The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to ...The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.展开更多
Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments ...Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.展开更多
We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1...We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1 at the celestial equator and Subsample 2 further north. In Subsample 1 we discover two compact super-large-scale structures: the Sloan Great Wall and the CfA Great Wall. The Sloan Great Wall, located at a median redshift of z= 0.07804, has a total length of about 433 Mpc and a mean galaxy density of about six times that of the whole sample. Most of its member galaxies are of medium size and brightness. The CfA Great Wall, located at a median redshift of z = 0.03058, has a total length of about 251 Mpc and includes large percentages of faint and small galaxies and relatively fewer early-type galaxies.展开更多
Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic...Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.展开更多
Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material throu...Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.展开更多
Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is p...Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.展开更多
A method based on decomposition of acceleration field and Lie derivative is introduced to identify shearing and rotational domains.This method is validated on two typical kinds of model flows.Vorticity dynamics of flo...A method based on decomposition of acceleration field and Lie derivative is introduced to identify shearing and rotational domains.This method is validated on two typical kinds of model flows.Vorticity dynamics of flow around bluff body is studied,illustrated by numerical examples of flow around an elliptic cylinder,a slanted elliptic cylinder and an elliptic cylinder with a pair of bumps on the front side.To explain the generation of vortical structures and how they evolve into inner flow field,boundary vorticity dynamics analysis is performed.Boundary vorticity flux as well as the enstrophy diffusion flux creates vorticity sources and vorticity sinks,which generate or consume boundary vorticity,then shearing layers are generated and interact with each other finally create vortices.The results provide potential in accurate flow control by boundary deformation,and show that relevant theoretical conclusions can be effectively applied in revealing the flow mechanisms.展开更多
Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flame...Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction.展开更多
The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-...The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-resolving model simulation. An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds, which leads to -100% coverage of raining stratiform clouds over the entire model domain. The imposed forcing extends upward motion to the lower troposphere during 16-17 July, which leads to an enhancement of convective clouds and suppression of raining stratiform clouds. The switch of large-scale lower-tropospheric vertical velocity from weak downward motion on 15 July to moderate upward motion during 16-17 July produces a much broader distribution of the vertical velocity, water vapor and hydrometeor fluxes, perturbation specific humidity, and total hydrometeor mixing ratio during 16-17 July than those on 15 July in the analysis of contoured frequency-altitude diagrams. Further analysis of the water vapor budget reveals that local atmospheric moistening is mainly caused by the enhancement of evaporation of rain associated with downward motion on 15 July, whereas local atmospheric drying is mainly determined by the advective drying associated with downward motion over raining stratiform regions and by the net condensation associated with upward motion over convective regions during 16-17 July.展开更多
The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature o...The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature of the upstream wall vortex in relation to stagnation point and the Scarf vortex in near field were analyzed. The computed characteristic scales of the upstream vortex show distinguished three-dimensionality and vary with the velocity ratio and the water depth. The Scarf vortex in the near field plays an important role in the lateral concentration distributions of the impinging jet in crossflow. When the velocity ratio is relatively small, there exists a distinct lateral high concentration aggregation zone at the lateral edge between the bottom layer wall jet and the ambient crossflow, which is dominated by the Scarf vortex in the near field.展开更多
A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic str...A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.展开更多
Typical scales in the distribution of IRAS galaxies with the unnormalized pair count method. Samples are those provided by QDOT redshift survey and sorted out from the IRAS faint sources catalog. Analysis is concentra...Typical scales in the distribution of IRAS galaxies with the unnormalized pair count method. Samples are those provided by QDOT redshift survey and sorted out from the IRAS faint sources catalog. Analysis is concentrated on the structures at super-large scales. The results show that statistically significant typical scales do exist in the distribution of all these samples from both 2-dimensiortal and 3-dimensional analyses. These scales are consistent with those found from the analyses of galaxies and clusters of galaxies by Mo et al. and also consistent with those found from analysis of quasars by Deng et al. The analysis provides additional evidence for the existence of typical scales in the large-scale structure of the universe. The existence of typical scales challenges all the existing models on the formation of galaxies and structures.展开更多
Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of t...Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of the Fe-6.5 wt.%Si alloy ingots with the cooling rate during casting was investigated.Under air-cooling condition,inhomogeneous microstructures with a low proportion of equiaxed grains were formed,but the formation of ordered structures was partially inhibited,especially DO3.Homogeneous microstructures with a high proportion of equiaxed grains were observed under the condition of furnace cooling,but the ordered structures were fully generated,and the degree of order is high.It is generally believed that high degree of order is the main factor of brittleness,but the homogeneous microstructure(including grain morphology and size)of the furnace-cooled sample helps to improve the formability.The influence of these two aspects on formability is contradictory.Therefore,the formability is tested through the flow stress during the compression and the microstructure after the compression.The results show that the furnace-cooled sample has better formability.For large-scale ingots,the control of as-cast microstructure becomes more significant than the control of degree of order.Slow cooling during casting is important for the large-scale ingots to have good formability meeting the requirements of direct hot rolling.展开更多
SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,red...SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,reduced graphene oxide(rGO)modified SiBCN aerogels(rGO/SiBCN)were prepared through solvothermal,freeze-casting and pyrolysis,and the dimension of the aerogel is up toΦ130 mm×28 mm.The density of the rGO/SiBCN aerogel is as low as 0.024 g/cm^(3) and the microstructural regulation is achieved by controlling the rGO content in the aerogel.The hierarchical cellular structure endows the aerogel with a high specific surface area(148.6 m^(2)/g)and low thermal conductivity(0.057 W m^(-1) K^(-1)).The 10 mm-thick sample exhibits excellent thermal insulation and ablation resistance,as evidenced by its ability to reduce the temperature from~1100℃to~180℃under the intense heat of a butane flame.Moreover,benefiting from the ultrahigh-temperature stability of SiBCN,the rGO/SiBCN aerogel exhibits good thermal stability up to 1200℃in argon and short-oxidation resistance at 800℃in air.There-fore,the rGO/SiBCN aerogel with superior overall performance could expand its practical application in high-temperature thermal insulation under extreme environments.展开更多
This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters large-scale decoy protein structures in protein structure prediction based on principal component anal...This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters large-scale decoy protein structures in protein structure prediction based on principal component analysis (PCA), is an ultra-fast and low-memory-requiring clustering method. It can be two orders of magnitude faster than the commonlyused pairwise rmsd-clustering (pRMSD) when enormous of decoys are involved. Instead of N(N – 1)/2 least-square fitting of rmsd calculations and N2 memory units to store the pairwise rmsd values in pRMSD, PCAC only requires N rmsd calculations and N × P memory storage, where N is the number of structures to be clustered and P is the number of preserved eigenvectors. Furthermore, PCAC based on the covariance Cartesian matrix generates essentially the identical result as that from the reference rmsd-clustering (rRMSD). From a test of 41 protein decoy sets, when the eigenvectors that contribute a total of 90% eigenvalues are preserved, PCAC method reproduces the results of near-native selections from rRMSD.展开更多
The fattening pig house with fermentation bed had an area of 2 100 m2, and the area of fermentation bed was 1 900 m2 with a utilization rate of 91.4%, which was 45% higher than that of conventional pig house with surr...The fattening pig house with fermentation bed had an area of 2 100 m2, and the area of fermentation bed was 1 900 m2 with a utilization rate of 91.4%, which was 45% higher than that of conventional pig house with surrounding barrier. There was feeding trough around the house. The water troughs were set in the middle of the fermentation bed and of the feeding trough on the short sides of the house, separating feed and water. There were electric aluminum alloy shutters in both long sides of the house for ventilation, cooling and heat preservation. On both short sides, there were fans and wet curtains. The spray cooling devices were in- stalled outside the roof for cooling. The environmental control in the piggery, includ- ing light, temperature, water, humidity, carbon dioxide and ammonia, was realized to run by computer automatically. The coconut chaff and chaff configuration were used as mattress material, realizing the advantages of fermentation bed, such as no smell, zero emission, high-quality meat, saving labor, controlling disease, no drug residue, producing fertilizer, intelligent control, mechanized operation, etc.展开更多
[Objective] The large-scale single-column fattening pig house with fermen- tation bed could hold 1 500 heads of fattening pigs. Since the number of pigs in piggery is too large, the management is difficult. The behavi...[Objective] The large-scale single-column fattening pig house with fermen- tation bed could hold 1 500 heads of fattening pigs. Since the number of pigs in piggery is too large, the management is difficult. The behavior of feeding, drinking, movement, sleeping, fighting of pigs is difficult to handle. The pigs cannot be man- aged well, resulting in the enhanced weakness of piglets, enhanced illness of weak pigs and missing treatment of ill pigs. The management for the pig populations is not satisfactory, and thus, it is needed to improve timely. [Method] The barriers for the fattening pigs in the large-scale pig house with fermentation bed were designed. The single management for single fattening pig was proposed. The large-scale fat- tening pig house was divided into 8 regions. Among them, 4 regions were located in both sides of the fermentation bed. Their main function was to separate ill, weak, small and bad pigs. In addition, the main