期刊文献+
共找到7,726篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
1
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks 被引量:1
2
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) image analysis image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
A Custom Medical Image De-identification System Based on Data Privacy
3
作者 ZHANG Jingchen WANG Jiayang +3 位作者 ZHAO Yuanzhi ZHOU Wei LUO Wei QIAN Qing 《数据与计算发展前沿(中英文)》 2025年第3期122-135,共14页
【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data... 【Objective】Medical imaging data has great value,but it contains a significant amount of sensitive information about patients.At present,laws and regulations regarding to the de-identification of medical imaging data are not clearly defined around the world.This study aims to develop a tool that meets compliance-driven desensitization requirements tailored to diverse research needs.【Methods】To enhance the security of medical image data,we designed and implemented a DICOM format medical image de-identification system on the Windows operating system.【Results】Our custom de-identification system is adaptable to the legal standards of different countries and can accommodate specific research demands.The system offers both web-based online and desktop offline de-identification capabilities,enabling customization of de-identification rules and facilitating batch processing to improve efficiency.【Conclusions】This medical image de-identification system robustly strengthens the stewardship of sensitive medical data,aligning with data security protection requirements while facilitating the sharing and utilization of medical image data.This approach unlocks the intrinsic value inherent in such datasets. 展开更多
关键词 de-identification system medical image data privacy DICOM data sharing
暂未订购
A Novel Data-Annotated Label Collection and Deep-Learning Based Medical Image Segmentation in Reversible Data Hiding Domain
4
作者 Lord Amoah Jinwei Wang Bernard-Marie Onzo 《Computer Modeling in Engineering & Sciences》 2025年第5期1635-1660,共26页
Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of... Medical image segmentation,i.e.,labeling structures of interest in medical images,is crucial for disease diagnosis and treatment in radiology.In reversible data hiding in medical images(RDHMI),segmentation consists of only two regions:the focal and nonfocal regions.The focal region mainly contains information for diagnosis,while the nonfocal region serves as the monochrome background.The current traditional segmentation methods utilized in RDHMI are inaccurate for complex medical images,and manual segmentation is time-consuming,poorly reproducible,and operator-dependent.Implementing state-of-the-art deep learning(DL)models will facilitate key benefits,but the lack of domain-specific labels for existing medical datasets makes it impossible.To address this problem,this study provides labels of existing medical datasets based on a hybrid segmentation approach to facilitate the implementation of DL segmentation models in this domain.First,an initial segmentation based on a 33 kernel is performed to analyze×identified contour pixels before classifying pixels into focal and nonfocal regions.Then,several human expert raters evaluate and classify the generated labels into accurate and inaccurate labels.The inaccurate labels undergo manual segmentation by medical practitioners and are scored based on a hierarchical voting scheme before being assigned to the proposed dataset.To ensure reliability and integrity in the proposed dataset,we evaluate the accurate automated labels with manually segmented labels by medical practitioners using five assessment metrics:dice coefficient,Jaccard index,precision,recall,and accuracy.The experimental results show labels in the proposed dataset are consistent with the subjective judgment of human experts,with an average accuracy score of 94%and dice coefficient scores between 90%-99%.The study further proposes a ResNet-UNet with concatenated spatial and channel squeeze and excitation(scSE)architecture for semantic segmentation to validate and illustrate the usefulness of the proposed dataset.The results demonstrate the superior performance of the proposed architecture in accurately separating the focal and nonfocal regions compared to state-of-the-art architectures.Dataset information is released under the following URL:https://www.kaggle.com/lordamoah/datasets(accessed on 31 March 2025). 展开更多
关键词 Reversible data hiding medical image segmentation medical image dataset deep learning
在线阅读 下载PDF
Pre-trained SAM as data augmentation for image segmentation
5
作者 Junjun Wu Yunbo Rao +1 位作者 Shaoning Zeng Bob Zhang 《CAAI Transactions on Intelligence Technology》 2025年第1期268-282,共15页
Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in ord... Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation. 展开更多
关键词 data augmentation image segmentation large model segment anything model
在线阅读 下载PDF
General Improvement of Image Interpolation-Based Data Hiding Methods Using Multiple-Based Number Conversion
6
作者 Da-Chun Wu Bing-Han 《Computer Modeling in Engineering & Sciences》 2025年第7期535-580,共46页
Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduce... Data hiding methods involve embedding secret messages into cover objects to enable covert communication in a way that is difficult to detect.In data hiding methods based on image interpolation,the image size is reduced and then enlarged through interpolation,followed by the embedding of secret data into the newly generated pixels.A general improving approach for embedding secret messages is proposed.The approach may be regarded a general model for enhancing the data embedding capacity of various existing image interpolation-based data hiding methods.This enhancement is achieved by expanding the range of pixel values available for embedding secret messages,removing the limitations of many existing methods,where the range is restricted to powers of two to facilitate the direct embedding of bit-based messages.This improvement is accomplished through the application of multiple-based number conversion to the secret message data.The method converts the message bits into a multiple-based number and uses an algorithm to embed each digit of this number into an individual pixel,thereby enhancing the message embedding efficiency,as proved by a theorem derived in this study.The proposed improvement method has been tested through experiments on three well-known image interpolation-based data hiding methods.The results show that the proposed method can enhance the three data embedding rates by approximately 14%,13%,and 10%,respectively,create stego-images with good quality,and resist RS steganalysis attacks.These experimental results indicate that the use of the multiple-based number conversion technique to improve the three interpolation-based methods for embedding secret messages increases the number of message bits embedded in the images.For many image interpolation-based data hiding methods,which use power-of-two pixel-value ranges for message embedding,other than the three tested ones,the proposed improvement method is also expected to be effective for enhancing their data embedding capabilities. 展开更多
关键词 data hiding image interpolation interpolation-based hiding methods steganography multiple-based number conversion
在线阅读 下载PDF
Enhancing Medical Image Classification with BSDA-Mamba:Integrating Bayesian Random Semantic Data Augmentation and Residual Connections
7
作者 Honglin Wang Yaohua Xu Cheng Zhu 《Computers, Materials & Continua》 2025年第6期4999-5018,共20页
Medical image classification is crucial in disease diagnosis,treatment planning,and clinical decisionmaking.We introduced a novel medical image classification approach that integrates Bayesian Random Semantic Data Aug... Medical image classification is crucial in disease diagnosis,treatment planning,and clinical decisionmaking.We introduced a novel medical image classification approach that integrates Bayesian Random Semantic Data Augmentation(BSDA)with a Vision Mamba-based model for medical image classification(MedMamba),enhanced by residual connection blocks,we named the model BSDA-Mamba.BSDA augments medical image data semantically,enhancing the model’s generalization ability and classification performance.MedMamba,a deep learning-based state space model,excels in capturing long-range dependencies in medical images.By incorporating residual connections,BSDA-Mamba further improves feature extraction capabilities.Through comprehensive experiments on eight medical image datasets,we demonstrate that BSDA-Mamba outperforms existing models in accuracy,area under the curve,and F1-score.Our results highlight BSDA-Mamba’s potential as a reliable tool for medical image analysis,particularly in handling diverse imaging modalities from X-rays to MRI.The open-sourcing of our model’s code and datasets,will facilitate the reproduction and extension of our work. 展开更多
关键词 Deep learning medical image classification data augmentation visual state space model
在线阅读 下载PDF
Application of Image Enhancement Techniques to Potential Field Data 被引量:6
8
作者 张丽莉 郝天珧 +1 位作者 吴健生 王家林 《Applied Geophysics》 SCIE CSCD 2005年第3期145-152,i0001,共9页
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec... In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement. 展开更多
关键词 image enhancement histogram equalization Radon transform and potential field data
在线阅读 下载PDF
Extraction of Desertification Information in Hulun Buir Based on MODIS Image Data 被引量:4
9
作者 孟翔冲 姜琦刚 +4 位作者 齐霞 王斌 吴阳春 李根军 杨佳佳 《Agricultural Science & Technology》 CAS 2012年第1期233-237,共5页
[Objective] To extract desertification information of Hulun Buir region based on MODIS image data. [Method] Based on MODIS image data with the spatial res- olution of 1 km, 5 indicators which could reflect different d... [Objective] To extract desertification information of Hulun Buir region based on MODIS image data. [Method] Based on MODIS image data with the spatial res- olution of 1 km, 5 indicators which could reflect different desertification features were selected to conduct inversion. The desertification information of Hulun Buir region was extracted by decision tree classification. [Result] The desertification area of Hu- lun Buir region is 33 862 km2, accounting for 24% of the total area, and it is mainly dominated by sandiness desertification. Though field verification and mining point validation of high-resolution interpretation data, the overall accuracy of this evaluation is above 89%. [Conclusion] Evaluation method used in this study is not only effectively for large scale regional desertification monitoring but also has a better evaluation performance. 展开更多
关键词 DESERTIFICATION MODiS image data Remote sensing Decision tree Inversion
