期刊文献+
共找到369,647篇文章
< 1 2 250 >
每页显示 20 50 100
Decomposition for Large-Scale Optimization Problems:An Overview
1
作者 Thai Doan CHUONG Chen LIU Xinghuo YU 《Artificial Intelligence Science and Engineering》 2025年第3期157-174,共18页
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti... Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives. 展开更多
关键词 decomposition methods nonlinear optimization large-scale problems computational intelligence
在线阅读 下载PDF
Adaptive Multi-strategy Rabbit Optimizer for Large-scale Optimization
2
作者 Baowei Xiang Yixin Xiang 《Journal of Bionic Engineering》 2025年第1期398-416,共19页
As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for th... As optimization problems continue to grow in complexity,the need for effective metaheuristic algorithms becomes increasingly evident.However,the challenge lies in identifying the right parameters and strategies for these algorithms.In this paper,we introduce the adaptive multi-strategy Rabbit Algorithm(RA).RA is inspired by the social interactions of rabbits,incorporating elements such as exploration,exploitation,and adaptation to address optimization challenges.It employs three distinct subgroups,comprising male,female,and child rabbits,to execute a multi-strategy search.Key parameters,including distance factor,balance factor,and learning factor,strike a balance between precision and computational efficiency.We offer practical recommendations for fine-tuning five essential RA parameters,making them versatile and independent.RA is capable of autonomously selecting adaptive parameter settings and mutation strategies,enabling it to successfully tackle a range of 17 CEC05 benchmark functions with dimensions scaling up to 5000.The results underscore RA’s superior performance in large-scale optimization tasks,surpassing other state-of-the-art metaheuristics in convergence speed,computational precision,and scalability.Finally,RA has demonstrated its proficiency in solving complicated optimization problems in real-world engineering by completing 10 problems in CEC2020. 展开更多
关键词 Adaptive parameter Large scale optimization Rabbit algorithm Swarm intelligence Engineering optimization
在线阅读 下载PDF
Enhanced Butterfly Optimization Algorithm for Large-Scale Optimization Problems 被引量:1
3
作者 Yu Li Xiaomei Yu Jingsen Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第2期554-570,共17页
To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algor... To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algorithm(BOA),the fragrance coefficient is designed to balance the exploration and exploitation of BOA.The variant particle swarm local search strategy is proposed to improve the local search ability of the current optimal butterfly and prevent the algorithm from falling into local optimality.192000-dimensional functions and 201000-dimensional CEC 2010 large-scale functions are used to verify FPSBOA for complex large-scale optimization problems.The experimental results are statistically analyzed by Friedman test and Wilcoxon rank-sum test.All attained results demonstrated that FPSBOA can better solve more challenging scientific and industrial real-world problems with thousands of variables.Finally,four mechanical engineering problems and one ten-dimensional process synthesis and design problem are applied to FPSBOA,which shows FPSBOA has the feasibility and effectiveness in real-world application problems. 展开更多
关键词 Butterfy optimization algorithm Fragrance coefcient Variant particle swarm local search large-scale optimization problems Real-world application problems
在线阅读 下载PDF
Optimization design of launch window for large-scale constellation using improved genetic algorithm
4
作者 LIU Yue HOU Xiangzhen +3 位作者 CAI Xi LI Minghu CHANG Xinya WANG Miao 《先进小卫星技术(中英文)》 2025年第4期23-32,共10页
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ... The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes. 展开更多
关键词 deployment strategy optimization launching schedule constraints improved genetic algorithm large-scale constellation
在线阅读 下载PDF
Exploring Optimization Strategies for Island Power Grid Line Layout Oriented Towards Large-Scale Distributed Renewable Energy Integration
5
作者 Zhenhuan Song Wenxin Liu 《Proceedings of Business and Economic Studies》 2025年第4期495-502,共8页
The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context ... The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context of large-scale distributed renewable energy integration into the power grid,conventional island power grid line layouts can no longer meet actual demands.It is necessary to combine the operational characteristics of island power systems and historical load data to perform load forecasting,thereby generating power grid line layout paths.This article focuses on large-scale distributed renewable energy integration,summarizing optimization strategies for island power grid line layouts,and providing a solid guarantee for the safe and stable operation of island power systems. 展开更多