column was divided into 4 gradual barri- ers. They were used to separate different-size fattening pigs. In view of manage- ment, the different-type pigs were managed dividedly with the gradual barriers. The equally-sized pigs were concentrated into one column. The ill, weak, small and bad pigs were isolated into barriers. Thus, the dynamic management was adopted. Until the fattening pigs grew up to 75 kg and their health was stable, the barriers among the columns were canceled to mix the pigs again and guarantee the pigs more gymnastic space. [Result] This design would improve the disease resistance of ill pigs, health status of weak pigs and management level of pig populations. This study would also provide a basis for the healthy running of large-scale fattening pig house with fermentation bed. [Conclusion] The pig-raising model with fermentation bed would improve the environment of pig house and the welfare of pigs. In addi- tion, the performance of pigs and quality of pork were also improved. The fermen- tation bed had an obvious advantage in safety and economics, and it had a broad application prospect.展开更多
In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted init...In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted initially in the upper half region is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is employed to trace particles. The momentum coupling effect introduced by a particle is approximated to a point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the large-scale vortex structure and particle dispersion are modulated. The length of large-scale vortex structure is shortened and the pairing is delayed. At the same time, the particles are distributed more evenly in the whole flow field as the mass loading is increased, but the particle dispersion along the transverse direction differs from that along the spanwise direction, which indicates that the effect by the addition of particle on the spanwise large-scale vortex structure is different from the streamwise counterpart.展开更多
Background: The importance of structurally diverse forests for the conservation of biodiversity and provision of a wide range of ecosystem services has been widely recognised. However, tools to quantify structural div...Background: The importance of structurally diverse forests for the conservation of biodiversity and provision of a wide range of ecosystem services has been widely recognised. However, tools to quantify structural diversity of forests in an objective and quantitative way across many forest types and sites are still needed, for example to support biodiversity monitoring. The existing approaches to quantify forest structural diversity are based on small geographical regions or single forest types, typically using only small data sets.Results: Here we developed an index of structural diversity based on National Forest Inventory(NFI) data of BadenWurttemberg, Germany, a state with 1.3 million ha of diverse forest types in different ownerships. Based on a literature review, 11 aspects of structural diversity were identified a priori as crucially important to describe structural diversity. An initial comprehensive list of 52 variables derived from National Forest Inventory(NFI) data related to structural diversity was reduced by applying five selection criteria to arrive at one variable for each aspect of structural diversity. These variables comprise 1) quadratic mean diameter at breast height(DBH), 2) standard deviation of DBH, 3) standard deviation of stand height, 4) number of decay classes, 5) bark-diversity index, 6) trees with DBH ≥ 40 cm, 7) diversity of flowering and fructification, 8) average mean diameter of downed deadwood, 9) mean DBH of standing deadwood, 10) tree species richness and 11) tree species richness in the regeneration layer. These variables were combined into a simple,additive index to quantify the level of structural diversity, which assumes values between 0 and 1. We applied this index in an exemplary way to broad forest categories and ownerships to assess its feasibility to analyse structural diversity in large-scale forest inventories.Conclusions: The forest structure index presented here can be derived in a similar way from standard inventory variables for most other large-scale forest inventories to provide important information about biodiversity relevant forest conditions and thus provide an evidence-base for forest management and planning as well as reporting.展开更多
Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tool...Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L 〉 ~L*) galaxies out to projected separations of 60 h-lMpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of -25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen- tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be flat- tened parallel to the orientations of red luminous galaxies with axis ratios of -0.5 and ,-0.75 for halo and central orientations, respectively. These ratios are almost independent of scale out to 60 h^-1 Mpc.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.10135020 and 10575032)
文摘The dynamics of secondary large-scale structures in electron-temperature-gradient (ETG) turbulence is investigated based on gyrofluid simulations in sheared slab geometry. It is found that structural bifurcation to zonal flow dominated or streamer-like states depends on the spectral anisotropy of turbulent ETG fluctuation, which is governed by the magnetic shear. The turbulent electron transport is suppressed by enhanced zonal flows. However, it is still low even if the streamer is formed in ETG turbulence with strong shears. It is shown that the low transport may be related to the secondary excitation of poloidal long-wavelength mode due to the beat wave of the most unstable components or a modulation instability. This large-scale structure with a low frequency and a long wavelength may saturate, or at least contribute to the saturation of ETG fluctuations through a poloidal mode coupling. The result suggests a low fluctuation level in ETG turbulence.
