Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynam...Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering.展开更多
As one of the major volatile components in extraterrestrial materials,nitrogen(N_(2))isotopes serve not only as tracers for the formation and evolution of the solar system,but also play a critical role in assessing pl...As one of the major volatile components in extraterrestrial materials,nitrogen(N_(2))isotopes serve not only as tracers for the formation and evolution of the solar system,but also play a critical role in assessing planetary habitability and the search for extraterrestrial life.The integrated measurement of N_(2)and argon(Ar)isotopes by using noble gas mass spectrometry represents a state-of-the-art technique for such investigations.To support the growing demands of planetary science research in China,we have developed a high-efficiency,high-precision method for the integrated analysis of N_(2)and Ar isotopes.This was achieved by enhancing gas extraction and purification systems and integrating them with a static noble gas mass spectrometer.This method enables integrated N_(2)-Ar isotope measurements on submilligram samples,significantly improving sample utilization and reducing the impact of sample heterogeneity on volatile analysis.The system integrates CO_(2)laser heating,a modular two-stage Zr-Al getter pump,and a CuO furnace-based purification process,effectively reducing background levels(N_(2)blank as low as 0.35×10^(−6)cubic centimeters at standard temperature and pressure[ccSTP]).Analytical precision is ensured through calibration with atmospheric air and CO corrections.To validate the reliability of the method,we performed N_(2)-Ar isotope analyses on the Allende carbonaceous chondrite,one of the most extensively studied meteorites internationally.The measured N_(2)concentrations range from 19.2 to 29.8 ppm,withδ15N values between−44.8‰and−33.0‰.Concentrations of 40Ar,36Ar,and 38Ar are(12.5-21.1)×10^(−6)ccSTP/g,(90.9-150.3)×10^(−9)ccSTP/g,and(19.2-30.7)×10^(−9)ccSTP/g,respectively.These values correspond to cosmic-ray exposure ages of 4.5-5.7 Ma,consistent with previous reports.Step-heating experiments further reveal distinct release patterns of N and Ar isotopes,as well as their associations with specific mineral phases in the meteorite.In summary,the combined N_(2)-Ar isotopic system offers significant advantages for tracing volatile sources in extraterrestrial materials and will provide essential analytical support for upcoming Chinese planetary missions,such as Tianwen-2.展开更多
sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which ob...sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.展开更多
The distributed passive measurement is an important technology for networkbehavior research. To achieve a consistent measurement, the same packets should be sampled atdistributed measurement points. And in order to es...The distributed passive measurement is an important technology for networkbehavior research. To achieve a consistent measurement, the same packets should be sampled atdistributed measurement points. And in order to estimate the character of traffic statistics, thetraffic sample should be random in statistics. A distributed samplingmask measurement model isintroduced to tackle the difficulty of measuring the full trace of high-speed networks. The keypoint of the model is to choose some bits that are suitable to be sampling mask. In the paper, thebit entropy and bit flow entropy of IP packet headers in CERNET backbone are analyzed, and we findthat the 16 bits of identification field in IP packet header are fit to the matching field ofsampling mask. Measurement traffic also can be used to analyze the statistical character ofmeasurement sample and the randomicity of the model. At the same time the experiment resultsindicate that the model has a good sampling performance.展开更多
1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Int...1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Intergovernmental Panel on Climate Change(IPCC)—consistently predict the widespread implementation of CO_(2)geological storage on a global scale.展开更多
The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,...The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,in combination with numerical simulation,was conducted to investigate the influence of ground fissures on a metro shield tunnel.The results indicate that the lining contact pressure at the vault increases in the hanging wall while decreases in the footwall,resulting in a two-dimensional stress state of vertical shear and axial tension-compression,and simultaneous vertical dislocation and axial tilt for the segments around the ground fissure.In addition,the damage to curved bolts includes tensile yield,flexural yield,and shear twist,leading to obvious concrete lining damage,particularly at the vault,arch bottom,and hance,indicating that the joints in these positions are weak areas.The shield tunnel orthogonal to the ground fissure ultimately experiences shear failure,suggesting that the maximum actual dislocation of ground fissure that the structure can withstand is approximately 20 cm,and five segment rings in the hanging wall and six segment rings in the footwall also need to be reinforced.This study could provide a reference for metro design in ground fissure sites.展开更多
