The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in so...The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in southwestern China as the engineering prototype,large-scale three-dimensional(3D)physical model tests were conducted on a 3D-printed complex geological model containing two faults.Based on the selfdeveloped 3D loading system and excavation device,the macroscopic failure of fault-slip rockbursts was simulated indoors.The stress,strain,and fracturing characteristics of the surrounding rock near the two faults were systematically evaluated during excavation and multistage loading.The test results effectively revealed the evolution and triggering mechanism of fault-slip rockbursts.After the excavation of a highstress tunnel,stress readjustment occurred.Owing to the presence of these two faults,stress continued to accumulate in the rock mass between them,leading to the accumulation of fractures.When the shear stress on a fault surface exceeded its shear strength,sudden fault slip and dislocation occurred,thus triggering rockbursts.Rockbursts occurred twice in the vault between the two faults,showing obvious intermittent characteristics.The rockburst pit was controlled by two faults.When the faults remained stable,tensile failure predominated in the surrounding rock.However,when the fault slip was triggered,shear failure in the surrounding rock increased.These findings provide valuable insights for enhancing the comprehension of fault-slip rockbursts.展开更多
Extremely large-scale array(XL-array)communications can significantly improve the transmission rate,spectral efficiency,and spatial resolution,and has great potential in next-generation mobile communication networks.A...Extremely large-scale array(XL-array)communications can significantly improve the transmission rate,spectral efficiency,and spatial resolution,and has great potential in next-generation mobile communication networks.A crucial problem in XLarray communications is to determine the boundary of applicable regions of the plane wave model(PWM)and spherical wave model(SWM).In this paper,we propose new PWM/SWM demarcations for XL-arrays from the viewpoint of channel gain and rank.Four sets of results are derived for four different array setups.First,an equi-power line is derived for a point-touniform linear array(ULA)scenario,where an inflection point is found at±π6 central incident angles.Second,an equi-power surface is derived for a point-touniform planar array(UPA)scenario,and it is proved that cos2(ϕ)cos2(φ)=12 is a dividing curve,where ϕ andφdenote the elevation and azimuth angles,respectively.Third,an accurate and explicit expression of the equi-rank surface is obtained for a ULA-to-ULA scenario.Finally,an approximated expression of the equirank surface is obtained for a ULA-to-UPA scenario.With the obtained closed-form expressions,the equirank surface for any antenna structure and any angle can be well estimated.Furthermore,the effect of scatterers is also investigated,from which some insights are drawn.展开更多
The rapid advancement of artificial intelligence technology is driving transformative changes in medical diagnosis,treatment,and management systems through large-scale deep learning models-a process that brings both g...The rapid advancement of artificial intelligence technology is driving transformative changes in medical diagnosis,treatment,and management systems through large-scale deep learning models-a process that brings both groundbreaking opportunities and multifaceted challenges.This study focuses on the medical and healthcare applications of large-scale deep learning architectures,conducting a comprehensive survey to categorize and analyze their diverse uses.The survey results reveal that current applications of large models in healthcare encompass medical data management,healthcare services,medical devices,and preventive medicine,among others.Concurrently,large models demonstrate significant advantages in the medical domain,especially in high-precision diagnosis and prediction,data analysis and knowledge discovery,and enhancing operational efficiency.Nevertheless,we identify several challenges that need urgent attention,including improving the interpretability of large models,strengthening privacy protection,and addressing issues related to handling incomplete data.This research is dedicated to systematically elucidating the deep collaborative mechanisms between artificial intelligence and the healthcare field,providing theoretical references and practical guidance for both academia and industry.展开更多
Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynam...Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering.展开更多
Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(...Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].展开更多
This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to use...This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.展开更多
Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making sys...Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making.展开更多
BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models ...BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.展开更多
Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual pat...Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment.展开更多
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn...Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.展开更多
Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in ...Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.展开更多
The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cereb...The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.展开更多
This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)syste...This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact.展开更多
The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D desi...The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D design coordination,its static nature limits its utility in real-time construction management and operational phases.This paper proposes a novel synergistic framework that integrates the static,deep data of BIM with the dynamic,real-time capabilities of digital twin(DT)technology.The framework establishes a closed-loop data flow from design(BIM)to construction(IoT,drones,BIM 360)to operation(DT platform).We detail the technological stack required,including IoT sensors,cloud computing,and AI-driven analytics.The application of this framework is illustrated through a simulated case study of a mega-terminal airport construction project,demonstrating potential reductions in rework by 15%,improvement in labor productivity by 10%,and enhanced predictive maintenance capabilities.This research contributes to the field of construction engineering by providing a practical model for achieving full lifecycle digitalization and intelligent project management.展开更多
Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechan...Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechanism and deformation behavior compared to other rock types.To address this issue,inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix,inherent planes of anisotropy,and secondary structural planes.Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks.Furthermore,the LayerDFN model is implemented in the FLAC3D software,and a series of numerical results for typical example problems is compared with those obtained from the 3DEC,the analytical solutions,similar classical models,laboratory uniaxial compression tests,and field rigid bearing plate tests.The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks,and can quantitatively characterize the damaging effect of the secondary structural planes.Overall,the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks,which will provide valuable insights for engineering design and decision-making processes.展开更多
Eddying global ocean models are now routinely used for ocean prediction,and the value-added of a better representation of the observed ocean variability and western boundary currents at that resolution is currently be...Eddying global ocean models are now routinely used for ocean prediction,and the value-added of a better representation of the observed ocean variability and western boundary currents at that resolution is currently being evaluated in climate models.This overview article begins with a brief summary of the impact on ocean model biases of resolving eddies in several global ocean-sea ice numerical simulations.Then,a series of North and Equatorial Atlantic configurations are used to show that an increase of the horizontal resolution from eddy-resolving to submesoscale-enabled together with the inclusion of high-resolution bathymetry and tides significantly improve the models’abilities to represent the observed ocean variability and western boundary currents.However,the computational cost of these simulations is extremely large,and for these simulations to become routine,close collaborations with computer scientists are essential to ensure that numerical codes can take full advantage of the latest computing architecture.展开更多
Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling fact...Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag.展开更多
Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from...Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.展开更多
Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Suc...Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.展开更多
The streamflow over the Yellow River basin is simulated using the PRECIS (Providing REgional Climates for Impacts Studies) regional climate model driven by 15-year (1979-1993) ECMWF reanalysis data as the initial ...The streamflow over the Yellow River basin is simulated using the PRECIS (Providing REgional Climates for Impacts Studies) regional climate model driven by 15-year (1979-1993) ECMWF reanalysis data as the initial and lateral boundary conditions and an off-line large-scale routing model (LRM). The LRM uses physical catchment and river channel information and allows streamflow to be predicted for large continental rivers with a 1°×1° spatial resolution. The results show that the PRECIS model can reproduce the general southeast to northwest gradient distribution of the precipitation over the Yellow River basin, The PRECIS- LRM model combination has the capability to simulate the seasonal and annual streamflow over the Yellow River basin. The simulated streamflow is generally coincident with the naturalized streamflow both in timing and in magnitude.展开更多
基金funding support from the National Natural Science Foundation of China(Grant Nos.42177136 and 52309126).
文摘The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in southwestern China as the engineering prototype,large-scale three-dimensional(3D)physical model tests were conducted on a 3D-printed complex geological model containing two faults.Based on the selfdeveloped 3D loading system and excavation device,the macroscopic failure of fault-slip rockbursts was simulated indoors.The stress,strain,and fracturing characteristics of the surrounding rock near the two faults were systematically evaluated during excavation and multistage loading.The test results effectively revealed the evolution and triggering mechanism of fault-slip rockbursts.After the excavation of a highstress tunnel,stress readjustment occurred.Owing to the presence of these two faults,stress continued to accumulate in the rock mass between them,leading to the accumulation of fractures.When the shear stress on a fault surface exceeded its shear strength,sudden fault slip and dislocation occurred,thus triggering rockbursts.Rockbursts occurred twice in the vault between the two faults,showing obvious intermittent characteristics.The rockburst pit was controlled by two faults.When the faults remained stable,tensile failure predominated in the surrounding rock.However,when the fault slip was triggered,shear failure in the surrounding rock increased.These findings provide valuable insights for enhancing the comprehension of fault-slip rockbursts.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62271310 and 62125108in part by the Fundamental Research Funds for the Central Universities of Chinain part by the NSFC under Grant 62431014
文摘Extremely large-scale array(XL-array)communications can significantly improve the transmission rate,spectral efficiency,and spatial resolution,and has great potential in next-generation mobile communication networks.A crucial problem in XLarray communications is to determine the boundary of applicable regions of the plane wave model(PWM)and spherical wave model(SWM).In this paper,we propose new PWM/SWM demarcations for XL-arrays from the viewpoint of channel gain and rank.Four sets of results are derived for four different array setups.First,an equi-power line is derived for a point-touniform linear array(ULA)scenario,where an inflection point is found at±π6 central incident angles.Second,an equi-power surface is derived for a point-touniform planar array(UPA)scenario,and it is proved that cos2(ϕ)cos2(φ)=12 is a dividing curve,where ϕ andφdenote the elevation and azimuth angles,respectively.Third,an accurate and explicit expression of the equi-rank surface is obtained for a ULA-to-ULA scenario.Finally,an approximated expression of the equirank surface is obtained for a ULA-to-UPA scenario.With the obtained closed-form expressions,the equirank surface for any antenna structure and any angle can be well estimated.Furthermore,the effect of scatterers is also investigated,from which some insights are drawn.
