期刊文献+
共找到327篇文章
< 1 2 17 >
每页显示 20 50 100
Contribution of the MERISE-Type Conceptual Data Model to the Construction of Monitoring and Evaluation Indicators of the Effectiveness of Training in Relation to the Needs of the Labor Market in the Republic of Congo
1
作者 Roch Corneille Ngoubou Basile Guy Richard Bossoto Régis Babindamana 《Open Journal of Applied Sciences》 2024年第8期2187-2200,共14页
This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for struct... This study proposes the use of the MERISE conceptual data model to create indicators for monitoring and evaluating the effectiveness of vocational training in the Republic of Congo. The importance of MERISE for structuring and analyzing data is underlined, as it enables the measurement of the adequacy between training and the needs of the labor market. The innovation of the study lies in the adaptation of the MERISE model to the local context, the development of innovative indicators, and the integration of a participatory approach including all relevant stakeholders. Contextual adaptation and local innovation: The study suggests adapting MERISE to the specific context of the Republic of Congo, considering the local particularities of the labor market. Development of innovative indicators and new measurement tools: It proposes creating indicators to assess skills matching and employer satisfaction, which are crucial for evaluating the effectiveness of vocational training. Participatory approach and inclusion of stakeholders: The study emphasizes actively involving training centers, employers, and recruitment agencies in the evaluation process. This participatory approach ensures that the perspectives of all stakeholders are considered, leading to more relevant and practical outcomes. Using the MERISE model allows for: • Rigorous data structuring, organization, and standardization: Clearly defining entities and relationships facilitates data organization and standardization, crucial for effective data analysis. • Facilitation of monitoring, analysis, and relevant indicators: Developing both quantitative and qualitative indicators helps measure the effectiveness of training in relation to the labor market, allowing for a comprehensive evaluation. • Improved communication and common language: By providing a common language for different stakeholders, MERISE enhances communication and collaboration, ensuring that all parties have a shared understanding. The study’s approach and contribution to existing research lie in: • Structured theoretical and practical framework and holistic approach: The study offers a structured framework for data collection and analysis, covering both quantitative and qualitative aspects, thus providing a comprehensive view of the training system. • Reproducible methodology and international comparison: The proposed methodology can be replicated in other contexts, facilitating international comparison and the adoption of best practices. • Extension of knowledge and new perspective: By integrating a participatory approach and developing indicators adapted to local needs, the study extends existing research and offers new perspectives on vocational training evaluation. 展开更多
关键词 MERISE Conceptual data model (MCD) Monitoring Indicators Evaluation of training Effectiveness training-Employment Adequacy Labor Market Information Systems Analysis Adjustment of training Programs EMPLOYABILITY Professional Skills
在线阅读 下载PDF
Efficient deep-learning-based surrogate model for reservoir production optimization using transfer learning and multi-fidelity data
2
作者 Jia-Wei Cui Wen-Yue Sun +2 位作者 Hoonyoung Jeong Jun-Rong Liu Wen-Xin Zhou 《Petroleum Science》 2025年第4期1736-1756,共21页
In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However... In the realm of subsurface flow simulations,deep-learning-based surrogate models have emerged as a promising alternative to traditional simulation methods,especially in addressing complex optimization problems.However,a significant challenge lies in the necessity of numerous high-fidelity training simulations to construct these deep-learning models,which limits their application to field-scale problems.To overcome this limitation,we introduce a training procedure that leverages transfer learning with multi-fidelity training data to construct surrogate models efficiently.The procedure begins with the pre-training of the surrogate model using a relatively larger amount of data that can be efficiently generated from upscaled coarse-scale models.Subsequently,the model parameters are finetuned with a much smaller set of high-fidelity simulation data.For the cases considered in this study,this method leads to about a 75%reduction in total computational cost,in comparison with the