The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the...The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.展开更多
This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determi...This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determining bounds of system response.The screening method is firstly used to reduce the scale of active uncertain parameters.The sequential high-order polynomials surrogate models are then used to approximate the dynamic system’s response at each time step.To reduce the sampling cost of constructing surrogate model,the interaction effect among uncertain parameters is gradually added to the surrogate model by sequentially incorporating samples from a candidate set,which is composed of vertices and inner grid points.Finally,the points that may produce the bounds of the system response at each time step are searched using the surrogate models.The optimization algorithm is used to locate extreme points,which contribute to determining the inner points producing system response bounds.Additionally,all vertices are also checked using the surrogate models.A vehicle nonlinear dynamic model with 72 uncertain parameters is presented to demonstrate the accuracy and efficiency of the proposed uncertain computational method.展开更多
Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining s...Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining samples do not correspond one-to-one correctly.Mismatched datasets caused by missing samples make the industrial data unavailable for further machine learning.In order to align the mismatched samples,this article presents a cooperative iteration matching method(CIMM)based on the modified dynamic time warping(DTW).The proposed method regards the sequentially accumulated industrial data as the time series.Mismatched samples are aligned by the DTW.In addition,dynamic constraints are applied to the warping distance of the DTW process to make the alignment more efficient.Then a series of models are trained with the cumulated samples iteratively.Several groups of numerical experiments on different missing patterns and missing locations are designed and analyzed to prove the effectiveness and the applicability of the proposed method.展开更多
Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical...Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical frameworks to systematically examine the evolution,performance,and influencing factors of governance mechanisms within these organizations.Using both quantitative and inductive analytical methods,the paper proposes innovative designs and supporting measures for improving governance mechanisms.The findings reveal that,amid large-scale farmland circulation,the governance mechanisms of agricultural production organizations in Daqing City are evolving from traditional to modern structures.However,challenges remain in areas such as decision-making efficiency,benefit distribution,and supervision mechanisms.In response,this study proposes innovative governance designs focusing on decision-making processes,profit-sharing mechanisms,and risk prevention.Corresponding policy recommendations are also provided to support the sustainable development of agricultural modernization in China.展开更多
Marine gas hydrates are highly sensitive to temperature and pressure fluctuations,and deviations from in-situ conditions may cause irreversible changes in phase state,microstructure,and mechanical properties.However,c...Marine gas hydrates are highly sensitive to temperature and pressure fluctuations,and deviations from in-situ conditions may cause irreversible changes in phase state,microstructure,and mechanical properties.However,conventional samplers often fail to maintain sealing and thermal stability,resulting in low sampling success rates.To address these challenges,an in-situ temperature-and pressure-preserved sampler for marine applications has been developed.The experimental results indicate that the selfdeveloped magnetically controlled pressure-preserved controller reliably achieves autonomous triggering and self-sealing,provides an initial sealing force of 83 N,and is capable of maintaining pressures up to 40 MPa.Additionally,a custom-designed intelligent temperature control chip and high-precision sensors were integrated into the sampler.Through the design of an optimized heat transfer structure,a temperature-preserved system was developed,achieving no more than a 0.3℃ rise in temperature within 2 h.The performance evaluation and sampling operations of the sampler were conducted at the Haima Cold Seep in the South China Sea,resulting in the successful recovery of hydrate maintained under in-situ pressure of 13.8 MPa and a temperature of 6.5℃.This advancement enables the acquisition of high-fidelity hydrate samples,providing critical support for the safe exploitation and scientific analysis of marine gas hydrate resources.展开更多
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti...Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.展开更多