基金funded by the National Natural Science Foundation of China(Grant No.62272236)the Natural Science Foundation of Jiangsu Province(Grant No.BK20201136).
文摘The rapid advancement of artificial intelligence technology is driving transformative changes in medical diagnosis,treatment,and management systems through large-scale deep learning models-a process that brings both groundbreaking opportunities and multifaceted challenges.This study focuses on the medical and healthcare applications of large-scale deep learning architectures,conducting a comprehensive survey to categorize and analyze their diverse uses.The survey results reveal that current applications of large models in healthcare encompass medical data management,healthcare services,medical devices,and preventive medicine,among others.Concurrently,large models demonstrate significant advantages in the medical domain,especially in high-precision diagnosis and prediction,data analysis and knowledge discovery,and enhancing operational efficiency.Nevertheless,we identify several challenges that need urgent attention,including improving the interpretability of large models,strengthening privacy protection,and addressing issues related to handling incomplete data.This research is dedicated to systematically elucidating the deep collaborative mechanisms between artificial intelligence and the healthcare field,providing theoretical references and practical guidance for both academia and industry.
基金Supported by the National Natural Science Foundation of China(Nos.52293472,22473096 and 22471164)。
文摘Among various architectures of polymers,end-group-free rings have attracted growing interests due to their distinct physicochemical performances over the linear counterparts which are exemplified by reduced hydrodynamic size and slower degradation.It is key to develop facile methods to large-scale synthesis of polymer rings with tunable compositions and microstructures.Recent progresses in large-scale synthesis of polymer rings against single-chain dynamic nanoparticles,and the example applications in synchronous enhancing toughness and strength of polymer nanocomposites are summarized.Once there is the breakthrough in rational design and effective large-scale synthesis of polymer rings and their functional derivatives,a family of cyclic functional hybrids would be available,thus providing a new paradigm in developing polymer science and engineering.
文摘Climate model prediction has been improved by enhancing model resolution as well as the implementation of sophisticated physical parameterization and refinement of data assimilation systems[section 6.1 in Wang et al.(2025)].In relation to seasonal forecasting and climate projection in the East Asian summer monsoon season,proper simulation of the seasonal migration of rain bands by models is a challenging and limiting factor[section 7.1 in Wang et al.(2025)].
基金funded by the Office of the Vice-President for Research and Development of Cebu Technological University.
文摘This study demonstrates a novel integration of large language models,machine learning,and multicriteria decision-making to investigate self-moderation in small online communities,a topic under-explored compared to user behavior and platform-driven moderation on social media.The proposed methodological framework(1)utilizes large language models for social media post analysis and categorization,(2)employs k-means clustering for content characterization,and(3)incorporates the TODIM(Tomada de Decisão Interativa Multicritério)method to determine moderation strategies based on expert judgments.In general,the fully integrated framework leverages the strengths of these intelligent systems in a more systematic evaluation of large-scale decision problems.When applied in social media moderation,this approach promotes nuanced and context-sensitive self-moderation by taking into account factors such as cultural background and geographic location.The application of this framework is demonstrated within Facebook groups.Eight distinct content clusters encompassing safety,harassment,diversity,and misinformation are identified.Analysis revealed a preference for content removal across all clusters,suggesting a cautious approach towards potentially harmful content.However,the framework also highlights the use of other moderation actions,like account suspension,depending on the content category.These findings contribute to the growing body of research on self-moderation and offer valuable insights for creating safer and more inclusive online spaces within smaller communities.
