The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and ...The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and conducted to investigate the morphological characteristics and concentration evolution of the sediment plumes under different discharge rates(Q)and initial sediment concentrations(c).Viscosity tests,resuspension tests and free settling tests of the sediment solution with different c values were performed to reveal the settling mechanism of the plume diffusion process.The results show that the plume diffusion morphology variation in flowing water has four stages and the plume concentration evolution has three stages.The larger the Q,the smaller the initial incidence angle at the discharge outlet,the larger the diffusion range,the poorer the stability and the more complicated the diffusion morphology.The larger the c,the larger the settling velocity,the faster the formation of high-concentration accumulation zone,the better the stability and the clearer the diffusion boundary.The research results could provide experimental data for assessing the impact of deep-sea mining on the ocean environment.展开更多
The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,...The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components.展开更多
The thermal forcings of annual and interannual periodic variations are introduced into the barotropic vorticity equation,by using low order spectral model of the equation,more than 40 numerical experiments whose integ...The thermal forcings of annual and interannual periodic variations are introduced into the barotropic vorticity equation,by using low order spectral model of the equation,more than 40 numerical experiments whose integration time is larger than 100 model years are performed in order to investigate variations of large-scale flow patterns arising from both external interannual thermal forcing and internal dynamical processes.In certain parametric range,when the fre- quency of the forcing term with interannual period equals to the frequency which is created by the internal dynamical processes alone,the amplitude of interannual variations of flow patterns increases obviously,and the period becomes double.In other parametric range,the amplitude of interannual variations of flow patterns shows abrupt changes and other nonlinear behavior,along with gradual changes of interannual forcing parameters.展开更多
During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optim...During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli.展开更多
The dynamic behaviors of a large-scale ring neural network with a triangular coupling structure are investigated.The characteristic equation of the high-dimensional system using Coate’s flow graph method is calculate...The dynamic behaviors of a large-scale ring neural network with a triangular coupling structure are investigated.The characteristic equation of the high-dimensional system using Coate’s flow graph method is calculated.Time delay is selected as the bifurcation parameter,and sufficient conditions for stability and Hopf bifurcation are derived.It is found that the connection coefficient and time delay play a crucial role in the dynamic behaviors of the model.Furthermore,a phase diagram of multiple equilibrium points with one saddle point and two stable nodes is presented.Finally,the effectiveness of the theory is verified through simulation results.展开更多
As lithium-ion batteries(LIBs)continue to evolve toward lower costs and higher energy densities,their potential safety risks have become increasingly apparent.Incidents such as explosions at energy storage facilities,...As lithium-ion batteries(LIBs)continue to evolve toward lower costs and higher energy densities,their potential safety risks have become increasingly apparent.Incidents such as explosions at energy storage facilities,fires in electric vehicles,and building fires ignited by charging two-wheeled vehicles have been occurring with alarming frequency,often resulting in significant casualties and injuries.Conducting indepth investigations into thermal runaway(TR)incidents in LIBs can significantly reduce the risk of future occurrences.However,current investigations into LIB fire and explosion incidents face challenges due to the difficulty of conducting in-depth analyses and the lack of a robust theoretical framework to guide these investigations.To enhance the effectiveness of in-depth investigations into battery fire and explosion incidents and to address the lack of theoretical guidance,this paper is the first to systematically examine the conservation and flow patterns of elements during the TR process of LIBs.The analysis reveals that during TR,the gas products generated include approximately 1.5 g of H_(2),23.6 g of CO,88.4 g of CO_(2),8.9 g of C_(2)H_(4),7.3 g of CH_(4),3.7 g of C_(2)H_(6),and 82 g of electrolyte vapor.After TR,the solid compounds formed consist of approximately 2.5 g of LiF,29–92.2 g of elemental Ni/Co/Mn,11.4 g of Li_(2)CO_(3),200.6 g of graphite,1.4 g of NiO,29.6 g of MnO,30.1 g of CoO,67 g of elemental Cu,0.03 g of LiNiO_(2),and 4.3 g of LiAlO_(2).Importantly,the energy released from reactions forming solid compounds during TR surpasses that from gas-forming reactions.This investigation represents the first application of Hess’s law to verify the conservation of elements during the TR process of lithium-ion batteries.The proposed methodology is also applicable to other types of energy storage batteries,effectively advancing techniques for comprehensively investigating lithium battery fire and explosion incidents.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va...A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.展开更多