traditional training approach,without any sacrifice of prediction accuracy.In addition,a dedicated well-control embedding model is introduced to the traditional U-Net architecture to improve the surrogate model's prediction accuracy,which is shown to be particularly effective when dealing with large-scale reservoir models under time-varying well control parameters.Comprehensive results and analyses are presented for the prediction of well rates,pressure and saturation states of a 3D synthetic reservoir system.Finally,the proposed procedure is applied to a field-scale production optimization problem.The trained surrogate model is shown to provide excellent generalization capabilities during the optimization process,in which the final optimized net-present-value is much higher than those from the training data ranges. 展开更多
关键词 Subsurface flow simulation Surrogate model Transfer learning Multi-fidelity training data Production optimization
原文传递
Trend Analysis of Large-Scale Twitter Data Based on Witnesses during a Hazardous Event: A Case Study on California Wildfire Evacuation
3
作者 Syed A. Morshed Khandakar Mamun Ahmed +1 位作者 Kamar Amine Kazi Ashraf Moinuddin 《World Journal of Engineering and Technology》 2021年第2期229-239,共11页
Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effectiv... Social media data created a paradigm shift in assessing situational awareness during a natural disaster or emergencies such as wildfire, hurricane, tropical storm etc. Twitter as an emerging data source is an effective and innovative digital platform to observe trend from social media users’ perspective who are direct or indirect witnesses of the calamitous event. This paper aims to collect and analyze twitter data related to the recent wildfire in California to perform a trend analysis by classifying firsthand and credible information from Twitter users. This work investigates tweets on the recent wildfire in California and classifies them based on witnesses into two types: 1) direct witnesses and 2) indirect witnesses. The collected and analyzed information can be useful for law enforcement agencies and humanitarian organizations for communication and verification of the situational awareness during wildfire hazards. Trend analysis is an aggregated approach that includes sentimental analysis and topic modeling performed through domain-expert manual annotation and machine learning. Trend analysis ultimately builds a fine-grained analysis to assess evacuation routes and provide valuable information to the firsthand emergency responders<span style="font-family:Verdana;">.</span> 展开更多
关键词 WILDFIRE EVACUATION TWITTER large-scale data Topic model Sentimental Analysis Trend Analysis
在线阅读 下载PDF
Inverse Estimation on Trigger Factors of Simultaneous Slope Failures with Purification of Training Data Sets
4
作者 Hirohito Kojima Ryo Sekine +1 位作者 Tomoya Yoshida Ryo Nozaki 《Journal of Earth Science and Engineering》 2013年第9期594-602,共9页
This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures"... This paper presents an procedure for purifying training data sets (i.e., past occurrences of slope failures) for inverse estimation on unobserved trigger factors of "different types of simultaneous slope failures". Due to difficulties in pixel-by-pixel observations of trigger factors, as one of the measures, the authors had proposed an inverse analysis algorithm on trigger factors based on SEM (structural equation modeling). Through a measurement equation, the trigger factor is inversely estimated, and a TFI (trigger factor influence) map can be also produced. As a subsequence subject, a purification procedure of training data set should be constructed to improve the accuracy of TFI map which depends on the representativeness of given training data sets of different types of slope failures. The proposed procedure resamples the matched pixels between original groups of past slope failures (i.e., surface slope failures, deep-seated slope failures, landslides) and classified three groups by K-means clustering for all pixels corresponding to those slope failures. For all cases of three types of slope failures, the improvement of success rates with respect to resampled training data sets was confirmed. As a final outcome, the differences between TFI maps produced by using original and resampled training data sets, respectively, are delineated on a DIF map (difference map) which is useful for analyzing trigger factor influence in terms of "risky- and safe-side assessment" sub-areas with respect to "different types of simultaneous slope failures". 展开更多
关键词 Purification of training data simultaneous slope failures inverse analysis of unobserved trigger factor spatial data integration structural equation modeling.
