期刊文献+
共找到30,091篇文章
< 1 2 250 >
每页显示 20 50 100
Large-scale model testing of high-pressure grouting reinforcement for bedding slope with rapid-setting polyurethane 被引量:2
1
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 LIU Kan YE Longzhen HE Xiang 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3083-3093,共11页
Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining wal... Bedding slope is a typical heterogeneous slope consisting of different soil/rock layers and is likely to slide along the weakest interface.Conventional slope protection methods for bedding slopes,such as retaining walls,stabilizing piles,and anchors,are time-consuming and labor-and energy-intensive.This study proposes an innovative polymer grout method to improve the bearing capacity and reduce the displacement of bedding slopes.A series of large-scale model tests were carried out to verify the effectiveness of polymer grout in protecting bedding slopes.Specifically,load-displacement relationships and failure patterns were analyzed for different testing slopes with various dosages of polymer.Results show the great potential of polymer grout in improving bearing capacity,reducing settlement,and protecting slopes from being crushed under shearing.The polymer-treated slopes remained structurally intact,while the untreated slope exhibited considerable damage when subjected to loads surpassing the bearing capacity.It is also found that polymer-cemented soils concentrate around the injection pipe,forming a fan-shaped sheet-like structure.This study proves the improvement of polymer grouting for bedding slope treatment and will contribute to the development of a fast method to protect bedding slopes from landslides. 展开更多
关键词 POLYURETHANE Bedding slope GROUTING Slope protection large-scale model test
原文传递
Influence of differential settlement on pavement structure of widened roads based on large-scale model test 被引量:13
2
作者 Xiaolin Weng1,2,Wei Wang3 1 Key Laboratory for Special Area Highway Engineering of Ministry of Education,Chang’an University,Xi’an,710064,China 2 CCCC First Highway Consultants Co.,Ltd.,Xi’an,710068,China 3 Henan Vocational and Technical College of Communications,Zhengzhou,450005,China 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第1期90-96,共7页
This study introduced at first the background of numerous highway widening projects that have been developed in recent years in China.Using a large ground settlement simulator and a fiber Bragg grating (FBG) strain se... This study introduced at first the background of numerous highway widening projects that have been developed in recent years in China.Using a large ground settlement simulator and a fiber Bragg grating (FBG) strain sensor network system,a large-scale model test,with a similarity ratio of 1:2,was performed to analyze the influence of differential settlement between new and old subgrades on pavement structure under loading condition.The result shows that excessive differential settlement can cause considerable tensile strain in the pavement structure of a widened road,for which a maximum value (S) of 6 cm is recommended.Under the repetitive load,the top layers of pavement structure are subjected to the alternate action of tensile and compressive strains,which would eventually lead to a fatigue failure of the pavement.However,application of geogrid to the splice between the new and the old roads can reduce differential settlement to a limited extent.The new subgrade of a widened road is vulnerable to the influence of dynamic load transferred from the above pavement structures.While for the old subgrade,due to its comparatively high stiffness,it can well spread the load on the pavement statically or dynamically.The test also shows that application of geogrid can effectively prevent or defer the failure of pavement structure.With geogrid,the modulus of resilience of the subgrade is increased and inhomogeneous deformation can be reduced;therefore,the stress/strain distribution in pavement structure under loading condition becomes uniform.The results obtained in this context are expected to provide a helpful reference for structural design and maintenance strategy for future highway widening projects. 展开更多
关键词 widened subgrade differential settlement fiber Bragg grating (FBG) strain sensor model test
在线阅读 下载PDF
Remote Control and Telemetry System for Large-scale Model Test at Sea 被引量:3
3
作者 孙树政 李积德 +2 位作者 赵晓东 栾景雷 王长涛 《Journal of Marine Science and Application》 2010年第3期280-285,共6页
Physical testing of large-scale ship models at sea is a new experimental method.It is a cheap and reliable way to research the environment adaptability of a ship in complex and extreme wave conditions.It is necessary ... Physical testing of large-scale ship models at sea is a new experimental method.It is a cheap and reliable way to research the environment adaptability of a ship in complex and extreme wave conditions.It is necessary to have a stable experimental system for the test.Since the experimental area is large, a remote control system and a telemetry system are essential, and were designed by the authors.An experiment was conducted on the Songhuajiang River to test the systems.The relationship between the model's speed and its electromotor's revolutions was also measured during the model test.The results showed that the two systems make it possible to carry out large-scale model tests at sea. 展开更多