This article focuses on the management of large-scale machinery and equipment in highway construction,with the research objective of identifying issues at the management level and exploring more effective management m...This article focuses on the management of large-scale machinery and equipment in highway construction,with the research objective of identifying issues at the management level and exploring more effective management measures.Through practical observation and logical analysis,this article elaborates on the management connotations of large-scale machinery and equipment in highway construction,affirming its management value from different perspectives.On this basis,it carefully analyzes the problems existing in the management of large-scale machinery and equipment,providing a detailed interpretation of issues such as the weak foundation of the equipment management system and the disconnection between equipment selection and configuration from reality.Combining the manifestations of related problems,this article proposes strategies such as strengthening the institutional foundation of equipment management,selecting and configuring equipment based on actual conditions,aiming to provide references for large-scale machinery and equipment management to relevant enterprises.展开更多
It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the ...It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the assessment of irreversibility in brain networks can provide valuable insights into their non-equilibrium properties.In this study,we utilized an open-source whole-brain functional magnetic resonance imaging(fMRI)dataset from both resting and task states to evaluate the irreversibility of large-scale human brain networks.Our analysis revealed that the brain networks exhibited significant irreversibility,violating detailed balance,and generating entropy.Notably,both physical and cognitive tasks increased the extent of this violation compared to the resting state.Regardless of the state(rest or task),interactions between pairs of brain regions were the primary contributors to this irreversibility.Moreover,we observed that as global synchrony increased within brain networks,so did irreversibility.The first derivative of irreversibility with respect to synchronization peaked near the phase transition point,characterized by the moderate mean synchronization and maximized synchronization entropy of blood oxygenation level-dependent(BOLD)signals.These findings deepen our understanding of the non-equilibrium dynamics of large-scale brain networks,particularly in relation to their phase transition behaviors,and may have potential clinical applications for brain disorders.展开更多
Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by co...Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter.展开更多
In 2022, South China(SC) experienced record-breaking rainfall during its first rainy season, causing severe socioeconomic losses. This study examines the large-scale circulation anomalies responsible for this extreme ...In 2022, South China(SC) experienced record-breaking rainfall during its first rainy season, causing severe socioeconomic losses. This study examines the large-scale circulation anomalies responsible for this extreme event.Analysis reveals that the lower-tropospheric cyclonic anomaly over SC plays a crucial role. This cyclonic anomaly consists of extratropical northeasterly anomalies to the north of SC and tropical southwesterly anomalies to the south. Both components were particularly intense during the 2022 first rainy season, contributing to the heavy rainfall in SC. Moreover,the lower-tropospheric cyclonic anomaly is enhanced by its counterpart in the upper troposphere, which is associated with a wave train propagating from the North Atlantic to East Asia across the mid-high latitudes of the Eurasian continent.Further analysis indicates that the extratropical wave train correlates with sea surface temperature anomalies(SSTAs) in the North Atlantic. Additionally, the SSTAs over the North Indian Ocean also play a role in enhancing the tropical southwesterlies in the lower troposphere. This study highlights the combined influence of tropical and extratropical circulation anomalies, offering a comprehensive understanding of the record-breaking rainfall.展开更多
As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,qu...As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,quantum-enhanced imaging can achieve ultra-high resolution,ultra-sensitive detection,and anti-interference imaging.Here,we introduce a quantum-enhanced scanning microscope under illumination of an entangled NOON state in polarization.For the phase imager with NOON states,we propose a simple four-basis projection method to replace the four-step phase-shifting method.We have achieved the phase imaging of micrometer-sized birefringent samples and biological cell specimens,with sensitivity close to the Heisenberg limit.The visibility of transmittance-based imaging shows a great enhancement for NOON states.Besides,we also demonstrate that the scanning imaging with NOON states enables the spatial resolution enhancement of√N compared with classical measurement.Our imaging method may provide some reference for the practical application of quantum imaging and is expected to promote the development of microscopic detection.展开更多