在线阅读 下载PDF
Product Data Model for Performance-driven Design 被引量:2
5
作者 Guang-Zhong Hu Xin-Jian Xu +2 位作者 Shou-Ne Xiao Guang-Wu Yang Fan Pu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1112-1122,共11页
When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency... When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design. 展开更多
关键词 Complex product design Performance driven data model Mapping relationship High-speed train
在线阅读 下载PDF
A Support Data-Based Core-Set Selection Method for Signal Recognition
6
作者 Yang Ying Zhu Lidong Cao Changjie 《China Communications》 SCIE CSCD 2024年第4期151-162,共12页
In recent years,deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment.However,training deep learning-based classif... In recent years,deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment.However,training deep learning-based classifiers on large signal datasets with redundant samples requires significant memory and high costs.This paper proposes a support databased core-set selection method(SD)for signal recognition,aiming to screen a representative subset that approximates the large signal dataset.Specifically,this subset can be identified by employing the labeled information during the early stages of model training,as some training samples are labeled as supporting data frequently.This support data is crucial for model training and can be found using a border sample selector.Simulation results demonstrate that the SD method minimizes the impact on model recognition performance while reducing the dataset size,and outperforms five other state-of-the-art core-set selection methods when the fraction of training sample kept is less than or equal to 0.3 on the RML2016.04C dataset or 0.5 on the RML22 dataset.The SD method is particularly helpful for signal recognition tasks with limited memory and computing resources. 展开更多
关键词 core-set selection deep learning model training signal recognition support data
在线阅读 下载PDF
Security Vulnerability Analyses of Large Language Models (LLMs) through Extension of the Common Vulnerability Scoring System (CVSS) Framework
7