关键词 large scale model remote control telemetry systerm model test
在线阅读 下载PDF
Evolution and triggering mechanism of fault-slip rockbursts in deep tunnels:Insights from 3D printed large-scale physical models
4
作者 Shi-Ming Mei Xia-Ting Feng +3 位作者 Zheng-Wei Li Ben-Guo He Cheng-Xiang Yang Wei Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期6821-6836,共16页
The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in so... The excavation of deep tunnels crossing faults is highly prone to triggering rockburst disasters,which has become a significant engineering issue.In this study,taking the fault-slip rockbursts from a deep tunnel in southwestern China as the engineering prototype,large-scale three-dimensional(3D)physical model tests were conducted on a 3D-printed complex geological model containing two faults.Based on the selfdeveloped 3D loading system and excavation device,the macroscopic failure of fault-slip rockbursts was simulated indoors.The stress,strain,and fracturing characteristics of the surrounding rock near the two faults were systematically evaluated during excavation and multistage loading.The test results effectively revealed the evolution and triggering mechanism of fault-slip rockbursts.After the excavation of a highstress tunnel,stress readjustment occurred.Owing to the presence of these two faults,stress continued to accumulate in the rock mass between them,leading to the accumulation of fractures.When the shear stress on a fault surface exceeded its shear strength,sudden fault slip and dislocation occurred,thus triggering rockbursts.Rockbursts occurred twice in the vault between the two faults,showing obvious intermittent characteristics.The rockburst pit was controlled by two faults.When the faults remained stable,tensile failure predominated in the surrounding rock.However,when the fault slip was triggered,shear failure in the surrounding rock increased.These findings provide valuable insights for enhancing the comprehension of fault-slip rockbursts. 展开更多
关键词 Fault-slip rockbursts Evolution mechanism 3D printing large-scale physical model test Deep tunnel
在线阅读 下载PDF
Shear strength characteristics of mixing slag-stone ballast reinforcement with tire geo-scrap using large-scale direct shear tests
5
作者 Morteza Esmaeili Hamidreza Heydari +1 位作者 Maziar Mokhtari Sara Darvishi 《Railway Engineering Science》 2025年第1期94-107,共14页
Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts.Strengthening the ballast layer with different types of reinforcements ... Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts.Strengthening the ballast layer with different types of reinforcements or substituting the stone aggregates with the appropriate granular materials could potentially help to achieve this goal by reducing the ballast deterioration.One of the exquisite and most effective solutions to eliminate these challenges is to use waste materials such as steel slag aggregates and useless tires.Utilizing these waste materials in the ballasted railway track will contribute to sustainable development,an eco-friendly system,and green infrastructure.So in a state-of-the-art insightful,the ballast aggregates,including a mixture of steel slag and stone aggregates,are reinforced with a novel kind of geo-grid made of waste tire strips known as geo-scraps.This laboratory research tried to explain the shear strength behavior of the introduced mixing slag-stone ballast reinforced with tire geo-scrap.To achieve this goal,a series of large-scale direct shear tests were performed on the ballast which is reinforced by tire geo-scrap and included various combinations of slag and stone aggregates.The concluded results indicate that the optimal mixing ratio is attained by a combination of 75%slag and 25%stone aggregates which is reinforced by tire geo-scrap at a placing level of 120 mm.In this case,the shear strength,internal friction angle,vertical displacement,and dilatancy angle of stone–slag ballast reinforced with geo-scraps exhibited average changes of+28%,+9%,-28%,and-15%,respectively. 展开更多
关键词 Ballast deterioration Ballast stabilization Steel slag aggregates large-scale direct shear test Waste tire geoscrap
在线阅读 下载PDF
Design of a large-scale model for wind tunnel test of a multiadaptive flap concept 被引量:1
6
作者 Mürüvvet Sinem SICIM DEMIRCI Rosario PECORA Metin Orhan KAYA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期58-80,共23页
The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced techno... The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses. 展开更多
关键词 Morphing structures Smart aircraft Morphing flap Adaptive systems Finger-like ribs Wind tunnel tests large-scale morphing archi-tectures Variable camber airfoil
原文传递
Large-scale model test study on the water pressure resistance of construction joints of karst tunnel linings 被引量:1
7
作者 Meng HUANG Mingli HUANG +2 位作者 Ze YANG Yuan SONG Zhien ZHANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第8期1249-1263,共15页
Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnel... Model tests and numerical calculations were adopted based on the New Yuanliangshan tunnel project to investigate the water pressure resistance of lining construction joints in high-pressure and water-rich karst tunnels.A large-scale model test was designed and conducted,innovatively transforming the external water pressure of the lining construction joint into internal water pressure.The effects of the embedded position and waterstop type on the water pressure resistance of the construction joint were analyzed,and the reliability of the model test was verified via numerical calculations.The results show that using waterstops can significantly improve the water pressure resistance of lining construction joints.The water pressure resistance of the lining construction joint is positively correlated with the lining thickness and embedded depth of the waterstop.In addition,the type of waterstop significantly influences the water pressure resistance of lining construction joints.The test results show that the water pressure resistance of the embedded transverse reinforced waterstop is similar to that of the steel plate waterstop,and both have more advantages than the rubber waterstop.The water pressure resistance of the construction joint determined via numerical calculations is similar to the model test results,indicating that the model test results have high accuracy and reliability.This study provides a reference for similar projects and has wide applications. 展开更多
关键词 karst tunnel lining construction joint water pressure resistance large-scale model test numerical calculations
原文传递
Model tests and numerical analysis of emergency treatment of cohesionless soil landslide with quick-setting polyurethane 被引量:1
8
作者 ZHANG Zhichao TANG Xuefeng +2 位作者 HUANG Rufa CAI Zhenjie GAO Anhua 《Journal of Mountain Science》 2025年第1期110-121,共12页
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the... Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live. 展开更多
关键词 Cohesionless soil landslide POLYURETHANE Emergency treatment Reinforcement effect model test Finite element analysis
原文传递
Field Testing Methodology for Wave Energy Converters Using the MIKE 21 Model 被引量:1
9
作者 Ning Jia Xiangnan Wang +1 位作者 Linsheng Han Hainan Xia 《Energy Engineering》 2025年第6期2389-2400,共12页
With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist i... With the depletion of fossil fuels and increasing environmental concerns,the development of renewable energy,such as wave energy,has become a critical component of global energy strategies.However,challenges persist in the field testing methodologies for wave energy converters(WECs).In this paper,a numerical wave field of the Dawanshan Island Sea Area in Zhuhai City is constructed based on the MIKE21 SW wave model and by using an NCEP wind field driving model.In conjunction with the IEC-62600-100 standard,by taking site testing of the“Wanshan”wave energy converter on which a sea trial has been conducted in Dawanshan Island of Zhuhai city as an example,research on-site testing method for a wave energy converter has been carried out.The wave measurement position for the“Wanshan”converter was determined by combining statistically analyzed field data with a validated numerical wave model.By comparing a valid wave height at the position where a wave rider is located with a valid wave height at the position where the“Wanshan”wave energy converter is situated,the correlation coefficient between simulation and observed data reached 0.90,with a root-mean-square error of 0.19.The representativeness of wave measurement data during site testing is verified and can be used as a basis for calculating the input energy of the“Wanshan”wave energy converter. 展开更多
关键词 Wave energy converter site testing MIKE21 SW model
在线阅读 下载PDF
The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine 被引量:1
10
作者 GAO Yuan WU Zixuan +4 位作者 SHENG Boyang ZHANG Fu CHENG Yong YAN Junfeng PENG Qinghua 《Digital Chinese Medicine》 CAS CSCD 2024年第2期101-107,共7页
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve ... Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM);artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However;the research on intelligent eye diagnosis still faces many challenges;including the lack of standardized and precisely labeled data;multi-modal information analysis;and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis;and explores the implications for the research of eye diagno-sis intelligence.First;a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next;the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last;the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary;research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications. 展开更多
关键词 Traditional Chinese medicine(TCM) Eye diagnosis Artificial intelligence(AI) large-scale model Self-supervised learning Deep neural network
暂未订购
Large-scale experimental study on scour around both slender and large monopiles under irregular waves
11
作者 En-yu Gong Song-gui Chen +2 位作者 Xin Chen Da-wei Guan Jin-hai Zheng 《Water Science and Engineering》 2025年第3期369-377,共9页
Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by co... Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter. 展开更多
关键词 SCOUR KeuleganeCarpenter number Irregular waves Equilibrium scour depth large-scale test
在线阅读 下载PDF
Large-scale laboratory investigation of pillar-support interaction
12
作者 Akash Chaurasia Gabriel Walton +4 位作者 Sankhaneel Sinha Timothy J.Batchler Kieran Moore Nicholas Vlachopoulos Bradley Forbes 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期71-93,共23页
Underground mine pillars provide natural stability to the mine area,allowing safe operations for workers and machinery.Extensive prior research has been conducted to understand pillar failure mechanics and design safe... Underground mine pillars provide natural stability to the mine area,allowing safe operations for workers and machinery.Extensive prior research has been conducted to understand pillar failure mechanics and design safe pillar layouts.However,limited studies(mostly based on empirical field observation and small-scale laboratory tests)have considered pillar-support interactions under monotonic loading conditions for the design of pillar-support systems.This study used a series of large-scale laboratory compression tests on porous limestone blocks to analyze rock and support behavior at a sufficiently large scale(specimens with edge length of 0.5 m)for incorporation of actual support elements,with consideration of different w/h ratios.Both unsupported and supported(grouted rebar rockbolt and wire mesh)tests were conducted,and the surface deformations of the specimens were monitored using three-dimensional(3D)digital image correlation(DIC).Rockbolts instrumented with distributed fiber optic strain sensors were used to study rockbolt strain distribution,load mobilization,and localized deformation at different w/h ratios.Both axial and bending strains were observed in the rockbolts,which became more prominent in the post-peak region of the stress-strain curve. 展开更多
关键词 Grouted rockbolt Welded wire mesh Porous limestone Digital image correlation Distributed fiber optic sensing large-scale laboratory tests
在线阅读 下载PDF
Landslide model tests with a miniature 2D principal stress sensor
13
作者 Kun Fang Yulei Fu +3 位作者 Huiming Tang Tangzhe Gao Pengju An Qiong Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期94-105,共12页
Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model test... Understanding the stress distribution derived from monitoring the principal stress(PS)in slopes is of great importance.In this study,a miniature sensor for quantifying the two-dimensional(2D)PS in landslide model tests is proposed.The fundamental principle and design of the sensor are demonstrated.The sensor comprises three earth pressure gages and one gyroscope,with the utilization of three-dimensional(3D)printing technology.The difficulties of installation location during model preparation and sensor rotation during testing can be effectively overcome using this sensor.Two different arrangements of the sensors are tested in verification tests.Additionally,the application of the sensor in an excavated-induced slope model is tested.The results demonstrate that the sensor exhibits commendable performance and achieves a desirable level of accuracy,with a principal stress angle error of±5°in the verification tests.The stress transformation of the slope model,generated by excavation,is demonstrated in the application test by monitoring the two miniature principal stress(MPS)sensors.The sensor has a significant potential for measuring primary stress in landslide model tests and other geotechnical model experiments. 展开更多
关键词 LANDSLIDE model test Principal stress(PS) Stress measurement
在线阅读 下载PDF
Synergistic reinforcement using pressure releasing and energy absorbing method under hard roof:Physical model test
14
作者 Qi Wang Jiting Liu +3 位作者 Bei Jiang Zhenhua Jiang Yusong Deng Chuanjie Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5845-5860,共16页
During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When t... During fully mechanized caving mining of thick coal seams,a large amount of strain energy accumulates in the roof,especially when the roof is thick and hard,making it difficultfor the roof to collapse naturally.When the roof eventually collapses,the accumulated energy is released instantaneously,exerting a strong impact on the roadway.To address this issue,we proposed the synergistic control method of directional comprehensive pressure relief and energy-absorbing support(PREA)for roadways with hard roofs.In this study,we developed a three-dimensional physical model test apparatus for roof cutting and pressure relief.The 122108 ventilation roadway at the Caojiatan Coal Mine,which has a thick and hard roof,was taken as the engineering example.We analyzed the evolution patterns of stress and displacement in both the stope and the roadway surrounding rocks under different schemes.The PREA reinforcement mechanism for the roadway was investigated through comparative model tests between the new and original methods.The results showed that,compared to the original method,the new method reduced surrounding rock stress by up to 60.4%,and the roadway convergence decreased by up to 52.1%.Based on these results,we proposed corresponding engineering recommendations,which can guide fieldreinforcement design and application.The results demonstrate that the PREA method effectively reduces stress and ensures the safety and stability of the roadway. 展开更多
