The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method...The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method for designing the decentralized local memoryless state feedback controllers was proposed. All of the considered delays are continuous function, and satisfy some conditions.展开更多
Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robu...Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.展开更多
This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A no...This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.展开更多
稀疏线性方程组求解等高性能计算应用常常涉及稀疏矩阵向量乘(SpMV)序列Ax,A2x,…,Asx的计算.上述SpMV序列操作又称为稀疏矩阵幂函数(matrix power kernel,MPK).由于MPK执行多次SpMV且稀疏矩阵保持不变,在缓存(cache)中重用稀疏矩阵,可...稀疏线性方程组求解等高性能计算应用常常涉及稀疏矩阵向量乘(SpMV)序列Ax,A2x,…,Asx的计算.上述SpMV序列操作又称为稀疏矩阵幂函数(matrix power kernel,MPK).由于MPK执行多次SpMV且稀疏矩阵保持不变,在缓存(cache)中重用稀疏矩阵,可避免每次执行SpMV均从主存加载A,从而缓解SpMV访存受限问题,提升MPK性能.但缓存数据重用会导致相邻SpMV操作之间的数据依赖,现有MPK优化多针对单次SpMV调用,或在实现数据重用时引入过多额外开销.提出了缓存感知的MPK(cache-awareMPK,Ca-MPK),基于稀疏矩阵的依赖图,设计了体系结构感知的递归划分方法,将依赖图划分为适合缓存大小的子图/子矩阵,通过构建分割子图解耦数据依赖,根据特定顺序在子矩阵上调度执行SpMV,实现缓存数据重用.测试结果表明,Ca-MPK相对于Intel OneMKL库和最新MPK实现,平均性能提升分别多达约1.57倍和1.40倍.展开更多
The iterative solution of the sequence of linear systems arising from threetemperature(3-T)energy equations is an essential component in the numerical simulation of radiative hydrodynamic(RHD)problem.However,due to th...The iterative solution of the sequence of linear systems arising from threetemperature(3-T)energy equations is an essential component in the numerical simulation of radiative hydrodynamic(RHD)problem.However,due to the complicated application features of the RHD problems,solving 3-T linear systems with classical preconditioned iterative techniques is challenging.To address this difficulty,a physicalvariable based coarsening two-level(PCTL)preconditioner has been proposed by dividing the fully coupled system into four individual easier-to-solve subsystems.Despite its nearly optimal complexity and robustness,the PCTL algorithm suffers from poor efficiency because of the overhead associatedwith the construction of setup phase and the solution of subsystems.Furthermore,the PCTL algorithm employs a fixed strategy for solving the sequence of 3-T linear systems,which completely ignores the dynamically and slowly changing features of these linear systems.To address these problems and to efficiently solve the sequence of 3-T linear systems,we propose an adaptive two-level preconditioner based on the PCTL algorithm,referred to as αSetup-PCTL.The adaptive strategies of the αSetup-PCTL algorithm are inspired by those of αSetup-AMG algorithm,which is an adaptive-setup-based AMG solver for sequence of sparse linear systems.The proposed αSetup-PCTL algorithm could adaptively employ the appropriate strategies for each linear system,and thus increase the overall efficiency.Numerical results demonstrate that,for 36 linear systems,the αSetup-PCTL algorithm achieves an average speedup of 2.2,and a maximum speedup of 4.2 when compared to the PCTL algorithm.展开更多
针对数字锁定放大器中稀疏分解算法检测精度受限的缺点,结合非线性方法进行补偿,采用混沌检测联合稀疏分解的算法设计了数字锁定放大器。数字锁定放大器借助稀疏分解算法估计信号参数,根据估计得到的参数设计对应混沌系统;利用混沌系统...针对数字锁定放大器中稀疏分解算法检测精度受限的缺点,结合非线性方法进行补偿,采用混沌检测联合稀疏分解的算法设计了数字锁定放大器。数字锁定放大器借助稀疏分解算法估计信号参数,根据估计得到的参数设计对应混沌系统;利用混沌系统检测信号的过程中产生间歇性混沌状态,并通过测量间歇性混沌状态的周期,精确检测信号。最终,在信号的信噪比低至-20 d B时可以成功检测信号,频率精度达到0.05 Hz,提供了一种非线性微弱信号检测方法。展开更多
文摘The decentralized stabilization conditions for large-scale linear interconnection systems with time-varying delays were established by using some different decomposition cases of interconnection matrices, and a method for designing the decentralized local memoryless state feedback controllers was proposed. All of the considered delays are continuous function, and satisfy some conditions.