The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted...The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.展开更多
Large-scale gold production(LSGP) is one of the five convention-related atmospheric mercury(Hg) emission sources in the Minamata Convention on Mercury. However, field experiments on Hg flows of the whole process o...Large-scale gold production(LSGP) is one of the five convention-related atmospheric mercury(Hg) emission sources in the Minamata Convention on Mercury. However, field experiments on Hg flows of the whole process of LSGP are limited. To identify the atmospheric Hg emission points and understand Hg emission characteristics of LSGP, Hg flows in two gold smelters were studied. Overall atmospheric Hg emissions accounted for 10%–17% of total Hg outputs and the Hg emission factors for all processes were 7.6–9.6 kg/ton. There were three dominant atmospheric Hg emission points in the studied gold smelters, including the exhaust gas of the roasting process, exhaust gas from the environmental fog collection stack and exhaust gas from the converter of the refining process. Atmospheric Hg emissions from the roasting process only accounted for 16%–29% of total emissions and the rest were emitted from the refining process. The overall Hg speciation profile(gaseous elemental Hg/gaseous oxidized Hg/particulate-bound Hg) for LSGP was 34.1/57.1/8.8. The dominant Hg output byproducts included waste acid, sulfuric acid and cyanide leaching residue. Total Hg outputs from these three byproducts were 80% in smelter A and 84% in smelter B. Our study indicated that previous atmospheric Hg emissions from large-scale gold production might have been overestimated.Hg emission control in LSGP is not especially urgent in China compared to other significant emission sources(e.g., cement plants). Instead, LSGP is a potential Hg release source due to the high Hg output proportions to acid and sludge.展开更多
Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger wit...Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.展开更多
Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spac...Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spacecraft swarms flying around an elliptic orbit is considered.The objective is to drive the entire formation to produce a specified spatial pattern.The relative motion between agents becomes complicated as the number of agents increases.Hence,a density-based method is adopted,which concerns the density evolution of the entire swarm instead of the trajectories of individuals.The density-based method manipulates the density evolution with Partial Differential Equations(PDEs).This density-based control in this work has two aspects,global pattern control of the whole swarm and local collision-avoidance between nearby agents.The global behavior of the swarm is driven via designing velocity fields.For each spacecraft,the Q-guidance steering law is adopted to track the desired velocity with accelerations in a distributed manner.However,the final stable velocity field is required to be zero in the classical density-based approach,which appears as an obstacle from the viewpoint of astrodynamics since the periodic relative motion is always time-varying.To solve this issue,a novel transformation is constructed based on the periodic solutions of Tschauner-Hempel(TH)equations.The relative motion in Cartesian coordinates is then transformed into a new coordinate system,which permits zero-velocity in a stable configuration.The local behavior of the swarm,such as achieving collision avoidance,is achieved via a carefully-designed local density estimation algorithm.Numerical simulations are provided to demonstrate the performance of this approach.展开更多
Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typica...Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media.展开更多
Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flame...Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction.展开更多
Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels wi...Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.展开更多
sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which ob...sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.展开更多
Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and acc...Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and accumulate to form slug flow, so it is necessary to remove the accumulated liquid by gas purging. In this paper, experiment is carried out in hilly terrain pipelines. Three flow patterns of stratified flow, slug flow and stratified entrained flow are observed. The process of gas purging accumulated liquid is divided into four stages, namely liquid accumulation, liquid rising, continuous outflow and tail outflow. At the same time, the flow pattern maps of each stage are drawn. The pressure drop signal is analyzed in time domain and frequency domain, and the contour map of pressure drop distribution is drawn. It is found that the ratio of range to average value can well distinguish the occurrence range of each flow pattern.Based on visualization, the transition process of slug flow to stratified flow and stratified entrained flow is studied, and the transition boundary prediction model is established. An image processing method is proposed to convert the image signal into a similarity curve, and PSD analysis is performed to calculate the slug frequency. The normal distribution is used to fit the slug frequency, and the predicted correlation is in good agreement with the experimental data.展开更多