关键词 Island power grid Line layout optimization strategy Distributed renewable energy large-scale
在线阅读 下载PDF
Problem-structure-informed quantum approximate optimization for large-scale unit commitment with limited qubits
6
作者 Jingxian Zhou Ziqing Zhu +1 位作者 Linghua Zhu Siqi Bu 《iEnergy》 2025年第4期215-218,共4页
As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and soluti... As power systems expand,solving the unit commitment problem(UCP)becomes increasingly challenging due to the curse of dimensionality,and traditional methods often struggle to balance computational efficiency and solution optimality.To tackle this issue,we propose a problem-structure-informed quantum approximate optimization algorithm(QAOA)framework that fully exploits the quantum advantage under extremely limited quantum resources.Specifically,we leverage the inherent topological structure of power systems to decompose large-scale UCP instances into smaller subproblems,which are solvable in parallel by limited number of qubits.This decomposition not only circumvents the current hardware limitations of quantum computing but also achieves higher performance as the graph structure of the power system becomes more sparse.Consequently,our approach can be extended to future power systems that are larger and more complex. 展开更多
关键词 Unit commitment problem quadratic unconstrained binary optimization quantum approximate optimization algorithm
在线阅读 下载PDF
An Efficient GPU Solver for Maximizing Fundamental Eigenfrequency in Large-Scale Three-Dimensional Topology Optimization
7
作者 Tianyuan Qi Junpeng Zhao Chunjie Wang 《Computer Modeling in Engineering & Sciences》 2025年第10期127-151,共25页
A major bottleneck in large-scale eigenfrequency topology optimization is the repeated solution of the generalized eigenvalue problem.This work presents an efficient graphics processing unit(GPU)solver for threedimens... A major bottleneck in large-scale eigenfrequency topology optimization is the repeated solution of the generalized eigenvalue problem.This work presents an efficient graphics processing unit(GPU)solver for threedimensional(3D)topology optimization that maximizes the fundamental eigenfrequency.The Successive Iteration of Analysis and Design(SIAD)framework is employed to avoid solving a full eigenproblem at every iteration.The sequential approximation of the eigenpairs is solved by the GPU-accelerated multigrid-preconditioned conjugate gradient(MGPCG)method to efficiently improve the eigenvectors along with the topological evolution.The cluster-mean approach is adopted to address the non-differentiability issue caused by repeated eigenfrequencies.The corresponding sensitivity analysis method is provided.The parallelized gradient-based Zhang-Paulino-Ramos Jr.(ZPR)algorithm is employed to update the design variables.The effectiveness of the proposed solver is demonstrated through two large-scale numerical examples.The first example demonstrates the accuracy,efficiency,and scalability of the proposed solver by solving a 3D optimization problem of 50.33 million elements being solved in approximately 15.2 h over 300 iterations on a single NVIDIA Tesla V100 GPU.The second example validates the effectiveness of the proposed solver in the presence of repeated eigenfrequencies.Our findings also highlight that higher-resolution models produce distinct optimized structures with higher fundamental frequencies,underscoring the necessity of large-scale topology optimization. 展开更多
关键词 Topology optimization large scale fundamental frequency GPU acceleration successive iteration of analysis and design
在线阅读 下载PDF
Applying Analytical Derivative and Sparse Matrix Techniques to Large-Scale Process Optimization Problems 被引量:2
8
作者 仲卫涛 邵之江 +1 位作者 张余岳 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第3期212-217,共6页
The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Com... The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Computational results on two typical chemical optimization problems demonstrate significant enhancement in efficiency, which shows this strategy is promising and suitable for large-scale process optimization problems. 展开更多
关键词 large-scale optimization open-equation sequential quadratic programming analytical derivative sparse matrix technique
在线阅读 下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:2
9
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
在线阅读 下载PDF
A Fast Clustering Based Evolutionary Algorithm for Super-Large-Scale Sparse Multi-Objective Optimization 被引量:8
10
作者 Ye Tian Yuandong Feng +1 位作者 Xingyi Zhang Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1048-1063,共16页
