期刊文献+
共找到5,008篇文章
< 1 2 250 >
每页显示 20 50 100
Decomposition for Large-Scale Optimization Problems:An Overview
1
作者 Thai Doan CHUONG Chen LIU Xinghuo YU 《Artificial Intelligence Science and Engineering》 2025年第3期157-174,共18页
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti... Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives. 展开更多
关键词 decomposition methods nonlinear optimization large-scale problems computational intelligence
在线阅读 下载PDF
Optimization design of launch window for large-scale constellation using improved genetic algorithm
2
作者 LIU Yue HOU Xiangzhen +3 位作者 CAI Xi LI Minghu CHANG Xinya WANG Miao 《先进小卫星技术(中英文)》 2025年第4期23-32,共10页
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ... The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes. 展开更多
关键词 deployment strategy optimization launching schedule constraints improved genetic algorithm large-scale constellation
在线阅读 下载PDF
Exploring Optimization Strategies for Island Power Grid Line Layout Oriented Towards Large-Scale Distributed Renewable Energy Integration
3
作者 Zhenhuan Song Wenxin Liu 《Proceedings of Business and Economic Studies》 2025年第4期495-502,共8页
The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context ... The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context of large-scale distributed renewable energy integration into the power grid,conventional island power grid line layouts can no longer meet actual demands.It is necessary to combine the operational characteristics of island power systems and historical load data to perform load forecasting,thereby generating power grid line layout paths.This article focuses on large-scale distributed renewable energy integration,summarizing optimization strategies for island power grid line layouts,and providing a solid guarantee for the safe and stable operation of island power systems. 展开更多
关键词 Island power grid Line layout optimization strategy Distributed renewable energy large-scale
在线阅读 下载PDF
A Novel Variable-Fidelity Kriging Surrogate Model Based on Global Optimization for Black-Box Problems
4
作者 Yi Guan Pengpeng Zhi Zhonglai Wang 《Computer Modeling in Engineering & Sciences》 2025年第9期3343-3368,共26页
Variable-fidelity(VF)surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity(HF)simulations with reduced computational power.A key challen... Variable-fidelity(VF)surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity(HF)simulations with reduced computational power.A key challenge to building a VF model is devising an adaptive model updating strategy that jointly selects additional low-fidelity(LF)and/or HF samples.The additional samples must enhance the model accuracy while maximizing the computational efficiency.We propose ISMA-VFEEI,a global optimization framework that integrates an Improved Slime-Mould Algorithm(ISMA)and a Variable-Fidelity Expected Extension Improvement(VFEEI)learning function to construct a VF surrogate model efficiently.First,A cost-aware VFEEI function guides the adaptive LF/HF sampling by explicitly incorporating evaluation cost and existing sample proximity.Second,ISMA is employed to solve the resulting non-convex optimization problem and identify global optimal infill points for model enhancement.The efficacy of ISMA-VFEEI is demonstrated through six numerical benchmarks and one real-world engineering case study.The engineering case study of a high-speed railway Electric Multiple Unit(EMU),the optimization objective of a sanding device attained a minimum value of 1.546 using only 20 HF evaluations,outperforming all the compared methods. 展开更多
关键词 global optimization KRIGING variable-fidelity model slime mould algorithm expected improvement
在线阅读 下载PDF
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
5
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
在线阅读 下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
6
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
在线阅读 下载PDF
Large-Scale Multi-Objective Optimization Algorithm Based on Weighted Overlapping Grouping of Decision Variables
7
作者 Liang Chen Jingbo Zhang +2 位作者 Linjie Wu Xingjuan Cai Yubin Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期363-383,共21页