The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data sh...The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data show that, due to topographic forcing, the flow is bimodal rather than a single mode. Under suitable imposed experimental parameters, near thermal Rossby number ROT = 0.1 and Taylor number Ta = 2.2 × 107, the large-scale topography produces low-frequency oscillation in the flow and rather long-lived flow pattern resembling blocking in the atmospheric circulation. The 'blocking' phenomenon is caused by the resonance of travelling waves and the quasi-stationary waves forced by topography.The large-scale topography transforms wavenumber-homogeneous flows into wavenumber-dispersed flows, and the dispersed flows possess lower wavenumbers.展开更多
This study identified the relationship between tropical cyclone(TC)activity and extreme Pacific–Japan(PJ)teleconnection patterns in August and September.In the East China Sea(ECS)and Mariana Islands(MI)regions,where ...This study identified the relationship between tropical cyclone(TC)activity and extreme Pacific–Japan(PJ)teleconnection patterns in August and September.In the East China Sea(ECS)and Mariana Islands(MI)regions,where the edge of the western North Pacific subtropical high(WNPSH)is located,approximately 60%–75%of TCs migrate to Far East Asian countries.A significant positive correlation existed between the frequency of northward migration of TCs and PJ patterns,since the TC frequency in the ECS and MI regions was significantly higher in the positive compared with the negative phase.In the positive phase,the main reason for the large number of TCs occurring was the monsoon trough’s location and strength.The strong and northeastward-shifted monsoon trough in the positive phase leads to more TCs in the ECS and MI regions.Other large-scale environments associated with TC formation also favored TC genesis around the ECS and MI regions.The higher PDI(power dissipation index)during the positive PJ phase can potentially lead to significant impacts in the Far East Asian countries.These characteristics were particularly more notable in August compared with September.展开更多
基金supported by the Major Project of Hunan Natural Science Foundation,China(No.2021JC0010)the National Natural Science Foundation of China(No.51274251)。
文摘The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and conducted to investigate the morphological characteristics and concentration evolution of the sediment plumes under different discharge rates(Q)and initial sediment concentrations(c).Viscosity tests,resuspension tests and free settling tests of the sediment solution with different c values were performed to reveal the settling mechanism of the plume diffusion process.The results show that the plume diffusion morphology variation in flowing water has four stages and the plume concentration evolution has three stages.The larger the Q,the smaller the initial incidence angle at the discharge outlet,the larger the diffusion range,the poorer the stability and the more complicated the diffusion morphology.The larger the c,the larger the settling velocity,the faster the formation of high-concentration accumulation zone,the better the stability and the clearer the diffusion boundary.The research results could provide experimental data for assessing the impact of deep-sea mining on the ocean environment.
基金Supported by National Natural Science Foundation of China(Grant No.52075501).
文摘The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components.
基金This work was supported by the National Natural Science Foundation of China
文摘The thermal forcings of annual and interannual periodic variations are introduced into the barotropic vorticity equation,by using low order spectral model of the equation,more than 40 numerical experiments whose integration time is larger than 100 model years are performed in order to investigate variations of large-scale flow patterns arising from both external interannual thermal forcing and internal dynamical processes.In certain parametric range,when the fre- quency of the forcing term with interannual period equals to the frequency which is created by the internal dynamical processes alone,the amplitude of interannual variations of flow patterns increases obviously,and the period becomes double.In other parametric range,the amplitude of interannual variations of flow patterns shows abrupt changes and other nonlinear behavior,along with gradual changes of interannual forcing parameters.
基金sponsored by the National Natural Science Foundation of China(Nos.52174002&52204008)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2022E020).
文摘During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli.
基金Supported by Natural Science Foundation of Shandong Province of China(Grant Nos.ZR2020MF080 and ZR2020MF065).
文摘The dynamic behaviors of a large-scale ring neural network with a triangular coupling structure are investigated.The characteristic equation of the high-dimensional system using Coate’s flow graph method is calculated.Time delay is selected as the bifurcation parameter,and sufficient conditions for stability and Hopf bifurcation are derived.It is found that the connection coefficient and time delay play a crucial role in the dynamic behaviors of the model.Furthermore,a phase diagram of multiple equilibrium points with one saddle point and two stable nodes is presented.Finally,the effectiveness of the theory is verified through simulation results.