关键词 Directional comprehensive pressure relief High-strength support Three-dimensional model test Reinforcing method Synergistic control
在线阅读 下载PDF
Dynamic characterization of viscoelasticity during polymer flooding:A two-phase numerical well test model and field study
15
作者 Yang Wang Shi-Long Yang +3 位作者 Hang Xie Yu Jiang Shi-Qing Cheng Jia Zhang 《Petroleum Science》 2025年第6期2493-2501,共9页
Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer... Polymer flooding is an important means of improving oil recovery and is widely used in Daqing,Xinjiang,and Shengli oilfields,China.Different from conventional injection media such as water and gas,viscoelastic polymer solutions exhibit non-Newtonian and nonlinear flow behavior including shear thinning and shear thickening,polymer convection,diffusion,adsorption,retention,inaccessible pore volume,and reduced effective permeability.However,available well test model of polymer flooding wells generally simplifies these characteristics on pressure transient response,which may lead to inaccurate results.This work proposes a novel two-phase numerical well test model to better describe the polymer viscoelasticity and nonlinear flow behavior.Different influence factors that related to near-well blockage during polymer flooding process,including the degree of blockage(inner zone permeability),the extent of blockage(composite radius),and polymer flooding front radius are explored to investigate these impacts on bottom hole pressure responses.Results show that polymer viscoelasticity has a significant impact on the transitional flow segment of type curves,and the effects of near-well formation blockage and polymer concentration distribution on well test curves are very similar.Thus,to accurately interpret the degree of near-well blockage in injection wells,it is essential to first eliminate the influence of polymer viscoelasticity.Finally,a field case is comprehensively analyzed and discussed to illustrate the applicability of the proposed model. 展开更多
关键词 Polymer flooding Two-phase flow Numerical well test model Viscoelastic characteristic Nonlinear flow Near-well blockage
原文传递
Development of a Model Material Suitable for Reservoir Landslide Model Tests
16
作者 Minghao Miao Huiming Tang +4 位作者 Sha Lu Changdong Li Kun Fang Yixiao Gu Chunyan Tang 《Journal of Earth Science》 2025年第5期1989-2004,共16页
In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a mo... In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a model material suitable for analysing the deformation and failure of reservoir landslides,based on the existing research foundation of analogous materials,5 materials and 5 physical-mechanical parameters were selected to design an orthogonal test.The factor sensitivity of each component ratio and its influence on the physical-mechanical indices were studied by range analysis and stepwise regression analysis,and the proportioning method was determined.Finally,the model material was developed,and a model test was carried out considering Huangtupo as the prototype application.The results showed that(1)the model material composed of sand,barite powder,glass beads,clay,and bentonite had a wide distribution of physical-mechanical parameters,which could be applied to model tests under different conditions;(2)the physical-mechanical parameters of analogous materials matched the application prototype;and(3)the mechanical properties and seepage performance of the model material sample met the requirements of reservoir landslide model tests,which could be used to simulate landslide evolution and analyse the deformation process. 展开更多
关键词 analogous material physical model test reservoir landslide range analysis stepwise regression stage division PIVlab LANDSLIDES engineering geology
原文传递
CFD-based Determination of Load Cell Capacity for Submarine HPMM Model Tests
17
作者 Aliasghar Moghaddas Hossein nourozi +1 位作者 Morteza Ebrahimi Alireza Naderi 《哈尔滨工程大学学报(英文版)》 2025年第5期1064-1074,共11页
Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and... Captive model tests are one of the most common methods to calculate the maneuvering hydrodynamic coefficients and characteristics of surface and underwater vehicles.Considerable attention must be paid to selecting and designing the most suitable laboratory equipment for towing tanks.A computational fluid dynamics(CFD)-based method is implemented to determine the loads acting on the towing facility of the submarine model.A reversed topology is also used to ensure the appropriateness of the load cells in the developed method.In this study,the numerical simulations were evaluated using the experimental results of the SUBOFF benchmark submarine model of the Defence Advanced Research Projects Agency.The maximum and minimum loads acting on the 2.5-meter submarine model were measured by determining the body’s lightest and heaviest maneuvering test scenarios.In addition to having sufficient endurance against high loads,the precision in measuring the light load was also investigated.The horizontal planar motion mechanism(HPMM)facilities in the National Iranian Marine Laboratory were developed by locating the load cells inside the submarine model.The results were presented as a case study.A numerical-based method was developed to obtain the appropriate load measurement facilities.Load cells of HPMM test basins can be selected by following the two-way procedure presented in this study. 展开更多