This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is...This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is placed on data acquisition and processing methods using total stations and automated monitoring systems.Through a comprehensive analysis of lateral,longitudinal,and vertical displacement data from 26 subgrade monitoring points,catenary columns,and track sections,this research evaluates how construction activities influence railway structures.The results show that displacement variations in the subgrades,catenary columns,and tracks remained within the established alert thresholds,exhibiting stable deformation trends and indicating that any adverse environmental impact was effectively contained.Furthermore,this paper proposes an early warning mechanism based on an automated monitoring system,which can promptly detect abnormal deformations and initiate emergency response procedures,thereby ensuring the safe operation of the railway.The integration of big data analysis and deformation prediction models offers a practical foundation for future safety management in railway construction.展开更多
Expensive multiobjective optimization problems(EMOPs)are complex optimization problems exacted from realworld applications,where each objective function evaluation(FE)involves expensive computations or physical experi...Expensive multiobjective optimization problems(EMOPs)are complex optimization problems exacted from realworld applications,where each objective function evaluation(FE)involves expensive computations or physical experiments.Many surrogate-assisted evolutionary algorithms(SAEAs)have been designed to solve EMOPs.Nevertheless,EMOPs with large-scale decision variables remain challenging for existing SAEAs,leading to difficulties in maintaining convergence and diversity.To address this deficiency,we proposed a variable reconstructionbased SAEA(VREA)to balance convergence enhancement and diversity maintenance.Generally,a cluster-based variable reconstruction strategy reconstructs the original large-scale decision variables into low-dimensional weight variables.Thus,the population can be rapidly pushed towards the Pareto set(PS)by optimizing low-dimensional weight variables with the assistance of surrogate models.Population diversity is improved due to the cluster-based variable reconstruction strategy.An adaptive search step size strategy is proposed to balance exploration and exploitation further.Experimental comparisons with four state-of-the-art SAEAs are conducted on benchmark EMOPs with up to 1000 decision variables and an aerodynamic design task.Experimental results demonstrate that VREA obtains well-converged and diverse solutions with limited real FEs.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.52293472,22473096 and 22471164)。
文摘Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering.
基金supported by the Bureau of Frontier Sciences and Basic Research,Chinese Academy of Sciences(Grant No.QYJ-2025-0103)the National Natural Science Foundation of China(Grant Nos.42441834,42241105,42441825,and 42203048)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.IGGCAS-202401).
文摘As one of the major volatile components in extraterrestrial materials,nitrogen(N_(2))isotopes serve not only as tracers for the formation and evolution of the solar system,but also play a critical role in assessing planetary habitability and the search for extraterrestrial life.The integrated measurement of N_(2)and argon(Ar)isotopes by using noble gas mass spectrometry represents a state-of-the-art technique for such investigations.To support the growing demands of planetary science research in China,we have developed a high-efficiency,high-precision method for the integrated analysis of N_(2)and Ar isotopes.This was achieved by enhancing gas extraction and purification systems and integrating them with a static noble gas mass spectrometer.This method enables integrated N_(2)-Ar isotope measurements on submilligram samples,significantly improving sample utilization and reducing the impact of sample heterogeneity on volatile analysis.The system integrates CO_(2)laser heating,a modular two-stage Zr-Al getter pump,and a CuO furnace-based purification process,effectively reducing background levels(N_(2)blank as low as 0.35×10^(−6)cubic centimeters at standard temperature and pressure[ccSTP]).Analytical precision is ensured through calibration with atmospheric air and CO corrections.To validate the reliability of the method,we performed N_(2)-Ar isotope analyses on the Allende carbonaceous chondrite,one of the most extensively studied meteorites internationally.The measured N_(2)concentrations range from 19.2 to 29.8 ppm,withδ15N values between−44.8‰and−33.0‰.Concentrations of 40Ar,36Ar,and 38Ar are(12.5-21.1)×10^(−6)ccSTP/g,(90.9-150.3)×10^(−9)ccSTP/g,and(19.2-30.7)×10^(−9)ccSTP/g,respectively.These values correspond to cosmic-ray exposure ages of 4.5-5.7 Ma,consistent with previous reports.Step-heating experiments further reveal distinct release patterns of N and Ar isotopes,as well as their associations with specific mineral phases in the meteorite.In summary,the combined N_(2)-Ar isotopic system offers significant advantages for tracing volatile sources in extraterrestrial materials and will provide essential analytical support for upcoming Chinese planetary missions,such as Tianwen-2.
