期刊文献+
共找到391,415篇文章
< 1 2 250 >
每页显示 20 50 100
Large-Scale Test Model of the Progressive Deformation and Failure of Cracked Soil Slopes 被引量:5
1
作者 Zhi Zhou Jiaming Zhang +3 位作者 Fulong Ning Yi Luo Lily Chong Kuangbiao Sun 《Journal of Earth Science》 SCIE CAS CSCD 2020年第6期1097-1108,共12页
A large-scale test bed(LWH=6 m×3 m×2.8 m)instrumented with various sensors is used to examine the effects of rainfall infiltration and evaporation on the deformation and failure of cracked soil slopes,taking... A large-scale test bed(LWH=6 m×3 m×2.8 m)instrumented with various sensors is used to examine the effects of rainfall infiltration and evaporation on the deformation and failure of cracked soil slopes,taking the Anhui area along the Yangtze River as a field example.The results indicate that(1)during rainfall,the soil around the shallow shrinkage fissures attains transient saturation,and the attendant decrease of matric suction is the primary cause of the shallow slope failure;(2)slope deformation continues during post-rainfall evaporation;(3)if a period of evaporation is followed by heavy rainfall,soil creep is concentrated near the deepest cracks,and two zones of steep gradients in pore pressure form at the crest and toe of the slope.Finally,a saturated zone forms near each crack base and gradually enlarges,eventually forming a continuous saturated layer that induces the slope instability or failure. 展开更多
关键词 slope failure geological engineering cracked soil slope large-scale test progressive deformation
原文传递
Shear strength characteristics of mixing slag-stone ballast reinforcement with tire geo-scrap using large-scale direct shear tests
2
作者 Morteza Esmaeili Hamidreza Heydari +1 位作者 Maziar Mokhtari Sara Darvishi 《Railway Engineering Science》 2025年第1期94-107,共14页
Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts.Strengthening the ballast layer with different types of reinforcements ... Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts.Strengthening the ballast layer with different types of reinforcements or substituting the stone aggregates with the appropriate granular materials could potentially help to achieve this goal by reducing the ballast deterioration.One of the exquisite and most effective solutions to eliminate these challenges is to use waste materials such as steel slag aggregates and useless tires.Utilizing these waste materials in the ballasted railway track will contribute to sustainable development,an eco-friendly system,and green infrastructure.So in a state-of-the-art insightful,the ballast aggregates,including a mixture of steel slag and stone aggregates,are reinforced with a novel kind of geo-grid made of waste tire strips known as geo-scraps.This laboratory research tried to explain the shear strength behavior of the introduced mixing slag-stone ballast reinforced with tire geo-scrap.To achieve this goal,a series of large-scale direct shear tests were performed on the ballast which is reinforced by tire geo-scrap and included various combinations of slag and stone aggregates.The concluded results indicate that the optimal mixing ratio is attained by a combination of 75%slag and 25%stone aggregates which is reinforced by tire geo-scrap at a placing level of 120 mm.In this case,the shear strength,internal friction angle,vertical displacement,and dilatancy angle of stone–slag ballast reinforced with geo-scraps exhibited average changes of+28%,+9%,-28%,and-15%,respectively. 展开更多
关键词 Ballast deterioration Ballast stabilization Steel slag aggregates large-scale direct shear test Waste tire geoscrap
在线阅读 下载PDF
Large-scale shaking table test on unlined tunnel in fault zone under threedimensional earthquake
3
作者 ZHANG Xiaoyu TAO Zhigang +1 位作者 YANG Xiaojie ZHANG Ruixue 《Journal of Mountain Science》 2025年第1期296-311,共16页
A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel const... A fault is a geological structure characterized by significant displacement of rock masses along a fault plane within the Earth's crust.The Yunnan Tabaiyi Tunnel intersects multiple fault zones,making tunnel construction in fault-prone areas particularly vulnerable to the effects of fault activity due to the complexities of the surrounding geological environment.To investigate the dynamic response characteristics of tunnel structures under varying surrounding rock conditions,a three-dimensional large-scale shaking table physical model test was conducted.This study also aimed to explore the damage mechanisms associated with the Tabaiyi Tunnel under seismic loading.The results demonstrate that poor quality surrounding rock enhances the seismic response of the tunnel.This effect is primarily attributed to the distribution characteristics of acceleration,dynamic strain,and dynamic soil pressure.A comparison between unidirectional and multi-directional(including vertical)seismic motions reveals that vertical seismic motion has a more significant impact on specific tunnel locations.Specifically,the maximum tensile stress is observed at the arch shoulder,with values ranging from 60 to 100 k Pa.Moreover,NPR(Non-Prestressed Reinforced)anchor cables exhibit a substantial constant resistance effect under low-amplitude seismic waves.However,when the input earthquake amplitude reaches 0.8g,local sliding occurs at the arch shoulder region of the NPR anchor cable.These findings underscore the importance of focusing on seismic mitigation measures in fault zones and reinforcing critical areas,such as the arch shoulders,in practical engineering applications. 展开更多
