mind maps with 3w2h”.This model aims to assist teachers in designing practical teaching cases and engaging,interactive activities,and provides examples of its application to help teachers better teach AI and improve the AI literacy of non-computer science students.
基金supported by the Key Research and Development Program of Science and Technology Department of Guizhou Province(No.20204Y147).
文摘Background:The prognostic significance of the chemokine receptor CCR7 in diffuse large B-cell lymphoma(DLBCL)has been reported previously.However,the detailed mechanisms of CCR7 in DLBCL,particularly regarding its interaction with lenalidomide treatment,are not fully understood.Methods:Our study utilized bioinformatics approaches to identify hub genes in SU-DHL-2 cell lines treated with lenalidomide compared to control groups.Immunohistochemical data and clinical information from 122 patients with DLBCL were analyzed to assess the correlation of CCR7 and p-ERK1/2 expression with the prognosis of DLBCL.Furthermore,in vitro and in vivo experiments were conducted to clarify the role of CCR7 in the response of DLBCL to lenalidomide treatment.Results:Our bioinformatics analysis pinpointed CCR7 as a hub gene in the context of lenalidomide treatment in DLBCL.Notably,31.14%and 36.0%(44/122)of DLBCL cases showed positive expression for CCR7 and ERK1/2 respectively,establishing them as independent prognostic factors for adverse outcomes in DLBCL via multivariate Cox regression analysis.Additionally,our studies demonstrated that the external application of the protein CCL21 promoted proliferation,migration,invasion,and activation of the ERK1/2 pathway in SU-DHL-2 and OCI-LY3 cell lines with high levels of CCR7 expression.This effect was mitigated by CCR7 silencing through siRNA,application of ERK inhibitors,or lenalidomide treatment.In vivo experiments reinforced the efficacy of lenalidomide,significantly reducing tumor growth rate,tumor mass,serum total LDH levels,and expression of CCR7 and p-ERK1/2 in a SUDHL-2 xenograft model in nude mice(p<0.05).Conclusion:Our study clarifies the potential role of the CCL21/CCR7/ERK1/2 axis in the therapeutic effects of lenalidomide in DLBCL treatment.
基金supported by the National Natural Science Foundation of China(Grant No.11671145)the Science and Technology Commission of Shanghai Municipality(Grant No.18dz2271000).
文摘In this paper,large deviations principle(LDP)and moderate deviations principle(MDP)of record numbers in random walks are studied under certain conditions.The results show that the rate functions of LDP and MDP are different from those of weak record numbers,which are interesting complements of the conclusions by Li and Yao[1].