文摘sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320601), National Natural Science Foundation of China (60774048, 60821063), the Program for Cheung Kong Scholars, and the Research Fund for the Doctoral Program of China Higher Education (20070145015)
文摘这份报纸学习样品数据的问题为有变化时间的延期的不明确的连续时间的模糊大规模系统的可靠 H 夸张控制。第一,模糊夸张模型( FHM )被用来为某些复杂大规模系统建立模型,然后根据 Lyapunov 指导方法和大规模系统的分散的控制理论,线性 matrixine 质量( LMI )基于条件 arederived toguarantee H 性能不仅当所有控制部件正在操作很好时,而且面对一些可能的致动器失败。而且,致动器的精确失败参数没被要求,并且要求仅仅是失败参数的更低、上面的界限。条件依赖于时间延期的上面的界限,并且不依赖于变化时间的延期的衍生物。因此,获得的结果是不太保守的。最后,二个例子被提供说明设计过程和它的有效性。
文摘The distributed passive measurement is an important technology for networkbehavior research. To achieve a consistent measurement, the same packets should be sampled atdistributed measurement points. And in order to estimate the character of traffic statistics, thetraffic sample should be random in statistics. A distributed samplingmask measurement model isintroduced to tackle the difficulty of measuring the full trace of high-speed networks. The keypoint of the model is to choose some bits that are suitable to be sampling mask. In the paper, thebit entropy and bit flow entropy of IP packet headers in CERNET backbone are analyzed, and we findthat the 16 bits of identification field in IP packet header are fit to the matching field ofsampling mask. Measurement traffic also can be used to analyze the statistical character ofmeasurement sample and the randomicity of the model. At the same time the experiment resultsindicate that the model has a good sampling performance.
基金supported by the National Key Research and Development Program of China(2022YFE0206700)。
文摘1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Intergovernmental Panel on Climate Change(IPCC)—consistently predict the widespread implementation of CO_(2)geological storage on a global scale.
基金supported by the National Key Research&Development Program of China(Grant No.2023YFC3008404)the Key Laboratory of Earth Fissures Geological Disaster,Ministry of Natural Resources,China(Grant Nos.EFGD20240609 and EFGD20240610).
文摘The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,in combination with numerical simulation,was conducted to investigate the influence of ground fissures on a metro shield tunnel.The results indicate that the lining contact pressure at the vault increases in the hanging wall while decreases in the footwall,resulting in a two-dimensional stress state of vertical shear and axial tension-compression,and simultaneous vertical dislocation and axial tilt for the segments around the ground fissure.In addition,the damage to curved bolts includes tensile yield,flexural yield,and shear twist,leading to obvious concrete lining damage,particularly at the vault,arch bottom,and hance,indicating that the joints in these positions are weak areas.The shield tunnel orthogonal to the ground fissure ultimately experiences shear failure,suggesting that the maximum actual dislocation of ground fissure that the structure can withstand is approximately 20 cm,and five segment rings in the hanging wall and six segment rings in the footwall also need to be reinforced.This study could provide a reference for metro design in ground fissure sites.
基金National Natural Science Foundation of China(52375378)National Key Laboratory of Metal Forming Technology and Heavy Equipment(S2308100.W12)Huxiang High-Level Talent Gathering Project of Hunan Province(2021RC5001)。
文摘The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence.