作者 Alicia Biju Vishnupriya Ramesh Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第5期340-358,共19页
Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, a... Large Language Models (LLMs) have revolutionized Generative Artificial Intelligence (GenAI) tasks, becoming an integral part of various applications in society, including text generation, translation, summarization, and more. However, their widespread usage emphasizes the critical need to enhance their security posture to ensure the integrity and reliability of their outputs and minimize harmful effects. Prompt injections and training data poisoning attacks are two of the most prominent vulnerabilities in LLMs, which could potentially lead to unpredictable and undesirable behaviors, such as biased outputs, misinformation propagation, and even malicious content generation. The Common Vulnerability Scoring System (CVSS) framework provides a standardized approach to capturing the principal characteristics of vulnerabilities, facilitating a deeper understanding of their severity within the security and AI communities. By extending the current CVSS framework, we generate scores for these vulnerabilities such that organizations can prioritize mitigation efforts, allocate resources effectively, and implement targeted security measures to defend against potential risks. 展开更多
关键词 Common Vulnerability Scoring System (CVSS) Large Language models (LLMs) DALL-E Prompt Injections training data Poisoning CVSS Metrics
在线阅读 下载PDF
人工智能大模型训练数据的风险类型与法律规制 被引量:29
8
作者 黄锫 《政法论丛》 北大核心 2025年第1期23-37,共15页
训练数据对于人工智能大模型的开发具有不可或缺的重要作用。但是基于我国现行的法律制度和大模型的技术原理,会存在训练数据侵权风险、训练数据偏差风险和训练数据泄露风险等三种风险类型。人工智能大模型训练数据的侵权风险主要包括... 训练数据对于人工智能大模型的开发具有不可或缺的重要作用。但是基于我国现行的法律制度和大模型的技术原理,会存在训练数据侵权风险、训练数据偏差风险和训练数据泄露风险等三种风险类型。人工智能大模型训练数据的侵权风险主要包括大模型预训练时使用作品类数据可能会违反《著作权法》的规定、使用个人信息数据可能会违反《个人信息保护法》的规定等两种情形。人工智能大模型训练数据的偏差风险主要包括价值性偏差风险、时效性偏差风险和真实性偏差风险等三种情形。人工智能大模型训练数据的泄露风险主要包括面向开发者的数据泄露风险、面向攻击者的数据泄露风险等两种情形。可以通过调整现行立法来满足人工智能大模型开发者的训练数据需求,通过元规制的方式激励人工智能大模型开发者防范训练数据的偏差风险,以及通过加强法定义务督促人工智能大模型开发者防范训练数据的泄露风险。 展开更多
关键词 生成式人工智能 大模型 训练数据 法律规制
在线阅读 下载PDF
人工智能大模型训练的著作权困境及其调适路径 被引量:6
9
作者 张涛 《现代法学》 北大核心 2025年第2期189-208,共20页