关键词 Fault tunnel Shaking table test Dynamic response Three-directional earthquake Damage mechanism
原文传递
Large-scale experimental study on scour around both slender and large monopiles under irregular waves
4
作者 En-yu Gong Song-gui Chen +2 位作者 Xin Chen Da-wei Guan Jin-hai Zheng 《Water Science and Engineering》 2025年第3期369-377,共9页
Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by co... Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter. 展开更多
关键词 SCOUR KeuleganeCarpenter number Irregular waves Equilibrium scour depth large-scale test
在线阅读 下载PDF
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane 被引量:2
5
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection large-scale model test
原文传递
Challenges in the Large-Scale Deployment of CCUS 被引量:2
6
作者 Zhenhua Rui Lianbo Zeng Birol Dindoruk 《Engineering》 2025年第1期17-20,共4页
1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Int... 1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Intergovernmental Panel on Climate Change(IPCC)—consistently predict the widespread implementation of CO_(2)geological storage on a global scale. 展开更多
关键词 large-scale Deployment CCUS CHALLENGES Climate Change Mitigation
在线阅读 下载PDF
Large-scale laboratory investigation of pillar-support interaction
7
作者 Akash Chaurasia Gabriel Walton +4 位作者 Sankhaneel Sinha Timothy J.Batchler Kieran Moore Nicholas Vlachopoulos Bradley Forbes 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期71-93,共23页
Underground mine pillars provide natural stability to the mine area,allowing safe operations for workers and machinery.Extensive prior research has been conducted to understand pillar failure mechanics and design safe... Underground mine pillars provide natural stability to the mine area,allowing safe operations for workers and machinery.Extensive prior research has been conducted to understand pillar failure mechanics and design safe pillar layouts.However,limited studies(mostly based on empirical field observation and small-scale laboratory tests)have considered pillar-support interactions under monotonic loading conditions for the design of pillar-support systems.This study used a series of large-scale laboratory compression tests on porous limestone blocks to analyze rock and support behavior at a sufficiently large scale(specimens with edge length of 0.5 m)for incorporation of actual support elements,with consideration of different w/h ratios.Both unsupported and supported(grouted rebar rockbolt and wire mesh)tests were conducted,and the surface deformations of the specimens were monitored using three-dimensional(3D)digital image correlation(DIC).Rockbolts instrumented with distributed fiber optic strain sensors were used to study rockbolt strain distribution,load mobilization,and localized deformation at different w/h ratios.Both axial and bending strains were observed in the rockbolts,which became more prominent in the post-peak region of the stress-strain curve. 展开更多
关键词 Grouted rockbolt Welded wire mesh Porous limestone Digital image correlation Distributed fiber optic sensing large-scale laboratory tests
在线阅读 下载PDF
Design of a large-scale model for wind tunnel test of a multiadaptive flap concept 被引量:1
8
作者 Mürüvvet Sinem SICIM DEMIRCI Rosario PECORA Metin Orhan KAYA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期58-80,共23页
The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced techno... The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses. 展开更多
关键词 Morphing structures Smart aircraft Morphing flap Adaptive systems Finger-like ribs Wind tunnel tests large-scale morphing archi-tectures Variable camber airfoil
原文传递
Influence of Friction Condition on Cavity Filling for Large-Scale Titanium Alloy Strut Forging
9
作者 Hu Yanghu Zhang Dawei +2 位作者 Tian Chong Chai Xing Zhao Shengdun 《稀有金属材料与工程》 北大核心 2025年第6期1462-1466,共5页
The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the... The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence. 展开更多
关键词 large-scale strut titanium alloy friction condition rigid movement cavity filling
原文传递
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
10
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 large-scale standing rotary cutting test Discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model Cutting force
在线阅读 下载PDF
Decomposition for Large-Scale Optimization Problems:An Overview
11
作者 Thai Doan CHUONG Chen LIU Xinghuo YU 《Artificial Intelligence Science and Engineering》 2025年第3期157-174,共18页
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti... Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives. 展开更多
关键词 decomposition methods nonlinear optimization large-scale problems computational intelligence
在线阅读 下载PDF
Management Measures for Large-scale Machinery and Equipment in Highway Construction
12
作者 Yang Yu 《Journal of World Architecture》 2025年第2期134-140,共7页