基金supported by the National Natural Science Foundation of China(52106284,52422609)the Natural Science Foundation of Hebei Province(B2021507001)Key Research Special Project of CPPU(ZDZX202501)。
文摘As lithium-ion batteries(LIBs)continue to evolve toward lower costs and higher energy densities,their potential safety risks have become increasingly apparent.Incidents such as explosions at energy storage facilities,fires in electric vehicles,and building fires ignited by charging two-wheeled vehicles have been occurring with alarming frequency,often resulting in significant casualties and injuries.Conducting indepth investigations into thermal runaway(TR)incidents in LIBs can significantly reduce the risk of future occurrences.However,current investigations into LIB fire and explosion incidents face challenges due to the difficulty of conducting in-depth analyses and the lack of a robust theoretical framework to guide these investigations.To enhance the effectiveness of in-depth investigations into battery fire and explosion incidents and to address the lack of theoretical guidance,this paper is the first to systematically examine the conservation and flow patterns of elements during the TR process of LIBs.The analysis reveals that during TR,the gas products generated include approximately 1.5 g of H_(2),23.6 g of CO,88.4 g of CO_(2),8.9 g of C_(2)H_(4),7.3 g of CH_(4),3.7 g of C_(2)H_(6),and 82 g of electrolyte vapor.After TR,the solid compounds formed consist of approximately 2.5 g of LiF,29–92.2 g of elemental Ni/Co/Mn,11.4 g of Li_(2)CO_(3),200.6 g of graphite,1.4 g of NiO,29.6 g of MnO,30.1 g of CoO,67 g of elemental Cu,0.03 g of LiNiO_(2),and 4.3 g of LiAlO_(2).Importantly,the energy released from reactions forming solid compounds during TR surpasses that from gas-forming reactions.This investigation represents the first application of Hess’s law to verify the conservation of elements during the TR process of lithium-ion batteries.The proposed methodology is also applicable to other types of energy storage batteries,effectively advancing techniques for comprehensively investigating lithium battery fire and explosion incidents.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
文摘A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system.
文摘The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.
基金supported by the National basic Research Program (973) of China (No.2013CB430001)the National Natural Science Foundation of China (No.21077065)the China Postdoctoral Science Foundation (2016T90103,2016M601053)
文摘Large-scale gold production(LSGP) is one of the five convention-related atmospheric mercury(Hg) emission sources in the Minamata Convention on Mercury. However, field experiments on Hg flows of the whole process of LSGP are limited. To identify the atmospheric Hg emission points and understand Hg emission characteristics of LSGP, Hg flows in two gold smelters were studied. Overall atmospheric Hg emissions accounted for 10%–17% of total Hg outputs and the Hg emission factors for all processes were 7.6–9.6 kg/ton. There were three dominant atmospheric Hg emission points in the studied gold smelters, including the exhaust gas of the roasting process, exhaust gas from the environmental fog collection stack and exhaust gas from the converter of the refining process. Atmospheric Hg emissions from the roasting process only accounted for 16%–29% of total emissions and the rest were emitted from the refining process. The overall Hg speciation profile(gaseous elemental Hg/gaseous oxidized Hg/particulate-bound Hg) for LSGP was 34.1/57.1/8.8. The dominant Hg output byproducts included waste acid, sulfuric acid and cyanide leaching residue. Total Hg outputs from these three byproducts were 80% in smelter A and 84% in smelter B. Our study indicated that previous atmospheric Hg emissions from large-scale gold production might have been overestimated.Hg emission control in LSGP is not especially urgent in China compared to other significant emission sources(e.g., cement plants). Instead, LSGP is a potential Hg release source due to the high Hg output proportions to acid and sludge.
基金Project supported by the Special Funds for Basic Operating Expenses of the Centre University of China (Grant No.23ZYJS006)。
文摘Experiments are conducted on the evacuation rate of pedestrians through exits with queued evacuation pattern and random evacuation pattern. The experimental results show that the flow rate of pedestrians is larger with the random evacuation pattern than with the queued evacuation pattern. Therefore, the exit width calculated based on the minimum evacuation clear width for every 100 persons, which is on the assumption that the pedestrians pass through the exit in one queue or several queues, is conservative. The number of people crossing the exit simultaneously is greater in the random evacuation experiments than in the queued evacuation experiments, and the time interval between the front row and rear row of people is shortened in large-exit conditions when pedestrians evacuate randomly. The difference between the flow rate with a queued evacuation pattern and the flow rate with a random evacuation pattern is related to the surplus width of the exit, which is greater than the total width of all accommodated people streams. Two dimensionless quantities are defined to explore this relationship. It is found that the difference in flow rate between the two evacuation patterns is stable at a low level when the surplus width of the exit is no more than 45% of the width of a single pedestrian stream. There is a great difference between the flow rate with the queued evacuation pattern and the flow rate with the random evacuation pattern in a scenario with a larger surplus width of the exit. Meanwhile, the pedestrians crowd extraordinarily at the exit in these conditions as well, since the number of pedestrians who want to evacuate through exit simultaneously greatly exceeds the accommodated level. Therefore, the surplus width of exit should be limited especially in the narrow exit condition, and the relationship between the two dimensionless quantities mentioned above could provide the basis to some extent.