人工智能大模型训练引发著作权困境,传统作品许可使用机制面临功能失灵,既有“限制与例外”条款亦存在适用难题。当前学界提出的以“非作品性使用”为代表的“根源性”权利限缩模式,以及以“文本与数据挖掘”为代表的“封闭式”权利限... 人工智能大模型训练引发著作权困境,传统作品许可使用机制面临功能失灵,既有“限制与例外”条款亦存在适用难题。当前学界提出的以“非作品性使用”为代表的“根源性”权利限缩模式,以及以“文本与数据挖掘”为代表的“封闭式”权利限制模式,虽在一定程度上能缓解困境,但因其理论局限和制度设计缺陷,难以真正有效平衡各方利益。相较而言,合理使用作为典型的“开放式”权益平衡模式,更具制度灵活性与适应性,可通过多层次评估框架弥补其操作困难与适用不确定性。与此同时,需辅以技术治理工具、训练数据透明度义务和合理补偿机制等创新措施,推动著作权法的渐进改革与完善,保障著作权人的合法权益,促进人工智能技术创新与应用的协调发展。 展开更多
关键词 人工智能 大模型 训练数据 著作权困境 适应性治理
在线阅读 下载PDF
知识冲突:大语言模型教育应用的挑战与应对 被引量:2
10
作者 陈向东 周春红 +1 位作者 刘泽民 张靖沅 《中国电化教育》 北大核心 2025年第3期1-10,共10页
大语言模型在教育应用领域所呈现的知识冲突问题,表现为概念定义、事实陈述和逻辑推理等层面的认知不一致性,这种认知断裂严重制约了其在跨学科探究学习、深度认知任务和个性化教学等场景中的适用性和支持能力。该文系统分析了知识冲突... 大语言模型在教育应用领域所呈现的知识冲突问题,表现为概念定义、事实陈述和逻辑推理等层面的认知不一致性,这种认知断裂严重制约了其在跨学科探究学习、深度认知任务和个性化教学等场景中的适用性和支持能力。该文系统分析了知识冲突的技术成因,包括训练数据中的噪声、参数化知识表示的局限、推理机制的缺陷、模型架构的先天不足以及外部知识的偏差,并探讨了这些因素对大语言模型教育应用的深层影响。针对这一挑战,论文提出了多维度的解决路径:通过数据增强优化知识表示,利用提示强化上下文的连贯,开发量规完善模型评估。同时,研究从社会文化的宏观视角进一步剖析了知识冲突的外部驱动因素,探讨如何在多元异质、动态演进的社会建构语境中,构建开放进取、兼容融通的智能教育应用体系。知识冲突的有效化解不仅可以显著提升大语言模型在教育场景中的应用价值,更将为人工智能在更广泛领域的可持续发展奠定坚实基础。研究旨在为解决这一问题提供理论洞见与实践指引,促进教育人工智能技术的可靠性、适应性和普及性的不断提升。 展开更多
关键词 大语言模型 知识冲突 教育应用 训练数据 社会建构
在线阅读 下载PDF
面向国产超算系统的大模型训练优化方法 被引量:1
11
作者 屈志勇 王晓光 +2 位作者 周纯葆 史源香 乔嘉伟 《数据与计算发展前沿(中英文)》 2025年第2期120-129,共10页
【目的】为了降低国产超算系统上的大模型训练开销,研发一套大模型训练优化方法。【方法】本文基于MPI与UCC形成一套通信后端,将进程组快速构建与低延迟集合通信相结合,在此基础上引入基于压缩的集合通信优化方法。【结果】通过在国产... 【目的】为了降低国产超算系统上的大模型训练开销,研发一套大模型训练优化方法。【方法】本文基于MPI与UCC形成一套通信后端,将进程组快速构建与低延迟集合通信相结合,在此基础上引入基于压缩的集合通信优化方法。【结果】通过在国产超算系统上多种配置下的大模型训练实验,本文提出的优化方法可以有效减少训练开销。【结论】实验结果证明了本文提出的大模型训练优化方法在减少训练开销方面的有效性。 展开更多
关键词 大语言模型 分布式训练 集合通信 数据压缩
在线阅读 下载PDF
新工科背景下基于数据驱动的数学建模课程教学模式改革与实践 被引量:5
12
作者 于冬梅 《高教学刊》 2025年第2期133-136,共4页
该文以数学建模课程为引领,以适应大数据驱动的创新人才培养的社会需求为抓手,从课程育人目标、模块化高阶提升的教学内容体系构建,以赛促学的数学建模科研训练体系构建、多维度教学模式改革等方面探讨数学建模课程教学改革与实践。强... 该文以数学建模课程为引领,以适应大数据驱动的创新人才培养的社会需求为抓手,从课程育人目标、模块化高阶提升的教学内容体系构建,以赛促学的数学建模科研训练体系构建、多维度教学模式改革等方面探讨数学建模课程教学改革与实践。强化数据驱动,提升建模能力,扩充交叉能力,将数学建模思想、数据思维深度融入数学建模教学改革,为数学建模优化创新人才培养模式提供新的途径和方法。 展开更多
关键词 数学建模课程 教学改革 数据驱动 科研训练 创新人才培养 新工科
在线阅读 下载PDF
公安院校新型警务人才培养赋能公安机关新质战斗力研究——以广东警官学院为例 被引量:10
13
作者 吴雪冬 刘彬 +2 位作者 赵晨阳 仲昭月 邢诒江 《中国人民警察大学学报》 2025年第1期84-90,共7页