基金financial support from the SERB,DST,Government of India through the project CRG/2019/001110IUCAA,Pune for providing support through an associateship program+1 种基金IISER Tirupati for support through a postdoctoral fellowshipFunding for the SDSS and SDSS-Ⅱhas been provided by the Alfred P.Sloan Foundation,the U.S.Department of Energy,the National Aeronautics and Space Administration,the Japanese Monbukagakusho,the Max Planck Society,and the Higher Education Funding Council for England。
文摘Major interactions are known to trigger star formation in galaxies and alter their color.We study the major interactions in filaments and sheets using SDSS data to understand the influence of large-scale environments on galaxy interactions.We identify the galaxies in filaments and sheets using the local dimension and also find the major pairs residing in these environments.The star formation rate(SFR) and color of the interacting galaxies as a function of pair separation are separately analyzed in filaments and sheets.The analysis is repeated for three volume limited samples covering different magnitude ranges.The major pairs residing in the filaments show a significantly higher SFR and bluer color than those residing in the sheets up to the projected pair separation of~50 kpc.We observe a complete reversal of this behavior for both the SFR and color of the galaxy pairs having a projected separation larger than 50 kpc.Some earlier studies report that the galaxy pairs align with the filament axis.Such alignment inside filaments indicates anisotropic accretion that may cause these differences.We do not observe these trends in the brighter galaxy samples.The pairs in filaments and sheets from the brighter galaxy samples trace relatively denser regions in these environments.The absence of these trends in the brighter samples may be explained by the dominant effect of the local density over the effects of the large-scale environment.
基金Supported by the National Natural Science Foundation of China
文摘We study the super-large-scale structures in the Sloan Digital Sky Survey by cluster analysis, and examine the geometry and the properties of the member galaxies. Two subsamples are selected from the SDSS, Subsample 1 at the celestial equator and Subsample 2 further north. In Subsample 1 we discover two compact super-large-scale structures: the Sloan Great Wall and the CfA Great Wall. The Sloan Great Wall, located at a median redshift of z= 0.07804, has a total length of about 433 Mpc and a mean galaxy density of about six times that of the whole sample. Most of its member galaxies are of medium size and brightness. The CfA Great Wall, located at a median redshift of z = 0.03058, has a total length of about 251 Mpc and includes large percentages of faint and small galaxies and relatively fewer early-type galaxies.
基金Supported by the National Natural Science Foundation of China(No.51108089)Doctoral Programs Foundation of Ministry of Education of China(No.20113514120005)the Foundation of the Education Department of Fujian Province(No.JA14057)
文摘Free-interface dual-compatibility modal synthesis method(compatibility of both force and displacement on interfaces)is introduced to large-scale civil engineering structure to enhance computation efficiency. The basic equations of the method are first set up, and then the mode cut-off principle and the dividing principle are proposed. MATLAB is used for simulation in different frame structures. The simulation results demonstrate the applicability of this substructure method to civil engineering structures and the correctness of the proposed mode cut-off principle. Studies are also conducted on how to divide the whole structure for better computation efficiency while maintaining better precision. It is observed that the geometry and material properties should be considered, and the synthesis results would be more precise when the inflection points of the mode shapes are taken into consideration. Furthermore, the simulation performed on a large-scale high-rise connected structure further proves the feasibility and efficiency of this modal synthesis method compared with the traditional global method. It is also concluded from the simulation results that the fewer number of DOFs in each substructure will result in better computation efficiency, but too many substructures will be time-consuming due to the tedious synthesis procedures. Moreover, the substructures with free interface will introduce errors and reduce the precision dramatically, which should be avoided.
基金the National Natural Science Foundation of China.