The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the intera... The large-scale multi-objective optimization algorithm(LSMOA),based on the grouping of decision variables,is an advanced method for handling high-dimensional decision variables.However,in practical problems,the interaction among decision variables is intricate,leading to large group sizes and suboptimal optimization effects;hence a large-scale multi-objective optimization algorithm based on weighted overlapping grouping of decision variables(MOEAWOD)is proposed in this paper.Initially,the decision variables are perturbed and categorized into convergence and diversity variables;subsequently,the convergence variables are subdivided into groups based on the interactions among different decision variables.If the size of a group surpasses the set threshold,that group undergoes a process of weighting and overlapping grouping.Specifically,the interaction strength is evaluated based on the interaction frequency and number of objectives among various decision variables.The decision variable with the highest interaction in the group is identified and disregarded,and the remaining variables are then reclassified into subgroups.Finally,the decision variable with the strongest interaction is added to each subgroup.MOEAWOD minimizes the interactivity between different groups and maximizes the interactivity of decision variables within groups,which contributed to the optimized direction of convergence and diversity exploration with different groups.MOEAWOD was subjected to testing on 18 benchmark large-scale optimization problems,and the experimental results demonstrate the effectiveness of our methods.Compared with the other algorithms,our method is still at an advantage. 展开更多
关键词 Decision variable grouping large-scale multi-objective optimization algorithms weighted overlapping grouping direction-guided evolution
在线阅读 下载PDF
Evolutionary Particle Swarm Optimization Algorithm Based on Collective Prediction for Deployment of Base Stations
8
作者 Jiaying Shen Donglin Zhu +5 位作者 Yujia Liu Leyi Wang Jialing Hu Zhaolong Ouyang Changjun Zhou Taiyong Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期345-369,共25页
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I... The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO. 展开更多
关键词 Particle swarm optimization effective coverage area global optimization base station deployment
在线阅读 下载PDF
A Modified PRP-HS Hybrid Conjugate Gradient Algorithm for Solving Unconstrained Optimization Problems
9
作者 LI Xiangli WANG Zhiling LI Binglan 《应用数学》 北大核心 2025年第2期553-564,共12页
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien... In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient. 展开更多
关键词 Conjugate gradient method Unconstrained optimization Sufficient descent condition global convergence
在线阅读 下载PDF
A parallel chemical reaction optimization method based on preference-based multi-objective expected improvement
10
作者 Mingqi Jiang Zhuo Wang +1 位作者 Zhijian Sun Jian Wang 《Chinese Journal of Chemical Engineering》 2025年第2期82-92,共11页
Optimizing chemical reaction parameters is an expensive optimization problem. Each experiment takes a long time and the raw materials are expensive. High-throughput methods combined with the parallel Efficient Global ... Optimizing chemical reaction parameters is an expensive optimization problem. Each experiment takes a long time and the raw materials are expensive. High-throughput methods combined with the parallel Efficient Global Optimization algorithm can effectively improve the efficiency of the search for optimal chemical reaction parameters. In this paper, we propose a multi-objective populated expectation improvement criterion for providing multiple near-optimal solutions in high-throughput chemical reaction optimization. An l-NSGA2, employing the Pseudo-power transformation method, is utilized to maximize the expected improvement acquisition function, resulting in a Pareto solution set comprising multiple designs. The approximation of the cost function can be calculated by the ensemble Gaussian process model, which greatly reduces the cost of the exact Gaussian process model. The proposed optimization method was tested on a SNAr benchmark problem. The results show that compared with the previous high-throughput experimental methods, our method can reduce the number of experiments by almost half. At the same time, it theoretically enhances temporal and spatial yields while minimizing by-product formation, potentially guiding real chemical reaction optimization. 展开更多
关键词 Algorithm Chemical reaction Computer simulation Efficient global optimization Machine learning
在线阅读 下载PDF
ITMF Survey:Global textile industry struggled but kept resilient optimism
11
《China Textile》 2025年第2期10-10,共1页
The International Textile Manufac-turers Federation(ITMF),has releasedthe results of its Global Textile IndustrySurvey(GTIS)for March 2025.Thissurvey,conducted regularly across allkey regions and segments of the texti... The International Textile Manufac-turers Federation(ITMF),has releasedthe results of its Global Textile IndustrySurvey(GTIS)for March 2025.Thissurvey,conducted regularly across allkey regions and segments of the textilevalue chain,revealed a complex pictureof a deteriorated business situation,cau-tious op timism,regional divergence,andongoing structural challenges. 展开更多
关键词 international textile manufacturers federation gtis business situation global textile industry regional divergence MARCH structural challenges resilient optimism
在线阅读 下载PDF
Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties
12
作者 向依婕 高思妍 +4 位作者 王春雷 方海平 段香梅 郑益峰 张越宇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期429-435,共7页
Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conver... Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds. 展开更多
关键词 PHOTOCATALYSIS first principles calculations multi-objective global optimization
原文传递
Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization 被引量:6
13
作者 Ye Tian Haowen Chen +3 位作者 Haiping Ma Xingyi Zhang Kay Chen Tan Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1801-1817,共17页
Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms a... Large-scale multi-objective optimization problems(LSMOPs)pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces.While evolutionary algorithms are good at solving small-scale multi-objective optimization problems,they are criticized for low efficiency in converging to the optimums of LSMOPs.By contrast,mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems,but they have difficulties in finding diverse solutions for LSMOPs.Currently,how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored.In this paper,a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method.On the one hand,conjugate gradients and differential evolution are used to update different decision variables of a set of solutions,where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front.On the other hand,objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions,and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent.In comparison with state-of-the-art evolutionary algorithms,mathematical programming methods,and hybrid algorithms,the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs. 展开更多
关键词 Conjugate gradient differential evolution evolutionary computation large-scale multi-objective optimization mathematical programming
在线阅读 下载PDF
Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses 被引量:6
14
作者 Wen-Jing Hong Peng Yang Ke Tang 《International Journal of Automation and computing》 EI CSCD 2021年第2期155-169,共15页
Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged a... Large-scale multi-objective optimization problems(MOPs)that involve a large number of decision variables,have emerged from many real-world applications.While evolutionary algorithms(EAs)have been widely acknowledged as a mainstream method for MOPs,most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables.More recently,it has been reported that traditional multi-objective EAs(MOEAs)suffer severe deterioration with the increase of decision variables.As a result,and motivated by the emergence of real-world large-scale MOPs,investigation of MOEAs in this aspect has attracted much more attention in the past decade.This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles.From the key difficulties of the large-scale MOPs,the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables.From the perspective of methodology,the large-scale MOEAs are categorized into three classes and introduced respectively:divide and conquer based,dimensionality reduction based and enhanced search-based approaches.Several future research directions are also discussed. 展开更多
关键词 large-scale multi-objective optimization high-dimensional search space evolutionary computation evolutionary algorithms SCALABILITY
原文传递
Modified Augmented Lagrange Multiplier Methods for Large-Scale Chemical Process Optimization 被引量:6
15
作者 梁昔明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期167-172,共6页
Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studi... Chemical process optimization can be described as large-scale nonlinear constrained minimization. The modified augmented Lagrange multiplier methods (MALMM) for large-scale nonlinear constrained minimization are studied in this paper. The Lagrange function contains the penalty terms on equality and inequality constraints and the methods can be applied to solve a series of bound constrained sub-problems instead of a series of unconstrained sub-problems. The steps of the methods are examined in full detail. Numerical experiments are made for a variety of problems, from small to very large-scale, which show the stability and effectiveness of the methods in large-scale problems. 展开更多
关键词 modified augmented Lagrange multiplier methods chemical engineering optimization large-scale non- linear constrained minimization numerical experiment
在线阅读 下载PDF
Applying Analytical Derivative and Sparse Matrix Techniques to Large-Scale Process Optimization Problems 被引量:2
16
作者 仲卫涛 邵之江 +1 位作者 张余岳 钱积新 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第3期212-217,共6页