公安院校是培养现代化新型警务人才的基地,为形成和提升公安机关新质战斗力提供高质量教育力量。围绕“专业+机制+大数据”新型警务人才培养模式,进一步强化公安院校政治能力,增强办学水平,锻造过硬队伍,深化学校内涵式建设,是当前公安... 公安院校是培养现代化新型警务人才的基地,为形成和提升公安机关新质战斗力提供高质量教育力量。围绕“专业+机制+大数据”新型警务人才培养模式,进一步强化公安院校政治能力,增强办学水平,锻造过硬队伍,深化学校内涵式建设,是当前公安院校构建现代化教育改革体系的重要课题。因此,要持续聚焦建立完善“专业+机制+大数据”新型警务运行模式,优化警务管理体制、运行机制,大力推进公安大数据智能化建设应用,加快形成和提升公安机关新质战斗力,积极推进公安工作现代化,实现公安教育工作整体提档升级。 展开更多
关键词 公安机关新质战斗力 人才培养模式 公安院校 专业 机制 大数据
在线阅读 下载PDF
AI赋能研究生个性化培养的应用与实践
14
作者 王泉 刘刚 +1 位作者 潘蓉 罗雪梅 《高等工程教育研究》 北大核心 2025年第6期13-18,38,共7页
在全球高等教育数字化转型的背景下,研究生培养面临规模化扩张与个性化需求之间的多重矛盾。本文基于DeepSeek模型,构建面向教育领域的专用大模型体系,通过多源数据融合、混合专家系统架构及动态学习策略,实现研究生培养全流程的智能化... 在全球高等教育数字化转型的背景下,研究生培养面临规模化扩张与个性化需求之间的多重矛盾。本文基于DeepSeek模型,构建面向教育领域的专用大模型体系,通过多源数据融合、混合专家系统架构及动态学习策略,实现研究生培养全流程的智能化支持。系统整合高校、外部及学生全生命周期数据,采用数据清洗融合技术与分层联邦学习框架,在实现多源异构数据高质量整合的同时保障隐私安全,构建动态知识调度与跨模态语义理解能力。基于西安电子科技大学人机交互与可穿戴技术重点实验室的实践验证,系统通过全流程智能化支持显著提升研究生培养效率与质量,在文献筛选、学术规范审查及科研创新等核心环节形成可复用的技术赋能路径。研究为教育大模型的垂直场景应用提供了技术范式,同时通过价值观对齐微调与伦理审查机制,为高等教育数字化转型中的技术赋能与伦理治理协同优化提供了创新路径。 展开更多
关键词 研究生培养 教育大模型 DeepSeek 多源数据 动态学习 隐私安全
原文传递
融合数据增强的互花米草入侵关联要素实体识别方法
15
作者 李忠伟 张文丰 +1 位作者 李永 李明轩 《计算机工程与设计》 北大核心 2025年第2期603-609,共7页
为解决互花米草入侵领域的训练数据匮乏,存在实体特征提取不准确的问题,提出一种融合数据增强的互花米草入侵关联要素识别深度学习模型。将训练数据采用同类实体随机交叉互换的方法进行数据增强,利用BERT预训练获得互花米草入侵关联要... 为解决互花米草入侵领域的训练数据匮乏,存在实体特征提取不准确的问题,提出一种融合数据增强的互花米草入侵关联要素识别深度学习模型。将训练数据采用同类实体随机交叉互换的方法进行数据增强,利用BERT预训练获得互花米草入侵关联要素的上下文信息;使用BiLSTM进一步提取特征,利用CRF得到实体的标签约束。通过对比不同模型在自建数据集上的精确率、召回率和F1分数,验证了该模型在互花米草入侵领域实体识别的有效性。 展开更多
关键词 命名实体识别 互花米草入侵 深度学习 数据增强 预训练模型 双向长短期记忆网络 条件随机场
在线阅读 下载PDF
KAACNN:融合知识图谱和预训练模型的短文本多标签分类方法
16
作者 陶冶 徐锴 +2 位作者 刘天宇 鲁超峰 王浩杰 《中文信息学报》 北大核心 2025年第3期96-106,共11页
短文本分类是自然语言处理的重要任务之一。与段落或文档不同,短文本不完全遵循语法规则,长度短并且没有足够的上下文信息,这给短文本分类带来了很大的挑战。该文提出一种结合知识图谱和预训练语言模型的短文本分类方法,一方面使用预训... 短文本分类是自然语言处理的重要任务之一。与段落或文档不同,短文本不完全遵循语法规则,长度短并且没有足够的上下文信息,这给短文本分类带来了很大的挑战。该文提出一种结合知识图谱和预训练语言模型的短文本分类方法,一方面使用预训练语言模型提高短文本的文本表示能力;另一方面从外部知识库中检索短文本概念知识,并利用注意力机制将其与短文本结合用于分类任务。此外,针对数据集类别分布不均衡的问题,该文提出基于领域类别知识图谱的数据增强方法。在三个公共数据集和一个汽车领域客户原话数据集上进行了实验,结果表明,引入知识图谱和预训练语言模型的分类方法优于目前先进的短文本分类方法,证明了外部知识库和预训练语言模型的先验知识在短文本分类中的有效性。 展开更多
关键词 知识图谱 注意力机制 预训练语言模型 数据增强 短文本分类
在线阅读 下载PDF
医学人工智能临床应用的伦理困境:从信息系统到机器人
17
作者 王兰英 郑睿 刘宪伟 《医学与哲学》 北大核心 2025年第9期24-29,共6页