关键词 Captive model tests Hydrodynamic coefficients SUBMARINE Computational fluid dynamics Horizontal planar motion mechanism Load cell capacity
在线阅读 下载PDF
True triaxial modeling test of high-sidewall underground caverns subjected to dynamic disturbances
18
作者 Chuanqing Zhang Jinping Ye +3 位作者 Ning Liu Qiming Xie Mingming Hu Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2109-2132,共24页
Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessm... Seismicity resulting from the near-or in-field fault activation significantly affects the stability of large-scale underground caverns that are operating under high-stress conditions.A comprehensive scientific assessment of the operational safety of such caverns requires an in-depth understanding of the response characteristics of the rock mass subjected to dynamic disturbances.To address this issue,we conducted true triaxial modeling tests and dynamic numerical simulations on large underground caverns to investigate the impact of static stress levels,dynamic load parameters,and input directions on the response characteristics of the surrounding rock mass.The findings reveal that:(1)When subjected to identical incident stress waves and static loads,the surrounding rock mass exhibits the greatest stress response during horizontal incidence.When the incident direction is fixed,the mechanical response is more pronounced at the cavern wall parallel to the direction of dynamic loading.(2)A high initial static stress level specifically enhances the impact of dynamic loading.(3)The response of the surrounding rock mass is directly linked to the amplitude of the incident stress wave.High amplitude results in tensile damage in regions experiencing tensile stress concentration under static loading and shear damage in regions experiencing compressive stress concentration.These results have significant implications for the evaluation and prevention of dynamic disasters in the surrounding rock of underground caverns experiencing dynamic disturbances. 展开更多
关键词 High-sidewall underground cavern modeling test Coupling effect of dynamic and static loads Incident wave Response characteristics Risk coefficient
在线阅读 下载PDF
Assessing cutter-rock interaction during TBM tunnelling in granite:Large-scale standing rotary cutting tests and 3D DEM simulations
19
作者 Xin Huang Miaoyuan Tang +4 位作者 Shuaifeng Wang Yixin Zhai Qianwei Zhuang Chi Zhang Qinghua Lei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3595-3615,共21页
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi... The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite. 展开更多
关键词 large-scale standing rotary cutting test Discrete element method(DEM)simulation Cutter-rock interaction Improved CSM(Colorado School of Mines) model Cutting force
在线阅读 下载PDF
A Laboratorial Testing Scheme for 5G System:Channel Model Principle and Field Experiment Validation
20
作者 Zhang Yuxiang Zhang Jianhua +7 位作者 Kang Yanan Zhao Mengxuan Qi Pan Zhang Zhen Tang Pan Tian Lei Liu Guangyi Yao Yuan 《China Communications》 2025年第9期113-128,共16页
As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple ... As the commercialization of the fifth gen-eration communication(5G)is sped up,its system testing scheme is vital for the successful deployment of 5G.Especially,5G relies on the scale-increased multiple-input-multiple output(MIMO)technique to improve its capacity and coverage.Thus,testing new functions of the 5G MIMO system accurately and ef-ficiently,including beamforming(beam-tracking with movement)and multiple-user(MU)multiplexing,is a challenging task.This paper tries to construct a lab-oratorial hardware and conduct equipment-controlled field testing.Firstly,the testing scheme is presented,which is composed of the framework,the channel models and the validation methods.Then,the channel model principles are explained in detail due to its di-rect influence on the testing accuracy.Specifically,we utilize the spatial consistency and the multi-link cor-relation properties to emulate the high-speed dynamic time-varying(HDT)and the multiple-cell(MC)-MU-MIMO channels.Finally,the above testing scheme is verified in a Shanghai 5G field experiment with the practical commercial equipment and the channel em-ulator.The results show that the 5G new functions are tested accurately and efficiently by switching the channel emulation configurations. 展开更多
关键词 channel model field experiment high-speed dynamic time-varying(HDT) multiple-cell-multiple-user-multiple-input-multiple-output(MC-MU-MIMO) testing scheme the fifth generation communication(5G)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部