文摘Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.
基金supported by the National Natural Science Foundation of China(6057401160972164+1 种基金60904101)the Scientific Research Fund of Liaoning Provincial Education Department(2009A544)
文摘This paper focuses on the problem of non-fragile decentralized guaranteed cost control for uncertain neutral large-scale interconnected systems with time-varying delays in state,control input and interconnections.A novel scheme,viewing the interconnections with time-varying delays as effective information but not disturbances,is developed.Based on Lyapunov stability theory,using various techniques of decomposing and magnifying matrices,a design method of the non-fragile decentralized guaranteed cost controller for unperturbed neutral large-scale interconnected systems is proposed and the guaranteed cost is presented.The further results are derived for the uncertain case from the criterion of unperturbed neutral large-scale interconnected systems.Finally,an illustrative example shows that the results are significantly better than the existing results in the literatures.
文摘稀疏线性方程组求解等高性能计算应用常常涉及稀疏矩阵向量乘(SpMV)序列Ax,A2x,…,Asx的计算.上述SpMV序列操作又称为稀疏矩阵幂函数(matrix power kernel,MPK).由于MPK执行多次SpMV且稀疏矩阵保持不变,在缓存(cache)中重用稀疏矩阵,可避免每次执行SpMV均从主存加载A,从而缓解SpMV访存受限问题,提升MPK性能.但缓存数据重用会导致相邻SpMV操作之间的数据依赖,现有MPK优化多针对单次SpMV调用,或在实现数据重用时引入过多额外开销.提出了缓存感知的MPK(cache-awareMPK,Ca-MPK),基于稀疏矩阵的依赖图,设计了体系结构感知的递归划分方法,将依赖图划分为适合缓存大小的子图/子矩阵,通过构建分割子图解耦数据依赖,根据特定顺序在子矩阵上调度执行SpMV,实现缓存数据重用.测试结果表明,Ca-MPK相对于Intel OneMKL库和最新MPK实现,平均性能提升分别多达约1.57倍和1.40倍.
基金financially supported by the National Natural Science Foundation of China(62032023 and 11971414)Hunan National Applied Mathematics Center(2020ZYT003)the Research Foundation of Education Bureau of Hunan(21B0162).
文摘The iterative solution of the sequence of linear systems arising from threetemperature(3-T)energy equations is an essential component in the numerical simulation of radiative hydrodynamic(RHD)problem.However,due to the complicated application features of the RHD problems,solving 3-T linear systems with classical preconditioned iterative techniques is challenging.To address this difficulty,a physicalvariable based coarsening two-level(PCTL)preconditioner has been proposed by dividing the fully coupled system into four individual easier-to-solve subsystems.Despite its nearly optimal complexity and robustness,the PCTL algorithm suffers from poor efficiency because of the overhead associatedwith the construction of setup phase and the solution of subsystems.Furthermore,the PCTL algorithm employs a fixed strategy for solving the sequence of 3-T linear systems,which completely ignores the dynamically and slowly changing features of these linear systems.To address these problems and to efficiently solve the sequence of 3-T linear systems,we propose an adaptive two-level preconditioner based on the PCTL algorithm,referred to as αSetup-PCTL.The adaptive strategies of the αSetup-PCTL algorithm are inspired by those of αSetup-AMG algorithm,which is an adaptive-setup-based AMG solver for sequence of sparse linear systems.The proposed αSetup-PCTL algorithm could adaptively employ the appropriate strategies for each linear system,and thus increase the overall efficiency.Numerical results demonstrate that,for 36 linear systems,the αSetup-PCTL algorithm achieves an average speedup of 2.2,and a maximum speedup of 4.2 when compared to the PCTL algorithm.
文摘针对数字锁定放大器中稀疏分解算法检测精度受限的缺点,结合非线性方法进行补偿,采用混沌检测联合稀疏分解的算法设计了数字锁定放大器。数字锁定放大器借助稀疏分解算法估计信号参数,根据估计得到的参数设计对应混沌系统;利用混沌系统检测信号的过程中产生间歇性混沌状态,并通过测量间歇性混沌状态的周期,精确检测信号。最终,在信号的信噪比低至-20 d B时可以成功检测信号,频率精度达到0.05 Hz,提供了一种非线性微弱信号检测方法。