This article focuses on the management of large-scale machinery and equipment in highway construction,with the research objective of identifying issues at the management level and exploring more effective management m... This article focuses on the management of large-scale machinery and equipment in highway construction,with the research objective of identifying issues at the management level and exploring more effective management measures.Through practical observation and logical analysis,this article elaborates on the management connotations of large-scale machinery and equipment in highway construction,affirming its management value from different perspectives.On this basis,it carefully analyzes the problems existing in the management of large-scale machinery and equipment,providing a detailed interpretation of issues such as the weak foundation of the equipment management system and the disconnection between equipment selection and configuration from reality.Combining the manifestations of related problems,this article proposes strategies such as strengthening the institutional foundation of equipment management,selecting and configuring equipment based on actual conditions,aiming to provide references for large-scale machinery and equipment management to relevant enterprises. 展开更多
关键词 HIGHWAY CONSTRUCTION large-scale machinery and equipment management
在线阅读 下载PDF
Influence of ground fissures on metro shield tunnels:Large-scale experiment and numerical analysis
13
作者 Yuxuan Gou Qiangbing Huang +2 位作者 Nina Liu Dongping Chen Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1356-1377,共22页
The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,... The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,in combination with numerical simulation,was conducted to investigate the influence of ground fissures on a metro shield tunnel.The results indicate that the lining contact pressure at the vault increases in the hanging wall while decreases in the footwall,resulting in a two-dimensional stress state of vertical shear and axial tension-compression,and simultaneous vertical dislocation and axial tilt for the segments around the ground fissure.In addition,the damage to curved bolts includes tensile yield,flexural yield,and shear twist,leading to obvious concrete lining damage,particularly at the vault,arch bottom,and hance,indicating that the joints in these positions are weak areas.The shield tunnel orthogonal to the ground fissure ultimately experiences shear failure,suggesting that the maximum actual dislocation of ground fissure that the structure can withstand is approximately 20 cm,and five segment rings in the hanging wall and six segment rings in the footwall also need to be reinforced.This study could provide a reference for metro design in ground fissure sites. 展开更多
关键词 Shield tunnel Ground fissure large-scale experiment Mechanical performance Failure mode
在线阅读 下载PDF
Irreversibility as a signature of non-equilibrium phase transition in large-scale human brain networks:An fMRI study
14
作者 Jing Wang Kejian Wu +1 位作者 Jiaqi Dong Lianchun Yu 《Chinese Physics B》 2025年第5期636-644,共9页
It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the ... It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the assessment of irreversibility in brain networks can provide valuable insights into their non-equilibrium properties.In this study,we utilized an open-source whole-brain functional magnetic resonance imaging(fMRI)dataset from both resting and task states to evaluate the irreversibility of large-scale human brain networks.Our analysis revealed that the brain networks exhibited significant irreversibility,violating detailed balance,and generating entropy.Notably,both physical and cognitive tasks increased the extent of this violation compared to the resting state.Regardless of the state(rest or task),interactions between pairs of brain regions were the primary contributors to this irreversibility.Moreover,we observed that as global synchrony increased within brain networks,so did irreversibility.The first derivative of irreversibility with respect to synchronization peaked near the phase transition point,characterized by the moderate mean synchronization and maximized synchronization entropy of blood oxygenation level-dependent(BOLD)signals.These findings deepen our understanding of the non-equilibrium dynamics of large-scale brain networks,particularly in relation to their phase transition behaviors,and may have potential clinical applications for brain disorders. 展开更多
关键词 large-scale brain networks FMRI IRREVERSIBILITY non-equilibrium phase transition
原文传递
Large-scale Circulation Anomalies Affecting the 2022 Record-breaking Rainfall During the First Rainy Season in South China
15
作者 WU Yu-lin YU Wei-dong LI Xin-yu 《Journal of Tropical Meteorology》 2025年第3期289-296,共8页
In 2022, South China(SC) experienced record-breaking rainfall during its first rainy season, causing severe socioeconomic losses. This study examines the large-scale circulation anomalies responsible for this extreme ... In 2022, South China(SC) experienced record-breaking rainfall during its first rainy season, causing severe socioeconomic losses. This study examines the large-scale circulation anomalies responsible for this extreme event.Analysis reveals that the lower-tropospheric cyclonic anomaly over SC plays a crucial role. This cyclonic anomaly consists of extratropical northeasterly anomalies to the north of SC and tropical southwesterly anomalies to the south. Both components were particularly intense during the 2022 first rainy season, contributing to the heavy rainfall in SC. Moreover,the lower-tropospheric cyclonic anomaly is enhanced by its counterpart in the upper troposphere, which is associated with a wave train propagating from the North Atlantic to East Asia across the mid-high latitudes of the Eurasian continent.Further analysis indicates that the extratropical wave train correlates with sea surface temperature anomalies(SSTAs) in the North Atlantic. Additionally, the SSTAs over the North Indian Ocean also play a role in enhancing the tropical southwesterlies in the lower troposphere. This study highlights the combined influence of tropical and extratropical circulation anomalies, offering a comprehensive understanding of the record-breaking rainfall. 展开更多