基金supported by the Central Government Guiding Local Science and Technology Development Fund Project(No.2024SZY0343)the Joint Research Program for Ecological Conservation and High Quality Development of the Yellow River Basin(No.2022-YRUC-01-050205)+2 种基金the Higher Education Scientific Research Project of Inner Mongolia Autonomous Region(No.NJZZ23078)the project of Inner Mongolia"Prairie Talents"Engineering Innovation Entrepreneurship Talent Team,the Major Projects of Erdos Science and Technology(No.2022EEDSKJZDZX015)the Innovation Team of the Inner Mongolia Academy of Science and Technology(No.CXTD2023-01-016).
文摘Rural domestic sewage treatment is critical for environmental protection.This study defines the spatial pattern of villages from the perspective of rural sewage treatment and develops an integrated decision-making system to propose a sewage treatment mode and scheme suitable for local conditions.By considering the village spatial layout and terrain factors,a decision tree model of residential density and terrain type was constructed with accuracies of 76.47%and 96.00%,respectively.Combined with binary classification probability unit regression,an appropriate sewage treatment mode for the village was determined with 87.00%accuracy.The Analytic Hierarchy Process(AHP),combined with the Technique for Order Preference(TOPSIS)by Similarity to an Ideal Solution model,formed the basis for optimal treatment process selection under different emission standards.Verification was conducted in 542 villages across three counties of the Inner Mongolia Autonomous Region,focusing on the standard effluent effect(0.3773),low investment cost(0.3196),and high standard effluent effect(0.5115)to determine the best treatment process for the same emission standard under different needs.The annual environmental and carbon emission benefits of sewage treatment in these villages were estimated.This model matches village density,geographic feature,and social development level,and provides scientific support and a theoretical basis for rural sewage treatment decision-making.
基金Supported by the National Key Specialty of Traditional Chinese Medicine(Spleen and Stomach Diseases),No.0500004National Natural Science Foundation of China,No.82205104 and No.82104850+1 种基金Hospital Capability Enhancement Project of Xiyuan Hospital,CACMS,No.XYZX0303-07the Fundamental Research Funds for the Central Public Welfare Research Institutes,Excellent Young Scientists Training Program of China Academy of Chinese Medical Sciences,No.ZZ16-YQ-002.
文摘BACKGROUND Non-erosive reflux disease(NERD),the main gastroesophageal reflux subtype,features reflux symptoms without mucosal damage.Anxiety links to visceral hypersensitivity in NERD,yet mechanisms and animal models are unclear.AIM To establish a translational NERD rat model with anxiety comorbidity via tail clamping and study corticotropin-releasing hormone(CRH)-mediated neuroimmune pathways in visceral hypersensitivity and esophageal injury.METHODS Sprague-Dawley(SD)and Wistar rats were grouped into sham,model,and modified groups(n=10 each).The treatments for the modified groups were as follows:SD rats received ovalbumin/aluminum hydroxide suspension+acid perfusion±tail clamping(40 minutes/day for 7 days),while Wistar rats received fructose water+tail clamping.Esophageal pathology,visceral sensitivity,and behavior were assessed.Serum CRH,calcitonin gene-related peptide(CGRP),5-hydroxytryptamine(5-HT),and mast cell tryptase(MCT)and central amygdala(CeA)CRH mRNA were measured via ELISA and qRT-PCR.RESULTS Tail clamping induced anxiety,worsening visceral hypersensitivity(lower abdominal withdrawal reflex thresholds,P<0.05)and esophageal injury(dilated intercellular spaces and mitochondrial edema).Both models showed raised serum CRH,CGRP,5-HT,and MCT(P<0.01)and CeA CRH mRNA expression(P<0.01).Behavioral tests confirmed anxiety-like phenotypes.NERD-anxiety rats showed clinical-like symptom severity without erosion.CONCLUSION Tail clamping induces anxiety in NERD models,worsening visceral hypersensitivity via CRH neuroimmune dysregulation,offering a translational model and highlighting CRH as a treatment target.
基金supported by the Natural Science Foundation of Guangdong Province(No.2021B1515120053)Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515140166).