文摘Large-scale magnetic structures are the main carrier of major eruptions in the solar atmosphere. These structures are rooted in the photosphere and are driven by the unceasing motion of the photospheric material through a series of equilibrium configurations. The motion brings energy into the coronal magnetic field until the system ceases to be in equilibrium. The catastrophe theory for solar eruptions indicates that loss of mechanical equilibrium constitutes the main trigger mechanism of major eruptions, usually shown up as solar flares, eruptive prominences, and coronal mass ejections (CMEs). Magnetic reconnection which takes place at the very beginning of the eruption as a result of plasma instabilities/turbulence inside the current sheet, converts magnetic energy into heating and kinetic energy that are responsible for solar flares, and for accelerating both plasma ejecta (flows and CMEs) and energetic particles. Various manifestations are thus related to one another, and the physics behind these relationships is catastrophe and magnetic reconnection. This work reports on recent progress in both theoretical research and observations on eruptive phenomena showing the above manifestations. We start by displaying the properties of large-scale structures in the corona and the related magnetic fields prior to an eruption, and show various morphological features of the disrupting magnetic fields. Then, in the framework of the catastrophe theory, we look into the physics behind those features investigated in a succession of previous works, and discuss the approaches they used.
基金supported by National Natural Science Foundation of China(No.52025055 and 52275571)Basic Research Operation Fund of China(No.xzy012024024).
文摘Tilted metasurface nanostructures,with excellent physical properties and enormous application potential,pose an urgent need for manufacturing methods.Here,electric-field-driven generative-nanoimprinting technique is proposed.The electric field applied between the template and the substrate drives the contact,tilting,filling,and holding processes.By accurately controlling the introduced included angle between the flexible template and the substrate,tilted nanostructures with a controllable angle are imprinted onto the substrate,although they are vertical on the template.By flexibly adjusting the electric field intensity and the included angle,large-area uniform-tilted,gradient-tilted,and high-angle-tilted nanostructures are fabricated.In contrast to traditional replication,the morphology of the nanoimprinting structure is extended to customized control.This work provides a cost-effective,efficient,and versatile technology for the fabrication of various large-area tilted metasurface structures.As an illustration,a tilted nanograting with a high coupling efficiency is fabricated and integrated into augmented reality displays,demonstrating superior imaging quality.
基金the National Nature Science Foundation of China(Grant Nos.11472082,11172069).
文摘A method based on decomposition of acceleration field and Lie derivative is introduced to identify shearing and rotational domains.This method is validated on two typical kinds of model flows.Vorticity dynamics of flow around bluff body is studied,illustrated by numerical examples of flow around an elliptic cylinder,a slanted elliptic cylinder and an elliptic cylinder with a pair of bumps on the front side.To explain the generation of vortical structures and how they evolve into inner flow field,boundary vorticity dynamics analysis is performed.Boundary vorticity flux as well as the enstrophy diffusion flux creates vorticity sources and vorticity sinks,which generate or consume boundary vorticity,then shearing layers are generated and interact with each other finally create vortices.The results provide potential in accurate flow control by boundary deformation,and show that relevant theoretical conclusions can be effectively applied in revealing the flow mechanisms.
基金supported by the National Natural Science Foundation of China(Nos.91441202 and 51476087)
文摘Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction.
基金supported by the State Key Basic Research Development Program (2004CB418300 and 2009CB421504)the National Natural Science Foundation of China under Grant Nos.40633016 and 40830958
文摘The responses of vertical structures, in convective and stratiform regions, to the large-scale forcing during the landfall of tropical storm Bilis (2006) are investigated using the data from a two-dimensional cloud-resolving model simulation. An imposed large-scale forcing with upward motion in the mid and upper troposphere and downward motion in the lower troposphere on 15 July suppresses convective clouds, which leads to -100% coverage of raining stratiform clouds over the entire model domain. The imposed forcing extends upward motion to the lower troposphere during 16-17 July, which leads to an enhancement of convective clouds and suppression of raining stratiform clouds. The switch of large-scale lower-tropospheric vertical velocity from weak downward motion on 15 July to moderate upward motion during 16-17 July produces a much broader distribution of the vertical velocity, water vapor and hydrometeor fluxes, perturbation specific humidity, and total hydrometeor mixing ratio during 16-17 July than those on 15 July in the analysis of contoured frequency-altitude diagrams. Further analysis of the water vapor budget reveals that local atmospheric moistening is mainly caused by the enhancement of evaporation of rain associated with downward motion on 15 July, whereas local atmospheric drying is mainly determined by the advective drying associated with downward motion over raining stratiform regions and by the net condensation associated with upward motion over convective regions during 16-17 July.