分析从经典的影像诊断信息系统到智能决策、自主操作的手术机器人等不同自主程度的医学人工智能所面临的主要伦理困境,探讨数据三角定位导致的隐私泄露、数据价值的分配、针对罕见病与弱势群体的偏见、医学人工智能对医生角色的挑战和... 分析从经典的影像诊断信息系统到智能决策、自主操作的手术机器人等不同自主程度的医学人工智能所面临的主要伦理困境,探讨数据三角定位导致的隐私泄露、数据价值的分配、针对罕见病与弱势群体的偏见、医学人工智能对医生角色的挑战和对医患关系的重塑、患者个体获益不明确、责任归属不清晰等核心问题,提出按照自主程度对医学人工智能进行分级管理;医学伦理理论为医学人工智能的系统发展提供框架;教育引导医患双方正确认识和使用医学人工智能等治理对策。 展开更多
关键词 医学人工智能 数据伦理 医疗责任归属 人机关系 医患关系 医疗大规模预训练模型
暂未订购
教学阅片影响超声专业住院医师临床思维能力的纵向研究
18
作者 邓水平 李征毅 《深圳中西医结合杂志》 2025年第14期13-17,共5页
目的:探讨教学阅片对超声专业住院医师临床思维能力的影响。方法:选取深圳大学第一附属医院超声基地2021级、2022级及2023级共40名住院医师作为研究对象,分别收集每位住院医师3次临床思维考核的成绩作为结局变量,以每次考试时已接受培... 目的:探讨教学阅片对超声专业住院医师临床思维能力的影响。方法:选取深圳大学第一附属医院超声基地2021级、2022级及2023级共40名住院医师作为研究对象,分别收集每位住院医师3次临床思维考核的成绩作为结局变量,以每次考试时已接受培训的时间(time)及参加教学阅片的次数(num)作为水平1解释变量,住院医师的学历(edu)作为水平2解释变量,构建多水平模型。结果:以考试成绩作为结局变量建立空模型计算组内相关系数(ICC)=0.398,说明数据适合用多水平模型分析;在水平1分别加入time、num及同时加入time及num建立随机截距模型,水平1的残差方差分别减少了77.9%、66.3%和86.4%(P<0.05);在水平2加入edu变量后,多水平模型的固定效应显示time和num均能正向影响考试成绩(P<0.05),edu对截距的差异有显著影响,但和time及num没有交互作用(P>0.05)。结论:教学阅片可以显著提高超声专业住院医师临床思维能力。 展开更多
关键词 教学阅片 临床思维 住院医师规范化培训 多水平模型 纵向数据
暂未订购
基于数据挖掘模型的体育训练模式构建与优化研究
19
作者 梁西淋 《中国科技论文在线精品论文》 2025年第1期1-3,共3页
在新时代背景下,体育训练领域积累了海量数据,但其中高价值数据的挖掘仍显不足。当前,体育训练模式的选择与应用主要依赖于教练的经验和主观判断,缺乏科学化和系统化的决策支持。本研究借助数据挖掘技术,旨在从海量体育训练数据中发现... 在新时代背景下,体育训练领域积累了海量数据,但其中高价值数据的挖掘仍显不足。当前,体育训练模式的选择与应用主要依赖于教练的经验和主观判断,缺乏科学化和系统化的决策支持。本研究借助数据挖掘技术,旨在从海量体育训练数据中发现训练模式与训练目标之间的潜在关联,为体育训练模式的选择、训练指标的监测以及训练效果的预测提供科学依据。本文提出了一种基于粗糙集和决策树的体育训练模式模型。通过数据预处理和模型分析,该模型的准确率在78.5%到98.3%之间,显著优于传统的神经网络模型和聚类分析模型。研究结果表明,该模型具有较高的准确性和良好的应用价值,能够为体育训练的科学决策提供有力支持。 展开更多
关键词 信息处理技术 数据挖掘模型 体育训练模式 模型构建
在线阅读 下载PDF
基于神经网络的滚动轴承故障诊断数据集构建方法
20
作者 郭正刚 焦体曌 +2 位作者 牛宇鸣 郝婉秀 邹玮 《制造业自动化》 2025年第11期51-59,共9页
滚动轴承故障诊断模型性能高度依赖训练数据集,在构建模型训练数据集过程中,实验数据精度高但工况覆盖有限,仿真数据工况覆盖广但精度不足。为此,提出一种融合实验-仿真数据的补偿式神经网络方法,该方法利用仿真数据训练的特征预测模块... 滚动轴承故障诊断模型性能高度依赖训练数据集,在构建模型训练数据集过程中,实验数据精度高但工况覆盖有限,仿真数据工况覆盖广但精度不足。为此,提出一种融合实验-仿真数据的补偿式神经网络方法,该方法利用仿真数据训练的特征预测模块拓宽工况覆盖,通过实验数据驱动的残差补偿模块校正误差,有效降低了仿真与实验数据间的偏差。实验表明,该方法在生成多工况样本的同时,实验与仿真数据特征值间的均方根误差大小最高由8.56降至0.53,显著提升了样本精度,为构建覆盖广泛工况的高可靠性训练数据集提供了有效技术途径。 展开更多
关键词 故障诊断 训练数据集 数据融合 神经网络模型 滚动轴承
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部