文摘Background:Therapeutic responses of breast cancer vary among patients and lead to drug resistance and recurrence due to the heterogeneity.Current preclinical models,however,are inadequate for predicting individual patient responses towards different drugs.This study aimed to investigate the patient-derived breast cancer culture models for drug sensitivity evaluations.Methods:Tumor and adjacent tissues from female breast cancer patients were collected during surgery.Patient-derived breast cancer cells were cultured using the conditional reprogramming technique to establish 2D models.The obtained patient-derived conditional reprogramming breast cancer(CRBC)cells were subsequently embedded in alginate-gelatin methacryloyl hydrogel microspheres to form 3D culture models.Comparisons between 2D and 3D models were made using immunohistochemistry(tumor markers),MTS assays(cell viability),flow cytometry(apoptosis),transwell assays(migration),and Western blotting(protein expression).Drug sensitivity tests were conducted to evaluate patient-specific responses to anti-cancer agents.Results:2D and 3D culture models were successfully established using samples from eight patients.The 3D models retained histological and marker characteristics of the original tumors.Compared to 2D cultures,3D models exhibited increased apoptosis,enhanced drug resistance,elevated stem cell marker expression,and greater migration ability—features more reflective of in vivo tumor behavior.Conclusion:Patient-derived 3D CRBC models effectively mimic the in vivo tumor microenvironment and demonstrate stronger resistance to anti-cancer drugs than 2D models.These hydrogel-based models offer a cost-effective and clinically relevant platform for drug screening and personalized breast cancer treatment.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation):project ID 431549029-SFB 1451the Marga-und-Walter-Boll-Stiftung(#210-10-15)(to MAR)a stipend from the'Gerok Program'(Faculty of Medicine,University of Cologne,Germany)。
文摘Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
文摘Myasthenia gravis is a chronic autoimmune disorder that affects the neuromuscular junction leading to fluctuating skeletal muscle fatigability. The majority of myasthenia gravis patients have detectable antibodies in their serum, targeting acetylcholine receptor, muscle-specific kinase, or related proteins. Current treatment for myasthenia gravis involves symptomatic therapy, immunosuppressive drugs such as corticosteroids, azathioprine, and mycophenolate mofetil, and thymectomy, which is primarily indicated in patients with thymoma or thymic hyperplasia. However, this condition continues to pose significant challenges including an unpredictable and variable disease progression, differing response to individual therapies, and substantial longterm side effects associated with standard treatments(including an increased risk of infections, osteoporosis, and diabetes), underscoring the necessity for a more personalized approach to treatment. Furthermore, about fifteen percent of patients, called “refractory myasthenia gravis patients”, do not respond adequately to standard therapies. In this context, the introduction of molecular therapies has marked a significant advance in myasthenia gravis management. Advances in understanding myasthenia gravis pathogenesis, especially the role of pathogenic antibodies, have driven the development of these biological drugs, which offer more selective, rapid, and safer alternatives to traditional immunosuppressants. This review aims to provide a comprehensive overview of emerging therapeutic strategies targeting specific immune pathways in myasthenia gravis, with a particular focus on preclinical evidence, therapeutic rationale, and clinical translation of B-cell depletion therapies, neonatal Fc receptor inhibitors, and complement inhibitors.
基金supported by the Grant PID2021-126715OB-IOO financed by MCIN/AEI/10.13039/501100011033 and"ERDFA way of making Europe"by the Grant PI22CⅢ/00055 funded by Instituto de Salud CarlosⅢ(ISCⅢ)+6 种基金the UFIECPY 398/19(PEJ2018-004965) grant to RGS funded by AEI(Spain)the UFIECPY-396/19(PEJ2018-004961)grant financed by MCIN (Spain)FI23CⅢ/00003 grant funded by ISCⅢ-PFIS Spain) to PMMthe UFIECPY 328/22 (PEJ-2021-TL/BMD-21001) grant to LM financed by CAM (Spain)the grant by CAPES (Coordination for the Improvement of Higher Education Personnel)through the PDSE program (Programa de Doutorado Sanduiche no Exterior)to VSCG financed by MEC (Brazil)
文摘The brain is the most complex human organ,and commonly used models,such as two-dimensional-cell cultures and animal brains,often lack the sophistication needed to accurately use in research.In this context,human cerebral organoids have emerged as valuable tools offering a more complex,versatile,and human-relevant system than traditional animal models,which are often unable to replicate the intricate architecture and functionality of the human brain.Since human cerebral organoids are a state-of-the-art model for the study of neurodevelopment and different pathologies affecting the brain,this field is currently under constant development,and work in this area is abundant.In this review,we give a complete overview of human cerebral organoids technology,starting from the different types of protocols that exist to generate different human cerebral organoids.We continue with the use of brain organoids for the study of brain pathologies,highlighting neurodevelopmental,psychiatric,neurodegenerative,brain tumor,and infectious diseases.Because of the potential value of human cerebral organoids,we describe their use in transplantation,drug screening,and toxicology assays.We also discuss the technologies available to study cell diversity and physiological characteristics of organoids.Finally,we summarize the limitations that currently exist in the field,such as the development of vasculature and microglia,and highlight some of the novel approaches being pursued through bioengineering.