基金Project supported by the National Natural Science Foundation of China(No.10572084)Shanghai Leading Academic Discipline Project(No.Y0103)
文摘The large-scale vortical structures produced by an impinging density jet in shallow crossflow were numerically investigated in detail using RNG turbulence model. The scales, formation mechanism and evolution feature of the upstream wall vortex in relation to stagnation point and the Scarf vortex in near field were analyzed. The computed characteristic scales of the upstream vortex show distinguished three-dimensionality and vary with the velocity ratio and the water depth. The Scarf vortex in the near field plays an important role in the lateral concentration distributions of the impinging jet in crossflow. When the velocity ratio is relatively small, there exists a distinct lateral high concentration aggregation zone at the lateral edge between the bottom layer wall jet and the ambient crossflow, which is dominated by the Scarf vortex in the near field.
基金Supported by the Aeronautical Science Foundation of China(20121852031)
文摘A hybrid method combining simplified sub-entire domain basis function method of moment with finite element method( SSED-MoM /FEM) is accelerated for electromagnetic( EM) scattering analysis of large-scale periodic structures.The unknowns are reduced sharply with non-uniform mesh in FEM. The computational complexity of the hybrid method is dramatically declined by applying conjugate gradient-fast Fourier transform( CG-FFT) to the integral equations of both electric field and magnetic field. The efficiency is further improved by using OpenMP technique. Numerical results demonstrate that the SSED-MoM /FEM method can be accelerated for more than three thousand times with large-scale periodic structures.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 19773014 and 19773010).
文摘Typical scales in the distribution of IRAS galaxies with the unnormalized pair count method. Samples are those provided by QDOT redshift survey and sorted out from the IRAS faint sources catalog. Analysis is concentrated on the structures at super-large scales. The results show that statistically significant typical scales do exist in the distribution of all these samples from both 2-dimensiortal and 3-dimensional analyses. These scales are consistent with those found from the analyses of galaxies and clusters of galaxies by Mo et al. and also consistent with those found from analysis of quasars by Deng et al. The analysis provides additional evidence for the existence of typical scales in the large-scale structure of the universe. The existence of typical scales challenges all the existing models on the formation of galaxies and structures.
基金National Natural Science Foundation of China(51471031,U1660115)the State Key Laboratory for Advanced Metals and Materials(2016Z-17)are gratefully acknowledged.
文摘Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of the Fe-6.5 wt.%Si alloy ingots with the cooling rate during casting was investigated.Under air-cooling condition,inhomogeneous microstructures with a low proportion of equiaxed grains were formed,but the formation of ordered structures was partially inhibited,especially DO3.Homogeneous microstructures with a high proportion of equiaxed grains were observed under the condition of furnace cooling,but the ordered structures were fully generated,and the degree of order is high.It is generally believed that high degree of order is the main factor of brittleness,but the homogeneous microstructure(including grain morphology and size)of the furnace-cooled sample helps to improve the formability.The influence of these two aspects on formability is contradictory.Therefore,the formability is tested through the flow stress during the compression and the microstructure after the compression.The results show that the furnace-cooled sample has better formability.For large-scale ingots,the control of as-cast microstructure becomes more significant than the control of degree of order.Slow cooling during casting is important for the large-scale ingots to have good formability meeting the requirements of direct hot rolling.
基金National Natural Science Foundation of China(No.52173261).
文摘SiBCN ceramic aerogel is an ideal potential candidate for ultra-high temperature thermal insulation due to its unique microscopic pore structure combined with the excellent thermal stability of SiBCN ce-ramic.Here,reduced graphene oxide(rGO)modified SiBCN aerogels(rGO/SiBCN)were prepared through solvothermal,freeze-casting and pyrolysis,and the dimension of the aerogel is up toΦ130 mm×28 mm.The density of the rGO/SiBCN aerogel is as low as 0.024 g/cm^(3) and the microstructural regulation is achieved by controlling the rGO content in the aerogel.The hierarchical cellular structure endows the aerogel with a high specific surface area(148.6 m^(2)/g)and low thermal conductivity(0.057 W m^(-1) K^(-1)).The 10 mm-thick sample exhibits excellent thermal insulation and ablation resistance,as evidenced by its ability to reduce the temperature from~1100℃to~180℃under the intense heat of a butane flame.Moreover,benefiting from the ultrahigh-temperature stability of SiBCN,the rGO/SiBCN aerogel exhibits good thermal stability up to 1200℃in argon and short-oxidation resistance at 800℃in air.There-fore,the rGO/SiBCN aerogel with superior overall performance could expand its practical application in high-temperature thermal insulation under extreme environments.
