期刊文献+
共找到93篇文章
< 1 2 5 >
每页显示 20 50 100
Value analysis of district heating system with gas-fired peak load boiler in secondary network
1
作者 郑雪晶 穆振英 《Journal of Central South University》 SCIE EI CAS 2009年第S1期178-182,共5页
In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fu... In district heating(DH) system with gas-fired peak load regulating boiler in the secondary network,by prolonging run time of base load plants under rated condition,the mean energy efficiency could be increased. The fuels of the system,including coal and gas,would cause different environmental impacts. Meanwhile,the reliability of the heating networks would be changed because the peak load regulating boiler could work as a standby heat source. A model for assessment of heating system was established by value analysis to optimize this kind of system. Energy consumption,greenhouse gas emission,pollution emission and system reliability were selected as functional assessment indexes in the model. Weights of each function were determined by analytical hierarchy process (AHP) and experts consultation. Life cycle cost was used as the cost in the model. A real case as an example was discussed to obtain the optimal base load ratio. The result shows that the optimal base load ratio of the case is 0.77. 展开更多
关键词 district heating VALUE analysis base LOAD RATIO SECONDARY network
在线阅读 下载PDF
Wireless Sensor Networks for Optimisation of District Heating
2
作者 Anatolijs Zabasta Viesturs Selmanovs-Pless +1 位作者 Nadezda Kunicina Leonids Ribickis 《Journal of Energy and Power Engineering》 2013年第7期1362-1369,共8页
The upgrading of the DH (district heating) system through installing WSN (wireless sensor networks)--a technology by which to monitor and control quality operation of the DH system will lead to more effective use ... The upgrading of the DH (district heating) system through installing WSN (wireless sensor networks)--a technology by which to monitor and control quality operation of the DH system will lead to more effective use of thermal energy, enabling also the provision of quality customer services, as the data concerning the status of the existing networks is available in a timely manner, and in the stated amounts. Over the last decades, the use of WSN systems in enabling quality monitoring of heat production and supply process has been widely discussed among various researchers and industry experts, but has been little deployed in practice. These researchers and industry experts have analysed the advantages and constraints related to the use of the WSN in district heating. A pilot project conducted by Riga Heat (the main heating supplier in Riga, Latvia) has allowed to gain a real life experience as to the use of the WSN system in district in-house heating substations, and is deemed to be a major step towards future development of WSN technologies. 展开更多
关键词 district heating GPRS heating substation wireless sensor networks XML.
在线阅读 下载PDF
Robust Scheduling of Integrated Electricity-heathydrogen System Considering Bidirectional Heat Exchange Between Alkaline Electrolyzers and District Heating Networks
3
作者 Pengfei Han Xiaoyuan Xu +4 位作者 Zheng Yan Mohammad Shahidehpour Zhenfei Tan Han Wang Gang Li 《Journal of Modern Power Systems and Clean Energy》 2025年第4期1248-1260,共13页