文摘This research pioneers the integration of geographic information systems(GIS)and 3D modeling within a virtual reality(VR)framework to assess the viability and planning of a 20 MW hybrid wind-solarphotovoltaic(PV)system connected to the local grid.The study focuses on Dakhla,Morocco,a region with vast untapped renewable energy potential.By leveraging GIS,we are innovatively analyzing geographical and environmental factors that influence optimal site selection and system design.The incorporation of VR technologies offers an unprecedented level of realism and immersion,allowing stakeholders to virtually experience the project's impact and design in a dynamic,interactive environment.This novel methodology includes extensive data collection,advanced modeling,and simulations,ensuring that the hybrid system is precisely tailored to the unique climatic and environmental conditions of Dakhla.Our analysis reveals that the region possesses a photovoltaic solar potential of approximately2400 k Wh/m^(2) per year,with an average annual wind power density of about 434 W/m^(2) at an 80-meter hub height.Productivity simulations indicate that the 20 MW hybrid system could generate approximately 60 GWh of energy per year and 1369 GWh over its 25-year lifespan.To validate these findings,we employed the System Advisor Model(SAM)software and the Global Solar Photovoltaic Atlas platform.This comprehensive and interdisciplinary approach not only provides a robust assessment of the system's feasibility but also offers valuable insights into its potential socio-economic and environmental impact.
文摘The management of large-scale architectural engineering projects(e.g.,airports,hospitals)is plagued by information silos,cost overruns,and scheduling delays.While building information modeling(BIM)has improved 3D design coordination,its static nature limits its utility in real-time construction management and operational phases.This paper proposes a novel synergistic framework that integrates the static,deep data of BIM with the dynamic,real-time capabilities of digital twin(DT)technology.The framework establishes a closed-loop data flow from design(BIM)to construction(IoT,drones,BIM 360)to operation(DT platform).We detail the technological stack required,including IoT sensors,cloud computing,and AI-driven analytics.The application of this framework is illustrated through a simulated case study of a mega-terminal airport construction project,demonstrating potential reductions in rework by 15%,improvement in labor productivity by 10%,and enhanced predictive maintenance capabilities.This research contributes to the field of construction engineering by providing a practical model for achieving full lifecycle digitalization and intelligent project management.
基金supported by financial support from the National Natural Science Foundation of China(Grant Nos.52309122 and U2340229)the Innovation Team of Changjiang River Scientific Research Institute(Grant No.CKSF2024329/YT).
文摘Large-scale and heavily jointed rocks have inherent planes of anisotropy and secondary structural planes,such as dominant joint sets and random fractures,which result in significant differences in their failure mechanism and deformation behavior compared to other rock types.To address this issue,inherent anisotropic rocks with large-scale and dense joints are considered to be composed of the rock matrix,inherent planes of anisotropy,and secondary structural planes.Then a new implicit continuum model called LayerDFN is developed based on the crack tensor and damage tensor theories to characterize the mechanical properties of inherent anisotropic rocks.Furthermore,the LayerDFN model is implemented in the FLAC3D software,and a series of numerical results for typical example problems is compared with those obtained from the 3DEC,the analytical solutions,similar classical models,laboratory uniaxial compression tests,and field rigid bearing plate tests.The results demonstrate that the LayerDFN model can effectively capture the anisotropic mechanical properties of inherent anisotropic rocks,and can quantitatively characterize the damaging effect of the secondary structural planes.Overall,the numerical method based on the LayerDFN model provides a comprehensive and reliable approach for describing and analyzing the behavior of inherent anisotropic rocks,which will provide valuable insights for engineering design and decision-making processes.