文摘This work demonstrates the so-called PCAC (Protein principal Component Analysis Clustering) method, which clusters large-scale decoy protein structures in protein structure prediction based on principal component analysis (PCA), is an ultra-fast and low-memory-requiring clustering method. It can be two orders of magnitude faster than the commonlyused pairwise rmsd-clustering (pRMSD) when enormous of decoys are involved. Instead of N(N – 1)/2 least-square fitting of rmsd calculations and N2 memory units to store the pairwise rmsd values in pRMSD, PCAC only requires N rmsd calculations and N × P memory storage, where N is the number of structures to be clustered and P is the number of preserved eigenvectors. Furthermore, PCAC based on the covariance Cartesian matrix generates essentially the identical result as that from the reference rmsd-clustering (rRMSD). From a test of 41 protein decoy sets, when the eigenvectors that contribute a total of 90% eigenvalues are preserved, PCAC method reproduces the results of near-native selections from rRMSD.
基金Supported by Chinese Ministry of Science and Technology(2012DFA31120)Natural Science Foundation of China(NSFC)(31370059)+2 种基金948 Project of Chinese Ministry of Agriculture(2011-G25)973 Program Earlier Research Project(2011CB111607)Project of Agriculture Science and Technology Achievement Transformation(2010GB2C400220)~~
文摘The fattening pig house with fermentation bed had an area of 2 100 m2, and the area of fermentation bed was 1 900 m2 with a utilization rate of 91.4%, which was 45% higher than that of conventional pig house with surrounding barrier. There was feeding trough around the house. The water troughs were set in the middle of the fermentation bed and of the feeding trough on the short sides of the house, separating feed and water. There were electric aluminum alloy shutters in both long sides of the house for ventilation, cooling and heat preservation. On both short sides, there were fans and wet curtains. The spray cooling devices were in- stalled outside the roof for cooling. The environmental control in the piggery, includ- ing light, temperature, water, humidity, carbon dioxide and ammonia, was realized to run by computer automatically. The coconut chaff and chaff configuration were used as mattress material, realizing the advantages of fermentation bed, such as no smell, zero emission, high-quality meat, saving labor, controlling disease, no drug residue, producing fertilizer, intelligent control, mechanized operation, etc.
基金Supported by International Science and Technology Cooperation Project of China(2012DFA31120)Special Fund for Agro-scientific Research in the Public Interest(201303094)National Key Technology Research and Development Program(2012BAD14B15)~~
文摘[Objective] The large-scale single-column fattening pig house with fermen- tation bed could hold 1 500 heads of fattening pigs. Since the number of pigs in piggery is too large, the management is difficult. The behavior of feeding, drinking, movement, sleeping, fighting of pigs is difficult to handle. The pigs cannot be man- aged well, resulting in the enhanced weakness of piglets, enhanced illness of weak pigs and missing treatment of ill pigs. The management for the pig populations is not satisfactory, and thus, it is needed to improve timely. [Method] The barriers for the fattening pigs in the large-scale pig house with fermentation bed were designed. The single management for single fattening pig was proposed. The large-scale fat- tening pig house was divided into 8 regions. Among them, 4 regions were located in both sides of the fermentation bed. Their main function was to separate ill, weak, small and bad pigs. In addition, the main column was divided into 4 gradual barri- ers. They were used to separate different-size fattening pigs. In view of manage- ment, the different-type pigs were managed dividedly with the gradual barriers. The equally-sized pigs were concentrated into one column. The ill, weak, small and bad pigs were isolated into barriers. Thus, the dynamic management was adopted. Until the fattening pigs grew up to 75 kg and their health was stable, the barriers among the columns were canceled to mix the pigs again and guarantee the pigs more gymnastic space. [Result] This design would improve the disease resistance of ill pigs, health status of weak pigs and management level of pig populations. This study would also provide a basis for the healthy running of large-scale fattening pig house with fermentation bed. [Conclusion] The pig-raising model with fermentation bed would improve the environment of pig house and the welfare of pigs. In addi- tion, the performance of pigs and quality of pork were also improved. The fermen- tation bed had an obvious advantage in safety and economics, and it had a broad application prospect.