基金co-supported by the Strategic Priority Program on Space Science of the Chinese Academy of Sciences (No.XDA15014902)the Key Research Program of the Chinese Academy of Sciences (No. ZDRW-KT-2019-1-0102)
文摘Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spacecraft swarms flying around an elliptic orbit is considered.The objective is to drive the entire formation to produce a specified spatial pattern.The relative motion between agents becomes complicated as the number of agents increases.Hence,a density-based method is adopted,which concerns the density evolution of the entire swarm instead of the trajectories of individuals.The density-based method manipulates the density evolution with Partial Differential Equations(PDEs).This density-based control in this work has two aspects,global pattern control of the whole swarm and local collision-avoidance between nearby agents.The global behavior of the swarm is driven via designing velocity fields.For each spacecraft,the Q-guidance steering law is adopted to track the desired velocity with accelerations in a distributed manner.However,the final stable velocity field is required to be zero in the classical density-based approach,which appears as an obstacle from the viewpoint of astrodynamics since the periodic relative motion is always time-varying.To solve this issue,a novel transformation is constructed based on the periodic solutions of Tschauner-Hempel(TH)equations.The relative motion in Cartesian coordinates is then transformed into a new coordinate system,which permits zero-velocity in a stable configuration.The local behavior of the swarm,such as achieving collision avoidance,is achieved via a carefully-designed local density estimation algorithm.Numerical simulations are provided to demonstrate the performance of this approach.
基金supported by the National Natural Science Foundation of China Joint Fund Project (Grant/Award Number: U20B6003)National Natural Science Foundation of China (Grant/Award Number: 52304054)。
文摘Understanding fingering, as a challenge to stable displacement during the immiscible flow, has become a crucial phenomenon for geological carbon sequestration, enhanced oil recovery, and groundwater protection. Typically governed by gravity, viscous and capillary forces, these factors lead invasive fluids to occupy pore space irregularly and incompletely. Previous studies have demonstrated capillary numbers,describing the viscous and capillary forces, to quantificationally induce evolution of invasion patterns.While the evolution mechanisms of invasive patterns have not been deeply elucidated under the constant capillary number and three variable parameters including velocity, viscosity, and interfacial tension.Our research employs two horizontal visualization systems and a two-phase laminar flow simulation to investigate the tendency of invasive pattern transition by various parameters at the pore scale. We showed that increasing invasive viscosity or reducing interfacial tension in a homogeneous pore space significantly enhanced sweep efficiency, under constant capillary number. Additionally, in the fingering crossover pattern, the region near the inlet was prone to capillary fingering with multi-directional invasion, while the viscous fingering with unidirectional invasion was more susceptible occurred in the region near the outlet. Furthermore, increasing invasive viscosity or decreasing invasive velocity and interfacial tension promoted the extension of viscous fingering from the outlet to the inlet, presenting that the subsequent invasive fluid flows toward the outlet. In the case of invasive trunk along a unidirectional path, the invasive flow increased exponentially closer to the outlet, resulting in a significant decrease in the width of the invasive interface. Our work holds promising applications for optimizing invasive patterns in heterogeneous porous media.
基金supported by the National Natural Science Foundation of China(Nos.91441202 and 51476087)
文摘Large Eddy Simulations(LES) in conjunction with the Flamelet Progress Variable(FPV) approach have been performed to investigate the flame and large-scale flow structures in the bluff-body stabilized non-premixed flames, HM1 and HM3. The validity of the numerical methods is first verified by comparing the predicted velocity and composition fields with experimental measurements. Then the evolution of the flame and large-scale flow structures is analyzed when the flames approach blow-off. The analysis of instantaneous and statistical data indicates that there exists a shift of the control mechanism in the recirculation zone in the two flames. In the recirculation zone, HM1 flame is mainly controlled by the mixing effect and ignition mainly occurs in the outer shear layer. In HM3 flame, both the chemical reactions and mixing are important in the recirculation zone. The Proper Orthogonal Decomposition(POD) results show that the fluctuations in the outer shear layer are more intense in HM1, while the flow structures are more obvious in the outer vortex structure in HM3, due to the different control mechanism in the recirculation zone.It further shows that the flow structures in HM1 spread larger in the intense mixing zone due to higher temperature and less extinction.