文摘Eddying global ocean models are now routinely used for ocean prediction,and the value-added of a better representation of the observed ocean variability and western boundary currents at that resolution is currently being evaluated in climate models.This overview article begins with a brief summary of the impact on ocean model biases of resolving eddies in several global ocean-sea ice numerical simulations.Then,a series of North and Equatorial Atlantic configurations are used to show that an increase of the horizontal resolution from eddy-resolving to submesoscale-enabled together with the inclusion of high-resolution bathymetry and tides significantly improve the models’abilities to represent the observed ocean variability and western boundary currents.However,the computational cost of these simulations is extremely large,and for these simulations to become routine,close collaborations with computer scientists are essential to ensure that numerical codes can take full advantage of the latest computing architecture.
基金Supported by the China National Science and Technology Major Project(2011ZX05023-006-002,2016ZX05024-003).
文摘Based on the practice of oil and gas exploration and the analysis of shallow lithologic reservoirs,combined with the allocation relationship and enrichment law of oil and gas accumulation factors,main controlling factors and models of hydrocarbon accumulation of large lithologic reservoirs in shallow strata around the Bozhong sag are summarized,and favorable exploration areas are proposed.The coupling of the four factors of“ridge-fault-sand-zone”is crucial for the hydrocarbon enrichment in the shallow lithologic reservoirs.The convergence intensity of deep convergence ridges is the basis for shallow oil and gas enrichment,the activity intensity of large fault cutting ridges and the thickness of cap rocks control the vertical migration ability of oil and gas,the coupling degree of large sand bodies and fault cutting ridges control large-scale oil and gas filling,the fault sealing ability of structural stress concentration zones affects the enrichment degree of lithologic oil and gas reservoirs.Three enrichment models including uplift convergence type,steep slope sand convergence type and depression uplift convergence type are established through the case study of lithologic reservoirs in shallow strata around the Bozhong sag.
基金National Natural Science Foundation of China Key Project(No.42050103)Higher Education Disciplinary Innovation Program(No.B25052)+2 种基金the Guangdong Pearl River Talent Program Innovative and Entrepreneurial Team Project(No.2021ZT09H399)the Ministry of Education’s Frontiers Science Center for Deep-Time Digital Earth(DDE)(No.2652023001)Geological Survey Project of China Geological Survey(DD20240206201)。
文摘Since the beginning of the 21st century,advances in big data and artificial intelligence have driven a paradigm shift in the geosciences,moving the field from qualitative descriptions toward quantitative analysis,from observing phenomena to uncovering underlying mechanisms,from regional-scale investigations to global perspectives,and from experience-based inference toward data-and model-enabled intelligent prediction.AlphaEarth Foundations(AEF)is a next-generation geospatial intelligence platform that addresses these changes by introducing a unified 64-dimensional shared embedding space,enabling-for the first time-standardized representation and seamless integration of 12 distinct types of Earth observation data,including optical,radar,and lidar.This framework significantly improves data assimilation efficiency and resolves the persistent problem of“data silos”in geoscience research.AEF is helping redefine research methodologies and fostering breakthroughs,particularly in quantitative Earth system science.This paper systematically examines how AEF’s innovative architecture-featuring multi-source data fusion,high-dimensional feature representation learning,and a scalable computational framework-facilitates intelligent,precise,and realtime data-driven geoscientific research.Using case studies from resource and environmental applications,we demonstrate AEF’s broad potential and identify emerging innovation needs.Our findings show that AEF not only enhances the efficiency of solving traditional geoscientific problems but also stimulates novel research directions and methodological approaches.
基金sponsored by National Science and Technology Major Project(2011ZX05046-001)
文摘Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.
文摘The streamflow over the Yellow River basin is simulated using the PRECIS (Providing REgional Climates for Impacts Studies) regional climate model driven by 15-year (1979-1993) ECMWF reanalysis data as the initial and lateral boundary conditions and an off-line large-scale routing model (LRM). The LRM uses physical catchment and river channel information and allows streamflow to be predicted for large continental rivers with a 1°×1° spatial resolution. The results show that the PRECIS model can reproduce the general southeast to northwest gradient distribution of the precipitation over the Yellow River basin, The PRECIS- LRM model combination has the capability to simulate the seasonal and annual streamflow over the Yellow River basin. The simulated streamflow is generally coincident with the naturalized streamflow both in timing and in magnitude.