基金supported by the National Natural Science Foundation of China(Grant No.12272142)Fundamental Research Funds for the Central Universities(Grant No.2172021XXJS048)。
文摘This paper proposes a non-intrusive computational method for mechanical dynamic systems involving a large-scale of interval uncertain parameters,aiming to reduce the computational costs and improve accuracy in determining bounds of system response.The screening method is firstly used to reduce the scale of active uncertain parameters.The sequential high-order polynomials surrogate models are then used to approximate the dynamic system’s response at each time step.To reduce the sampling cost of constructing surrogate model,the interaction effect among uncertain parameters is gradually added to the surrogate model by sequentially incorporating samples from a candidate set,which is composed of vertices and inner grid points.Finally,the points that may produce the bounds of the system response at each time step are searched using the surrogate models.The optimization algorithm is used to locate extreme points,which contribute to determining the inner points producing system response bounds.Additionally,all vertices are also checked using the surrogate models.A vehicle nonlinear dynamic model with 72 uncertain parameters is presented to demonstrate the accuracy and efficiency of the proposed uncertain computational method.
基金the Key National Natural Science Foundation of China(No.U1864211)the National Natural Science Foundation of China(No.11772191)the Natural Science Foundation of Shanghai(No.21ZR1431500)。
文摘Industrial data mining usually deals with data from different sources.These heterogeneous datasets describe the same object in different views.However,samples from some of the datasets may be lost.Then the remaining samples do not correspond one-to-one correctly.Mismatched datasets caused by missing samples make the industrial data unavailable for further machine learning.In order to align the mismatched samples,this article presents a cooperative iteration matching method(CIMM)based on the modified dynamic time warping(DTW).The proposed method regards the sequentially accumulated industrial data as the time series.Mismatched samples are aligned by the DTW.In addition,dynamic constraints are applied to the warping distance of the DTW process to make the alignment more efficient.Then a series of models are trained with the cumulated samples iteratively.Several groups of numerical experiments on different missing patterns and missing locations are designed and analyzed to prove the effectiveness and the applicability of the proposed method.
基金Supported by Daqing City Philosophy and Social Sciences Planning Research Project(DSGB 2025011)the Heilongjiang Province Education Science Planning Key Project(GJB1320229).
文摘Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical frameworks to systematically examine the evolution,performance,and influencing factors of governance mechanisms within these organizations.Using both quantitative and inductive analytical methods,the paper proposes innovative designs and supporting measures for improving governance mechanisms.The findings reveal that,amid large-scale farmland circulation,the governance mechanisms of agricultural production organizations in Daqing City are evolving from traditional to modern structures.However,challenges remain in areas such as decision-making efficiency,benefit distribution,and supervision mechanisms.In response,this study proposes innovative governance designs focusing on decision-making processes,profit-sharing mechanisms,and risk prevention.Corresponding policy recommendations are also provided to support the sustainable development of agricultural modernization in China.
基金financially supported by Shenzhen Science and Technology Program(Nos.JSGG20220831105002005 and KJZD20231025152759002)Support from the National Natural Science Foundation of China(Nos.52374357 and 523B2101)funded by the Shared Voyages Project for Deep-sea and Abyss Scientific Research and Equipment Sea Trials of Hainan Deep-Sea Technology Innovation Center(No.DSTIC-GXHC-2022002)。
文摘Marine gas hydrates are highly sensitive to temperature and pressure fluctuations,and deviations from in-situ conditions may cause irreversible changes in phase state,microstructure,and mechanical properties.However,conventional samplers often fail to maintain sealing and thermal stability,resulting in low sampling success rates.To address these challenges,an in-situ temperature-and pressure-preserved sampler for marine applications has been developed.The experimental results indicate that the selfdeveloped magnetically controlled pressure-preserved controller reliably achieves autonomous triggering and self-sealing,provides an initial sealing force of 83 N,and is capable of maintaining pressures up to 40 MPa.Additionally,a custom-designed intelligent temperature control chip and high-precision sensors were integrated into the sampler.Through the design of an optimized heat transfer structure,a temperature-preserved system was developed,achieving no more than a 0.3℃ rise in temperature within 2 h.The performance evaluation and sampling operations of the sampler were conducted at the Haima Cold Seep in the South China Sea,resulting in the successful recovery of hydrate maintained under in-situ pressure of 13.8 MPa and a temperature of 6.5℃.This advancement enables the acquisition of high-fidelity hydrate samples,providing critical support for the safe exploitation and scientific analysis of marine gas hydrate resources.