The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Com... The performance of analytical derivative and sparse matrix techniques applied to a traditional dense sequential quadratic programming (SQP) is studied, and the strategy utilizing those techniques is also presented.Computational results on two typical chemical optimization problems demonstrate significant enhancement in efficiency, which shows this strategy is promising and suitable for large-scale process optimization problems. 展开更多
关键词 large-scale optimization open-equation sequential quadratic programming analytical derivative sparse matrix technique
在线阅读 下载PDF
Enhanced Butterfly Optimization Algorithm for Large-Scale Optimization Problems 被引量:1
17
作者 Yu Li Xiaomei Yu Jingsen Liu 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第2期554-570,共17页
To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algor... To solve large-scale optimization problems,Fragrance coefficient and variant Particle Swarm local search Butterfly Optimization Algorithm(FPSBOA)is proposed.In the position update stage of Butterfly Optimization Algorithm(BOA),the fragrance coefficient is designed to balance the exploration and exploitation of BOA.The variant particle swarm local search strategy is proposed to improve the local search ability of the current optimal butterfly and prevent the algorithm from falling into local optimality.192000-dimensional functions and 201000-dimensional CEC 2010 large-scale functions are used to verify FPSBOA for complex large-scale optimization problems.The experimental results are statistically analyzed by Friedman test and Wilcoxon rank-sum test.All attained results demonstrated that FPSBOA can better solve more challenging scientific and industrial real-world problems with thousands of variables.Finally,four mechanical engineering problems and one ten-dimensional process synthesis and design problem are applied to FPSBOA,which shows FPSBOA has the feasibility and effectiveness in real-world application problems. 展开更多
关键词 Butterfy optimization algorithm Fragrance coefcient Variant particle swarm local search large-scale optimization problems Real-world application problems
在线阅读 下载PDF
A SPARSE SUBSPACE TRUNCATED NEWTON METHOD FOR LARGE-SCALE BOUND CONSTRAINED NONLINEAR OPTIMIZATION
18
作者 倪勤 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1997年第1期27-37,共11页
In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices ou... In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given. 展开更多
关键词 The TRUNCATED NEWTON method large-scale SPARSE problems BOUND constrained nonlinear optimization.
在线阅读 下载PDF
A Modified Three-Term Conjugate Gradient Algorithm for Large-Scale Nonsmooth Convex Optimization
19
作者 Wujie Hu Gonglin Yuan Hongtruong Pham 《Computers, Materials & Continua》 SCIE EI 2020年第2期787-800,共14页
It is well known that Newton and quasi-Newton algorithms are effective to small and medium scale smooth problems because they take full use of corresponding gradient function’s information but fail to solve nonsmooth... It is well known that Newton and quasi-Newton algorithms are effective to small and medium scale smooth problems because they take full use of corresponding gradient function’s information but fail to solve nonsmooth problems.The perfect algorithm stems from concept of‘bundle’successfully addresses both smooth and nonsmooth complex problems,but it is regrettable that it is merely effective to small and medium optimization models since it needs to store and update relevant information of parameter’s bundle.The conjugate gradient algorithm is effective both large-scale smooth and nonsmooth optimization model since its simplicity that utilizes objective function’s information and the technique of Moreau-Yosida regularization.Thus,a modified three-term conjugate gradient algorithm was proposed,and it has a sufficiently descent property and a trust region character.At the same time,it possesses the global convergence under mild assumptions and numerical test proves it is efficient than similar optimization algorithms. 展开更多
关键词 Conjugate gradient large-scale trust region global convergence
在线阅读 下载PDF
A Fast and Efficient Global Router for Congestion Optimization 被引量:2
20
作者 许静宇 鲍海云 +3 位作者 洪先龙 蔡懿慈 经彤 顾钧 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第2期136-142,共7页
An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire le... An efficient parallel global router using random optimization that is independent of net ordering is proposed.Parallel approaches are described and strategies guaranteeing the routing quality are discussed.The wire length model is implemented on multiprocessor,which enables the algorithm to approach feasibility of large scale problems.Timing driven model on multiprocessor and wire length model on distributed processors are also presented.The parallel algorithm greatly reduces the run time of routing.The experimental results show good speedups with no degradation of the routing quality. 展开更多
关键词 global routing congestion optimizing global routing graph (GRG) parallel algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部