During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the ... During the last three decades,evolutionary algorithms(EAs)have shown superiority in solving complex optimization problems,especially those with multiple objectives and non-differentiable landscapes.However,due to the stochastic search strategies,the performance of most EAs deteriorates drastically when handling a large number of decision variables.To tackle the curse of dimensionality,this work proposes an efficient EA for solving super-large-scale multi-objective optimization problems with sparse optimal solutions.The proposed algorithm estimates the sparse distribution of optimal solutions by optimizing a binary vector for each solution,and provides a fast clustering method to highly reduce the dimensionality of the search space.More importantly,all the operations related to the decision variables only contain several matrix calculations,which can be directly accelerated by GPUs.While existing EAs are capable of handling fewer than 10000 real variables,the proposed algorithm is verified to be effective in handling 1000000 real variables.Furthermore,since the proposed algorithm handles the large number of variables via accelerated matrix calculations,its runtime can be reduced to less than 10%of the runtime of existing EAs. 展开更多
关键词 Evolutionary computation fast clustering sparse multi-objective optimization super-large-scale optimization
在线阅读 下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
11
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
12
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
NEW LIMITED MEMORY SYMMETRIC RANK ONE ALGORITHM FOR LARGE-SCALE UNCONSTRAINED OPTIMIZATION
13
作者 刘浩 倪勤 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第3期235-239,共5页
A new limited memory symmetric rank one algorithm is proposed. It combines a modified self-scaled symmetric rank one (SSR1) update with the limited memory and nonmonotone line search technique. In this algorithm, th... A new limited memory symmetric rank one algorithm is proposed. It combines a modified self-scaled symmetric rank one (SSR1) update with the limited memory and nonmonotone line search technique. In this algorithm, the descent search direction is generated by inverse limited memory SSR1 update, thus simplifying the computation. Numerical comparison of the algorithm and the famous limited memory BFGS algorithm is given. Comparison results indicate that the new algorithm can process a kind of large-scale unconstrained optimization problems. 展开更多
关键词 optimization large scale systems symmetric rank one update nonmonotone line search limitedmemory algorithm
在线阅读 下载PDF
Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization 被引量:6
14
作者 Ye Tian Haowen Chen +3 位作者 Haiping Ma Xingyi Zhang Kay Chen Tan Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1801-1817,共17页
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a... Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs. 展开更多
关键词 Conjugate gradient differential evolution evolutionary computation large-scale multi-objective optimization mathematical programming
在线阅读 下载PDF
Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses 被引量:6
15
作者 Wen-Jing Hong Peng Yang Ke Tang 《International Journal of Automation and computing》 EI CSCD 2021年第2期155-169,共15页
Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged a... Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged as a mainstream method for MOPs,most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.More recently,it has been reported that traditional multi-objective EAs(MOEAs)suffer severe deterioration with the increase of decision variables.As a result,and motivated by the emergence of real-world large-scale MOPs,investigation of MOEAs in this aspect has attracted much more attention in the past decade.This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles.From the key difficulties of the large-scale MOPs,the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables.From the perspective of methodology,the large-scale MOEAs are categorized into three classes and introduced respectively:divide and conquer based,dimensionality reduction based and enhanced search-based approaches.Several future research directions are also discussed. 展开更多
关键词 large-scale multi-objective optimization high-dimensional search space evolutionary computation evolutionary algorithms SCALABILITY
原文传递
Modified Augmented Lagrange Multiplier Methods for Large-Scale Chemical Process Optimization 被引量:6
16
作者 梁昔明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期167-172,共6页
Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studi... Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems. 展开更多
关键词 modified augmented Lagrange multiplier methods chemical engineering optimization large-scale non- linear constrained minimization numerical experiment
在线阅读 下载PDF
Identifcation of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine 被引量:14
17
作者 Zhou Jian Li Xibing +2 位作者 Hani S.Mitri Wang Shiming Wei Wei 《International Journal of Mining Science and Technology》 SCIE EI 2013年第5期701-707,共7页