基金The Australian Research Council(DP200101197,DP230101107).
文摘Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.
文摘This article focuses on the management of large-scale machinery and equipment in highway construction,with the research objective of identifying issues at the management level and exploring more effective management measures.Through practical observation and logical analysis,this article elaborates on the management connotations of large-scale machinery and equipment in highway construction,affirming its management value from different perspectives.On this basis,it carefully analyzes the problems existing in the management of large-scale machinery and equipment,providing a detailed interpretation of issues such as the weak foundation of the equipment management system and the disconnection between equipment selection and configuration from reality.Combining the manifestations of related problems,this article proposes strategies such as strengthening the institutional foundation of equipment management,selecting and configuring equipment based on actual conditions,aiming to provide references for large-scale machinery and equipment management to relevant enterprises.
基金supported by the Fundamental Research Funds for the Central Universities(Grant Nos.lzujbky-2021-62 and lzujbky-2024-jdzx06)the National Natural Science Foundation of China(Grant No.12247101)+1 种基金the Natural Science Foundation of Gansu Province,China(Grant Nos.22JR5RA389 and 23JRRA1740)the‘111 Center’Fund(Grant No.B20063).
文摘It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the assessment of irreversibility in brain networks can provide valuable insights into their non-equilibrium properties.In this study,we utilized an open-source whole-brain functional magnetic resonance imaging(fMRI)dataset from both resting and task states to evaluate the irreversibility of large-scale human brain networks.Our analysis revealed that the brain networks exhibited significant irreversibility,violating detailed balance,and generating entropy.Notably,both physical and cognitive tasks increased the extent of this violation compared to the resting state.Regardless of the state(rest or task),interactions between pairs of brain regions were the primary contributors to this irreversibility.Moreover,we observed that as global synchrony increased within brain networks,so did irreversibility.The first derivative of irreversibility with respect to synchronization peaked near the phase transition point,characterized by the moderate mean synchronization and maximized synchronization entropy of blood oxygenation level-dependent(BOLD)signals.These findings deepen our understanding of the non-equilibrium dynamics of large-scale brain networks,particularly in relation to their phase transition behaviors,and may have potential clinical applications for brain disorders.
基金supported by the National Nature Science Foundation of China National Outstanding Youth Science Fund Project(Grant No.52122109)the National Natural Science Foundation of China(Grants No.51861165102 and 52039005).
文摘Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter.
基金Guangdong Major Project of Basic and Applied Basic Research (2020B0301030004)National Natural Science Foundation of China (42275041)Hainan Province Science and Technology Special Fund (SOLZSKY2025006)。
文摘In 2022, South China(SC) experienced record-breaking rainfall during its first rainy season, causing severe socioeconomic losses. This study examines the large-scale circulation anomalies responsible for this extreme event.Analysis reveals that the lower-tropospheric cyclonic anomaly over SC plays a crucial role. This cyclonic anomaly consists of extratropical northeasterly anomalies to the north of SC and tropical southwesterly anomalies to the south. Both components were particularly intense during the 2022 first rainy season, contributing to the heavy rainfall in SC. Moreover,the lower-tropospheric cyclonic anomaly is enhanced by its counterpart in the upper troposphere, which is associated with a wave train propagating from the North Atlantic to East Asia across the mid-high latitudes of the Eurasian continent.Further analysis indicates that the extratropical wave train correlates with sea surface temperature anomalies(SSTAs) in the North Atlantic. Additionally, the SSTAs over the North Indian Ocean also play a role in enhancing the tropical southwesterlies in the lower troposphere. This study highlights the combined influence of tropical and extratropical circulation anomalies, offering a comprehensive understanding of the record-breaking rainfall.