在线阅读 下载PDF
Reservoir heterogeneity and fracture parameter determination using electrical image logs and petrophysical data(a case study, carbonate Asmari Formation, Zagros Basin, SW Iran) 被引量:13
10
作者 Ghasem Aghli Reza Moussavi-Harami Ruhangiz Mohammadian 《Petroleum Science》 SCIE CAS CSCD 2020年第1期51-69,共19页
Assessment of reservoir and fracture parameters is necessary to optimize oil production,especially in heterogeneous reservoirs.Core and image logs are regarded as two of the best methods for this aim.However,due to co... Assessment of reservoir and fracture parameters is necessary to optimize oil production,especially in heterogeneous reservoirs.Core and image logs are regarded as two of the best methods for this aim.However,due to core limitations,using image log is considered as the best method.This study aims to use electrical image logs in the carbonate Asmari Formation reservoir in Zagros Basin,SW Iran,in order to evaluate natural fractures,porosity system,permeability profile and heterogeneity index and accordingly compare the results with core and well data.The results indicated that the electrical image logs are reliable for evaluating fracture and reservoir parameters,when there is no core available for a well.Based on the results from formation micro-imager(FMI)and electrical micro-imager(EMI),Asmari was recognized as a completely fractured reservoir in studied field and the reservoir parameters are mainly controlled by fractures.Furthermore,core and image logs indicated that the secondary porosity varies from 0%to 10%.The permeability indicator indicates that zones 3 and 5 have higher permeability index.Image log permeability index shows a very reasonable permeability profile after scaling against core and modular dynamics tester mobility,mud loss and production index which vary between 1 and 1000 md.In addition,no relationship was observed between core porosity and permeability,while the permeability relied heavily on fracture aperture.Therefore,fracture aperture was considered as the most important parameter for the determination of permeability.Sudden changes were also observed at zones 1-1 and 5 in the permeability trend,due to the high fracture aperture.It can be concluded that the electrical image logs(FMI and EMI)are usable for evaluating both reservoir and fracture parameters in wells with no core data in the Zagros Basin,SW Iran. 展开更多
关键词 FMI and EMI image LOGS Porosity and permeability FRACTURES Core data Heterogeneity index
原文传递
Automated Rock Detection and Shape Analysis from Mars Rover Imagery and 3D Point Cloud Data 被引量:10
11
作者 邸凯昌 岳宗玉 +1 位作者 刘召芹 王树良 《Journal of Earth Science》 SCIE CAS CSCD 2013年第1期125-135,共11页
A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken b... A new object-oriented method has been developed for the extraction of Mars rocks from Mars rover data. It is based on a combination of Mars rover imagery and 3D point cloud data. First, Navcam or Pancam images taken by the Mars rovers are segmented into homogeneous objects with a mean-shift algorithm. Then, the objects in the segmented images are classified into small rock candidates, rock shadows, and large objects. Rock shadows and large objects are considered as the regions within which large rocks may exist. In these regions, large rock candidates are extracted through ground-plane fitting with the 3D point cloud data. Small and large rock candidates are combined and postprocessed to obtain the final rock extraction results. The shape properties of the rocks (angularity, circularity, width, height, and width-height ratio) have been calculated for subsequent ~eological studies. 展开更多
关键词 Mars rover rock extraction rover image 3D point cloud data.
原文传递
Empirical data decomposition and its applications in image compression 被引量:2
12
作者 Deng Jiaxian Wu Xiaoqin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期164-170,共7页
A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, i... A nonlinear data analysis algorithm, namely empirical data decomposition (EDD) is proposed, which can perform adaptive analysis of observed data. Analysis filter, which is not a linear constant coefficient filter, is automatically determined by observed data, and is able to implement multi-resolution analysis as wavelet transform. The algorithm is suitable for analyzing non-stationary data and can effectively wipe off the relevance of observed data. Then through discussing the applications of EDD in image compression, the paper presents a 2-dimension data decomposition framework and makes some modifications of contexts used by Embedded Block Coding with Optimized Truncation (EBCOT) . Simulation results show that EDD is more suitable for non-stationary image data compression. 展开更多
关键词 image processing image compression Empirical data decomposition NON-STATIONARY NONLINEAR data decomposition framework
在线阅读 下载PDF
Reversible Data Hiding in Encrypted Image Based on Block Classification Permutation 被引量:4
13
作者 Qun Mo Heng Yao +2 位作者 Fang Cao Zheng Chang Chuan Qin 《Computers, Materials & Continua》 SCIE EI 2019年第4期119-133,共15页
Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on blo... Recently,reversible data hiding in encrypted image(RDHEI)has attracted extensive attention,which can be used in secure cloud computing and privacy protection effectively.In this paper,a novel RDHEI scheme based on block classification and permutation is proposed.Content owner first divides original image into non-overlapping blocks and then set a threshold to classify these blocks into smooth and non-smooth blocks respectively.After block classification,content owner utilizes a specific encryption method,including stream cipher encryption and block permutation to protect image content securely.For the encrypted image,data hider embeds additional secret information in the most significant bits(MSB)of the encrypted pixels in smooth blocks and the final marked image can be obtained.At the receiver side,secret data will be extracted correctly with data-hiding key.When receiver only has encryption key,after stream cipher decryption,block scrambling decryption and MSB error prediction with threshold,decrypted image will be achieved.When data hiding key and encryption key are both obtained,receiver can find the smooth and non-smooth blocks correctly and MSB in smooth blocks will be predicted correctly,hence,receiver can recover marked image losslessly.Experimental results demonstrate that our scheme can achieve better rate-distortion performance than some of state-of-the-art schemes. 展开更多
关键词 Reversible data hiding image encryption image recovery
在线阅读 下载PDF
An Advanced Image Processing Technique for Backscatter-Electron Data by Scanning Electron Microscopy for Microscale Rock Exploration 被引量:2
14
作者 Zhaoliang Hou Kunfeng Qiu +1 位作者 Tong Zhou Yiwei Cai 《Journal of Earth Science》 SCIE CAS CSCD 2024年第1期301-305,共5页
Backscatter electron analysis from scanning electron microscopes(BSE-SEM)produces high-resolution image data of both rock samples and thin-sections,showing detailed structural and geochemical(mineralogical)information... Backscatter electron analysis from scanning electron microscopes(BSE-SEM)produces high-resolution image data of both rock samples and thin-sections,showing detailed structural and geochemical(mineralogical)information.This allows an in-depth exploration of the rock microstructures and the coupled chemical characteristics in the BSE-SEM image to be made using image processing techniques.Although image processing is a powerful tool for revealing the more subtle data“hidden”in a picture,it is not a commonly employed method in geoscientific microstructural analysis.Here,we briefly introduce the general principles of image processing,and further discuss its application in studying rock microstructures using BSE-SEM image data. 展开更多
关键词 image processing rock microstructures electron-based imaging data mining
原文传递
High Capacity Data Hiding in Encrypted Image Based on Compressive Sensing for Nonequivalent Resources 被引量:2
15
作者 Di Xiao Jia Liang +2 位作者 Qingqing Ma Yanping Xiang Yushu Zhang 《Computers, Materials & Continua》 SCIE EI 2019年第1期1-13,共13页
To fulfill the requirements of data security in environments with nonequivalent resources,a high capacity data hiding scheme in encrypted image based on compressive sensing(CS)is proposed by fully utilizing the adapta... To fulfill the requirements of data security in environments with nonequivalent resources,a high capacity data hiding scheme in encrypted image based on compressive sensing(CS)is proposed by fully utilizing the adaptability of CS to nonequivalent resources.The original image is divided into two parts:one part is encrypted with traditional stream cipher;the other part is turned to the prediction error and then encrypted based on CS to vacate room simultaneously.The collected non-image data is firstly encrypted with simple stream cipher.For data security management,the encrypted non-image data is then embedded into the encrypted image,and the scrambling operation is used to further improve security.Finally,the original image and non-image data can be separably recovered and extracted according to the request from the valid users with different access rights.Experimental results demonstrate that the proposed scheme outperforms other data hiding methods based on CS,and is more suitable for nonequivalent resources. 展开更多
关键词 COMPRESSIVE SENSING encrypted image data hiding PREDICTION ERROR nonequivalent RESOURCES
在线阅读 下载PDF
Image reconstruction for cone-beam computed tomography using total p-variation plus Kullback-Leibler data divergence 被引量:1
16
作者 蔡爱龙 李磊 +4 位作者 王林元 闫镔 郑治中 张瀚铭 胡国恩 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第7期461-473,共13页
Accurate reconstruction from a reduced data set is highly essential for computed tomography in fast and/or low dose imaging applications. Conventional total variation(TV)-based algorithms apply the L1 norm-based pen... Accurate reconstruction from a reduced data set is highly essential for computed tomography in fast and/or low dose imaging applications. Conventional total variation(TV)-based algorithms apply the L1 norm-based penalties, which are not as efficient as Lp(0〈p〈1) quasi-norm-based penalties. TV with a p-th power-based norm can serve as a feasible alternative of the conventional TV, which is referred to as total p-variation(TpV). This paper proposes a TpV-based reconstruction model and develops an efficient algorithm. The total p-variation and Kullback-Leibler(KL) data divergence, which has better noise suppression capability compared with the often-used quadratic term, are combined to build the reconstruction model. The proposed algorithm is derived by the alternating direction method(ADM) which offers a stable, efficient, and easily coded implementation. We apply the proposed method in the reconstructions from very few views of projections(7 views evenly acquired within 180°). The images reconstructed by the new method show clearer edges and higher numerical accuracy than the conventional TV method. Both the simulations and real CT data experiments indicate that the proposed method may be promising for practical applications. 展开更多