An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and followi... An approach which combines particle swarm optimization and support vector machine(PSO–SVM)is proposed to forecast large-scale goaf instability(LSGI).Firstly,influencing factors of goaf safety are analyzed,and following parameters were selected as evaluation indexes in the LSGI:uniaxial compressive strength(UCS)of rock,elastic modulus(E)of rock,rock quality designation(RQD),area ration of pillar(Sp),the ratio of width to height of the pillar(w/h),depth of ore body(H),volume of goaf(V),dip of ore body(a)and area of goaf(Sg).Then LSGI forecasting model by PSO-SVM was established according to the influencing factors.The performance of hybrid model(PSO+SVM=PSO–SVM)has been compared with the grid search method of support vector machine(GSM–SVM)model.The actual data of 40 goafs are applied to research the forecasting ability of the proposed method,and two cases of underground mine are also validated by the proposed model.The results indicated that the heuristic algorithm of PSO can speed up the SVM parameter optimization search,and the predictive ability of the PSO–SVM model with the RBF kernel function is acceptable and robust,which might hold a high potential to become a useful tool in goaf risky prediction research. 展开更多
关键词 GOAF Risk identifcation Underground mine Prediction Particle swarm optimization Support vector machine
在线阅读 下载PDF
A new simple model trust-region method with generalized Barzilai-Borwein parameter for large-scale optimization 被引量:5
18
作者 ZHOU QunYan SUN WenYu ZHANG HongChao 《Science China Mathematics》 SCIE CSCD 2016年第11期2265-2280,共16页
In this paper, a new trust region method with simple model for solving large-scale unconstrained nonlinear optimization is proposed. By employing the generalized weak quasi-Newton equations, we derive several schemes ... In this paper, a new trust region method with simple model for solving large-scale unconstrained nonlinear optimization is proposed. By employing the generalized weak quasi-Newton equations, we derive several schemes to construct variants of scalar matrices as the Hessian approximation used in the trust region subproblem. Under some reasonable conditions, global convergence of the proposed algorithm is established in the trust region framework. The numerical experiments on solving the test problems with dimensions from 50 to 20,000 in the CUTEr library are reported to show efficiency of the algorithm. 展开更多
关键词 unconstrained optimization Barzilai-Borwein method weak quasi-Newton equation trust region method global convergence
原文传递
Cost Optimization Method of Large-scale Prestressed Wire Winded Framework on Multiple-island Genetic Algorithm 被引量:3
19
作者 LI Huili LANG Lihui +1 位作者 ZHANG Jianyong YANG Huai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2011年第5期673-680,共8页
Prestressed wire winded framework (PWWF) is an advanced structure and the most expensive part in the large-scale equip- ment. The traditional design of PWWF is complicated, highly iterative and cost uncontrolable, b... Prestressed wire winded framework (PWWF) is an advanced structure and the most expensive part in the large-scale equip- ment. The traditional design of PWWF is complicated, highly iterative and cost uncontrolable, because PWWF is a variable stiffness multi-agent structure, with non-linear loading and deformation coordination. In this paper, cost optimization method of large-scale PWWF by multiple-island genetic algorithm (MIGA) is presented. Optimization design flow and optimization model are proposed based on variable-tension wire winding theory. An example of the PWWF cost optimization of isostatic equipment with axial load 6 000 kN is given. The optimization cost is reduced by 21.6% compared with traditional design. It has also been verified by the finite-element analysis and successfully applied to an actual PWWF design of isostatic press. The results show that this method is efficient and reliable. This method can also provide a guide for optimal design for ultra-large dimension muti-frame structure of 546 MN and 907 MN isostatic press equipment. 展开更多
关键词 genetic algorithms structural design prestressed wire winded framework cost optimization
原文传递
A Chaotic Local Search-Based Particle Swarm Optimizer for Large-Scale Complex Wind Farm Layout Optimization 被引量:4
20
作者 Zhenyu Lei Shangce Gao +2 位作者 Zhiming Zhang Haichuan Yang Haotian Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1168-1180,共13页
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red... Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems. 展开更多
关键词 Chaotic local search(CLS) evolutionary computation genetic learning particle swarm optimization(PSO) wake effect wind farm layout optimization(WFLO)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部