基金supported by he National Natural Science Foundation of China(Grant Nos.12304359,12304398,12404382,12234009,12274215,and 12427808)the China Postdoctoral Science Foundation(Grant No.2023M731611)+4 种基金the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2023ZB717)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301400)Key R&D Program of Jiangsu Province(Grant No.BE2023002)Natural Science Foundation of Jiangsu Province(Grant Nos.BK20220759 and BK20233001)Program for Innovative Talents and Entrepreneurs in Jiangsu,and Key R&D Program of Guangdong Province(Grant No.2020B0303010001).
文摘As an emerging microscopic detection tool,quantum microscopes based on the principle of quantum precision measurement have attracted widespread attention in recent years.Compared with the imaging of classical light,quantum-enhanced imaging can achieve ultra-high resolution,ultra-sensitive detection,and anti-interference imaging.Here,we introduce a quantum-enhanced scanning microscope under illumination of an entangled NOON state in polarization.For the phase imager with NOON states,we propose a simple four-basis projection method to replace the four-step phase-shifting method.We have achieved the phase imaging of micrometer-sized birefringent samples and biological cell specimens,with sensitivity close to the Heisenberg limit.The visibility of transmittance-based imaging shows a great enhancement for NOON states.Besides,we also demonstrate that the scanning imaging with NOON states enables the spatial resolution enhancement of√N compared with classical measurement.Our imaging method may provide some reference for the practical application of quantum imaging and is expected to promote the development of microscopic detection.
文摘This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is placed on data acquisition and processing methods using total stations and automated monitoring systems.Through a comprehensive analysis of lateral,longitudinal,and vertical displacement data from 26 subgrade monitoring points,catenary columns,and track sections,this research evaluates how construction activities influence railway structures.The results show that displacement variations in the subgrades,catenary columns,and tracks remained within the established alert thresholds,exhibiting stable deformation trends and indicating that any adverse environmental impact was effectively contained.Furthermore,this paper proposes an early warning mechanism based on an automated monitoring system,which can promptly detect abnormal deformations and initiate emergency response procedures,thereby ensuring the safe operation of the railway.The integration of big data analysis and deformation prediction models offers a practical foundation for future safety management in railway construction.
基金supported by the National Natural Science Foundation of China(U20A20306,62276191)the Fundamental Research Funds for the Central Universities(HUST2023JYCXJJ011).
文摘Expensive multiobjective optimization problems(EMOPs)are complex optimization problems exacted from realworld applications,where each objective function evaluation(FE)involves expensive computations or physical experiments.Many surrogate-assisted evolutionary algorithms(SAEAs)have been designed to solve EMOPs.Nevertheless,EMOPs with large-scale decision variables remain challenging for existing SAEAs,leading to difficulties in maintaining convergence and diversity.To address this deficiency,we proposed a variable reconstructionbased SAEA(VREA)to balance convergence enhancement and diversity maintenance.Generally,a cluster-based variable reconstruction strategy reconstructs the original large-scale decision variables into low-dimensional weight variables.Thus,the population can be rapidly pushed towards the Pareto set(PS)by optimizing low-dimensional weight variables with the assistance of surrogate models.Population diversity is improved due to the cluster-based variable reconstruction strategy.An adaptive search step size strategy is proposed to balance exploration and exploitation further.Experimental comparisons with four state-of-the-art SAEAs are conducted on benchmark EMOPs with up to 1000 decision variables and an aerodynamic design task.Experimental results demonstrate that VREA obtains well-converged and diverse solutions with limited real FEs.