基金Supported by the National Natural Science Foundation of China (No. 50236030, No. 50076038) and the Major State Basic Research Development Program of China (No. G19990222).
文摘In order to understand the interaction between large-scale vortex structure and particles, a two-way coupling temporal mixing layer laden with particles at a Stokes number of 5 with different mass loading planted initially in the upper half region is numerically studied. The pseudospectral method is used for the flow fluid and the Lagrangian approach is employed to trace particles. The momentum coupling effect introduced by a particle is approximated to a point force. The simulation results show that the coherent structures are still dominant in the mixing layer, but the large-scale vortex structure and particle dispersion are modulated. The length of large-scale vortex structure is shortened and the pairing is delayed. At the same time, the particles are distributed more evenly in the whole flow field as the mass loading is increased, but the particle dispersion along the transverse direction differs from that along the spanwise direction, which indicates that the effect by the addition of particle on the spanwise large-scale vortex structure is different from the streamwise counterpart.
基金supported by a grant from the Ministry of Science,Research and the Arts of Baden-Württemberg(7533-10-5-78)to Jürgen BauhusFelix Storch received additional support through the BBW ForWerts Graduate Program
文摘Background: The importance of structurally diverse forests for the conservation of biodiversity and provision of a wide range of ecosystem services has been widely recognised. However, tools to quantify structural diversity of forests in an objective and quantitative way across many forest types and sites are still needed, for example to support biodiversity monitoring. The existing approaches to quantify forest structural diversity are based on small geographical regions or single forest types, typically using only small data sets.Results: Here we developed an index of structural diversity based on National Forest Inventory(NFI) data of BadenWurttemberg, Germany, a state with 1.3 million ha of diverse forest types in different ownerships. Based on a literature review, 11 aspects of structural diversity were identified a priori as crucially important to describe structural diversity. An initial comprehensive list of 52 variables derived from National Forest Inventory(NFI) data related to structural diversity was reduced by applying five selection criteria to arrive at one variable for each aspect of structural diversity. These variables comprise 1) quadratic mean diameter at breast height(DBH), 2) standard deviation of DBH, 3) standard deviation of stand height, 4) number of decay classes, 5) bark-diversity index, 6) trees with DBH ≥ 40 cm, 7) diversity of flowering and fructification, 8) average mean diameter of downed deadwood, 9) mean DBH of standing deadwood, 10) tree species richness and 11) tree species richness in the regeneration layer. These variables were combined into a simple,additive index to quantify the level of structural diversity, which assumes values between 0 and 1. We applied this index in an exemplary way to broad forest categories and ownerships to assess its feasibility to analyse structural diversity in large-scale forest inventories.Conclusions: The forest structure index presented here can be derived in a similar way from standard inventory variables for most other large-scale forest inventories to provide important information about biodiversity relevant forest conditions and thus provide an evidence-base for forest management and planning as well as reporting.
基金supported by NSFC (Nos. 10533030, 10821302,10878001)the Knowledge Innovation Program of CAS (No. KJCX2-YW-T05)by 973 Program(No. 2007CB815402).
文摘Based on the Sloan Digital Sky Survey DR6 (SDSS) and the 'Millennium Simulation (MS), we investigate the alignment between galaxies and large-scale structure. For this purpose, we develop two new statistical tools, namely the alignment correlation function and the cos(20)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. We apply the new statistics to the SDSS galaxy catalog. The alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L 〉 ~L*) galaxies out to projected separations of 60 h-lMpc. The signal increases with central galaxy luminosity. No alignment signal is detected for blue galaxies. The cos(2θ)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog, we assign an orientation to each red, luminous and central galaxy, based on that of the central region of the host halo (with size similar to that of the stellar galaxy). As an alternative, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of -25°. The misalignment decreases slightly with increasing luminosity of the central galaxy. Using the orientations and luminosities of the semi-analytic galaxies, we repeat our alignment analysis on mock surveys of the MS. Agreement with the SDSS results is good if the central orientations are used. Predictions using the halo orientations as proxies for cen- tral galaxy orientations overestimate the observed alignment by more than a factor of 2. Finally, the large volume of the MS allows us to generate a two-dimensional map of the alignment correlation function, which shows the reference galaxy distribution to be flat- tened parallel to the orientations of red luminous galaxies with axis ratios of -0.5 and ,-0.75 for halo and central orientations, respectively. These ratios are almost independent of scale out to 60 h^-1 Mpc.