关键词 the first rainy season South China large-scale circulation
在线阅读 下载PDF
Deformation Monitoring Technology and Early Warning Management for Large-Scale Railway Adjacent Operating Lines
16
作者 HU Mingjie WANG Pan +2 位作者 HU Gaofeng XIANG Yang XIE Haizhen 《Wuhan University Journal of Natural Sciences》 2025年第4期392-404,共13页
This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is... This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is placed on data acquisition and processing methods using total stations and automated monitoring systems.Through a comprehensive analysis of lateral,longitudinal,and vertical displacement data from 26 subgrade monitoring points,catenary columns,and track sections,this research evaluates how construction activities influence railway structures.The results show that displacement variations in the subgrades,catenary columns,and tracks remained within the established alert thresholds,exhibiting stable deformation trends and indicating that any adverse environmental impact was effectively contained.Furthermore,this paper proposes an early warning mechanism based on an automated monitoring system,which can promptly detect abnormal deformations and initiate emergency response procedures,thereby ensuring the safe operation of the railway.The integration of big data analysis and deformation prediction models offers a practical foundation for future safety management in railway construction. 展开更多
关键词 large-scale railway deformation monitoring automated monitoring early warning mechanism
原文传递
Optimization design of launch window for large-scale constellation using improved genetic algorithm
17
作者 LIU Yue HOU Xiangzhen +3 位作者 CAI Xi LI Minghu CHANG Xinya WANG Miao 《先进小卫星技术(中英文)》 2025年第4期23-32,共10页
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ... The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes. 展开更多
关键词 deployment strategy optimization launching schedule constraints improved genetic algorithm large-scale constellation
在线阅读 下载PDF
Diffusion characteristics of deep-sea mining sediment plumes in flowing water by large-scale water tank experiments
18
作者 Ze-lin LIU Xiang WU +3 位作者 Qiu-hua RAO Wei YI Shi-ping CHEN Hao ZHENG 《Transactions of Nonferrous Metals Society of China》 2025年第8期2747-2761,共15页
The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and ... The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and conducted to investigate the morphological characteristics and concentration evolution of the sediment plumes under different discharge rates(Q)and initial sediment concentrations(c).Viscosity tests,resuspension tests and free settling tests of the sediment solution with different c values were performed to reveal the settling mechanism of the plume diffusion process.The results show that the plume diffusion morphology variation in flowing water has four stages and the plume concentration evolution has three stages.The larger the Q,the smaller the initial incidence angle at the discharge outlet,the larger the diffusion range,the poorer the stability and the more complicated the diffusion morphology.The larger the c,the larger the settling velocity,the faster the formation of high-concentration accumulation zone,the better the stability and the clearer the diffusion boundary.The research results could provide experimental data for assessing the impact of deep-sea mining on the ocean environment. 展开更多
关键词 deep-sea mining sediment plumes diffusion characteristics flowing water large-scale water tank experiment
在线阅读 下载PDF
Tentative exploring the construction of experimental technician team of large-scale instrument platforms in universities-Taking Peking University School of Pharmaceutical Sciences as an example
19
作者 Yuan Wang Xun Wang 《Journal of Chinese Pharmaceutical Sciences》 2025年第4期392-399,共8页
This study examined the development of technician teams on large-scale instrument platforms in universities,using the State Key Laboratory of Natural and Biomimetic Drugs in the Peking University School of Pharmaceuti... This study examined the development of technician teams on large-scale instrument platforms in universities,using the State Key Laboratory of Natural and Biomimetic Drugs in the Peking University School of Pharmaceutical Sciences as a case study.Data were collected through questionnaire surveys and interviews conducted in 2017,followed by a questionnaire survey in 2023,offering both subjective and objective insights.The evolution of the platform’s technician team over the past 5 years was analyzed,highlighting key experiences and identifying ongoing challenges.Recommendations to enhance technician team development include recruiting skilled faculty,clearly defining job responsibilities,and refining the assessment and incentive systems. 展开更多
关键词 large-scale instrument platform Experimental technician team Scientific research management
原文传递
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
20
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部