关键词 image reconstruction total p-variation minimization Kullback-Leibler data divergence p-shrinkage mapping
原文传递
Encryption with Image Steganography Based Data Hiding Technique in IIoT Environment 被引量:2
17
作者 Mahmoud Ragab Samah Alshehri +3 位作者 Hani A.Alhadrami Faris Kateb Ehab Bahaudien Ashary SAbdel-khalek 《Computers, Materials & Continua》 SCIE EI 2022年第7期1323-1338,共16页
Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication w... Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security. 展开更多
关键词 IIoT SECURITY data hiding technique image steganography ENCRYPTION secure communication
在线阅读 下载PDF
Principle and realization method of tunnel deformation detection based on image recognition and data transmission technology 被引量:3
18
作者 Xiong Xiaolei Gao Song +2 位作者 Chen Haiyan Zhou Qicai He Ziqiang 《Engineering Sciences》 EI 2010年第4期23-25,共3页
To detect the deformation of the tunnel structure based on image sensor networks is the advanced study and application of spatial sensor technology. For the vertical settlement of metro tunnel caused by internal and e... To detect the deformation of the tunnel structure based on image sensor networks is the advanced study and application of spatial sensor technology. For the vertical settlement of metro tunnel caused by internal and external stress after its long period operation, the overall scheme and measuring principle of tunnel deformation detection system is in- troduced. The image data acquisition and processing of detection target are achieved by the cooperative work of image sensor, ARM embedded system. RS485 communication achieves the data transmission between ARM memory and host computer. The database system in station platform analyses the detection data and obtains the deformation state of tunnel inner wall, which makes it possible to early-warn the tunnel deformation and take preventive measures in time. 展开更多
关键词 image sensor deformation detection image acquisition and processing data transmission
在线阅读 下载PDF
Influence of image data set noise on classification with a convolutional network 被引量:2
19
作者 Wei Tao Shuai Liguo Zhang Yulu 《Journal of Southeast University(English Edition)》 EI CAS 2019年第1期51-56,共6页
To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different typ... To evaluate the influence of data set noise, the network in network(NIN) model is introduced and the negative effects of different types and proportions of noise on deep convolutional models are studied. Different types and proportions of data noise are added to two reference data sets, Cifar-10 and Cifar-100. Then, this data containing noise is used to train deep convolutional models and classify the validation data set. The experimental results show that the noise in the data set has obvious adverse effects on deep convolutional network classification models. The adverse effects of random noise are small, but the cross-category noise among categories can significantly reduce the recognition ability of the model. Therefore, a solution is proposed to improve the quality of the data sets that are mixed into a single noise category. The model trained with a data set containing noise is used to evaluate the current training data and reclassify the categories of the anomalies to form a new data set. Repeating the above steps can greatly reduce the noise ratio, so the influence of cross-category noise can be effectively avoided. 展开更多
关键词 image recognition data set noise deep convolutional network filtering of cross-category noise
在线阅读 下载PDF
Retrieving analog images from a scanning electron microscopewith a synchronous data acquisition method 被引量:2
20
作者 BAI Jiang-hua 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第4期329-334,共6页
In this work,an old scanning electron microscope(SEM)is refurbished to enhance its image processing capability.How to digitally sample and process an analog image is also presented.An NI PCI-6259 multiple input/output... In this work,an old scanning electron microscope(SEM)is refurbished to enhance its image processing capability.How to digitally sample and process an analog image is also presented.An NI PCI-6259 multiple input/output data acquisition(DAQ)board is used to acquire signals originally being sent to an analog display,and then convert the signals into a digital image.Two output channels are used for raster scan of the horizontal and verticle axes of the image buffer,while one input channel is used to read the brightness signals at various coordinate points.Synchronous method is used to maximize the DAQ speed.Finally,the digitally buffered images are read out to display and saved in a hard drive.The hardware and software designs of this work are explained in great detail,which can serve as a very good example for fast synchronous DAQ,advanced virtual instrument design and structural driver programming with LabVIEW. 展开更多
关键词 scanning electron microscope analog image display raster scan synchronous data acquisiotion(DAQ) LABVIEW
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部