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe(PHP).The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 mm and a height of 1.1 mm.The evaporator and condenser sections were 25 and 50 mm long,respectively,and the adiabatic section in between was 75mmlong.Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene,the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP.The PHP was charged with hydrofluoroether-7100.In the experiments,the evaporator section was heated,and the condenser section was cooled using high-temperature and low-temperature thermostatic baths,respectively.Flow patterns of the working fluid were obtained with temperature distributions of the PHP.A mathematical model was developed to analyze the flow patterns.Themerged liquid slugs were observed in every two channels,and their oscillation characteristics were found to be approximately the same in time and space.It was also found that the oscillations of the merged liquid slugs became slower,but the heat transfer rate of the PHP increased with a decrease in the filling ratio of the working fluid.This is because vapor condensation was enhanced in vapor plugs as the filling ratio decreased.However,the filling ratio had a lower limit,and the heat transfer rate was maximum when the filling ratio was 40.6%in the present experimental range.
文摘sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.
基金supported by the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.52488201)the National Natural Science Foundation of China(No.52422606).
文摘Hilly terrain pipeline is a common form of pipeline in oil and gas storage and transportation industry.Due to the hilly terrain influence, the liquid at the elbow of the gathering pipeline is easy to flow back and accumulate to form slug flow, so it is necessary to remove the accumulated liquid by gas purging. In this paper, experiment is carried out in hilly terrain pipelines. Three flow patterns of stratified flow, slug flow and stratified entrained flow are observed. The process of gas purging accumulated liquid is divided into four stages, namely liquid accumulation, liquid rising, continuous outflow and tail outflow. At the same time, the flow pattern maps of each stage are drawn. The pressure drop signal is analyzed in time domain and frequency domain, and the contour map of pressure drop distribution is drawn. It is found that the ratio of range to average value can well distinguish the occurrence range of each flow pattern.Based on visualization, the transition process of slug flow to stratified flow and stratified entrained flow is studied, and the transition boundary prediction model is established. An image processing method is proposed to convert the image signal into a similarity curve, and PSD analysis is performed to calculate the slug frequency. The normal distribution is used to fit the slug frequency, and the predicted correlation is in good agreement with the experimental data.
基金This research was supported by the U.S. National Science Foundation Grants ATM-8709410 and ATM-8714674.
文摘The effects of topography on baroclinic wave flows are studied experimentally in a thermally driven rotating annulus of fluid.Fourier analysis and complex principal component (CPC) analysis of the experimental data show that, due to topographic forcing, the flow is bimodal rather than a single mode. Under suitable imposed experimental parameters, near thermal Rossby number ROT = 0.1 and Taylor number Ta = 2.2 × 107, the large-scale topography produces low-frequency oscillation in the flow and rather long-lived flow pattern resembling blocking in the atmospheric circulation. The 'blocking' phenomenon is caused by the resonance of travelling waves and the quasi-stationary waves forced by topography.The large-scale topography transforms wavenumber-homogeneous flows into wavenumber-dispersed flows, and the dispersed flows possess lower wavenumbers.
基金the Korea Meteorological Administration Research and Development Program under Grant KMI(Grant No.RS-2023-00241809)conducted under the framework of the research and development program of the Korea Institute of Energy Research(C5-2422).
文摘This study identified the relationship between tropical cyclone(TC)activity and extreme Pacific–Japan(PJ)teleconnection patterns in August and September.In the East China Sea(ECS)and Mariana Islands(MI)regions,where the edge of the western North Pacific subtropical high(WNPSH)is located,approximately 60%–75%of TCs migrate to Far East Asian countries.A significant positive correlation existed between the frequency of northward migration of TCs and PJ patterns,since the TC frequency in the ECS and MI regions was significantly higher in the positive compared with the negative phase.In the positive phase,the main reason for the large number of TCs occurring was the monsoon trough’s location and strength.The strong and northeastward-shifted monsoon trough in the positive phase leads to more TCs in the ECS and MI regions.Other large-scale environments associated with TC formation also favored TC genesis around the ECS and MI regions.The higher PDI(power dissipation index)during the positive PJ phase can potentially lead to significant impacts in the Far East Asian countries.These characteristics were particularly more notable in August compared with September.