The integrated electricity-heat-hydrogen system(IEHHS)facilitates the efficient utilization of multiple energy sources,while the operational flexibility of IEHHS is hindered by the high heat inertia of alkaline electr... The integrated electricity-heat-hydrogen system(IEHHS)facilitates the efficient utilization of multiple energy sources,while the operational flexibility of IEHHS is hindered by the high heat inertia of alkaline electrolyzers(AELs)and the variations of renewable energy.In this paper,we propose a robust scheduling of IEHHS considering the bidirectional heat exchange(BHE)between AELs and district heating networks(DHNs).First,we propose an IEHHS model to coordinate the operations of AELs,active distribution networks(ADNs),and DHNs.In particular,we propose a BHE that not only enables the waste heat recovery for district heating but also accelerates the thermal dynamics in AELs.Then,we formulate a two-stage robust optimization(RO)problem for the IEHHS operation to consider the variability of renewable energy in ADNs.We propose a new solution method,i.e.,multi-affine decision rule(MADR),to solve the two-stage RO problem with less conservatism.The simulation results show that the operational flexibility of IEHHS with BHE is remarkably improved compared with that only with unidirectional heat exchange(UHE).Compared with the traditional affine decision rule(ADR),the MADR effectively reduces the IEHHS operating costs while guaranteeing the reliability of scheduling strategies. 展开更多
关键词 Alkaline electrolyzer(AEL) active distribution network(ADN) district heating network(DHN) multi-affine decision rule(MADR) robust optimization(RO) hydrogen production
原文传递
基于卷积神经网络和Transformer的供热管网泄漏故障诊断 被引量:1
4
作者 梁晓龙 李金刚 +4 位作者 徐平平 王佳龙 刘杰杰 陈涛 孟现阳 《科学技术与工程》 北大核心 2025年第13期5589-5601,共13页
区域供热网络泄漏故障在线高效监测可以减少检修反映时间,保障居民的用热需求。然而,常规泄漏故障诊断方法的数据特征提取能力有限,难以处理复杂供热网络高维度非线性压力流量监测数据,使得其诊断性能较弱。因此,提出了一种基于卷积神... 区域供热网络泄漏故障在线高效监测可以减少检修反映时间,保障居民的用热需求。然而,常规泄漏故障诊断方法的数据特征提取能力有限,难以处理复杂供热网络高维度非线性压力流量监测数据,使得其诊断性能较弱。因此,提出了一种基于卷积神经网络(convolutional neural networks, CNN)和Transformer的供热管网泄漏故障诊断模型。提出的CNN-Transformer诊断模型将CNN与Transformer网络相结合,实现了不同时间尺度和空间特征的联合学习。其中CNN网络用于提取局部特征,Transformer网络用于捕获全局特征。通过模拟环状供热管网系统得到的故障数据集验证了模型的有效性。结果表明,提出的基于故障特征的多级特征提取与融合机制的CNN-Transforme诊断模型,显著提升了泄漏诊断的准确率。CNN-Transformer方法在测试集上准确率最高,与其他故障诊断方法(长短期记忆循环网络、门控循环网络、CNN和Transformer)相比,在测试集上的准确率分别提高了13.21%、7.49%、6.1%和4.62%。 展开更多
关键词 区域供热网络 管道泄漏 故障诊断 数据驱动 深度学习
在线阅读 下载PDF
双碳形式下供热系统能效提升及案例分析 被引量:1
5
作者 张季雨 谷亚军 +4 位作者 张骐 宋建元 刘伟 吴志良 马坤茹 《河北工业科技》 2025年第3期240-247,共8页
为了提升供热系统能效、实现碳减排目标、降低企业运营成本、提高能源利用效率,以河北省石家庄市某热力公司供热项目为案例,基于2019—2022年连续3个采暖期的运行数据,通过能耗指标计算与水力模型分析,诊断系统能效低下的关键原因,并给... 为了提升供热系统能效、实现碳减排目标、降低企业运营成本、提高能源利用效率,以河北省石家庄市某热力公司供热项目为案例,基于2019—2022年连续3个采暖期的运行数据,通过能耗指标计算与水力模型分析,诊断系统能效低下的关键原因,并给出具体能效改造提升建议。结果表明:该项目存在年均能耗超标、二次网水力失衡、板换效率不足、一次网回水加压泵选型过大及建筑围护结构保温不完善等典型问题;经理论计算对一次网回水加压泵改造可实现71.9%的节能率,加装物联网平衡阀或拆分大型换热站可有效改善水力失调问题,优化水质管理与板换运行参数可提升换热效率,加强建筑围护结构保温措施能显著降低传热系数以降低热损失。该研究通过多维度综合分析为供热系统节能改造提供了系统性解决方案,不仅揭示了行业普遍存在的技术短板,更为热力企业实施节能降耗、推动可持续发展提供了理论依据与实践路径。 展开更多
关键词 供热工程 集中供热 二网平衡 热力系统优化 建筑节能 能效分析
在线阅读 下载PDF
计及热网拓扑重构的电-热分布式机组组合研究 被引量:1
6
作者 薛屹洵 杜源 +3 位作者 王科 常馨月 邓莉荣 孙宏斌 《中国电机工程学报》 北大核心 2025年第10期3698-3708,I0002,共12页
随着热电联产技术的广泛应用,电网和热网的耦合愈加紧密。热网通过阀门操作灵活调整供热结构,增强热电联产机组等电-热耦合设备的运行和启停灵活性,为电力系统的阻塞管理和可再生能源消纳提供新的手段。为此,该文建立考虑热网重构的电... 随着热电联产技术的广泛应用,电网和热网的耦合愈加紧密。热网通过阀门操作灵活调整供热结构,增强热电联产机组等电-热耦合设备的运行和启停灵活性,为电力系统的阻塞管理和可再生能源消纳提供新的手段。为此,该文建立考虑热网重构的电热协同机组组合模型。针对输电与供热系统的异构特性,基于广义主从分裂理论,提出一种扩展异质分解算法,以实现输电网和热网的分布式求解。此外,为处理整数变量带来的非凸可行域问题,进一步设计具有稳定收敛性的坐标下降迭代方法,并在数学上严格证明其收敛性。最后,通过数值仿真,验证热网重构在缓解输电阻塞、减少弃风、降低全局系统机组组合成本等方面的效益,并验证所提出的分布式算法相比传统方法在计算效率上具有优势。 展开更多
关键词 热网重构 分布式求解 异质分解 输电阻塞
原文传递
大型集中供热管网热延迟热衰减特性研究
7
作者 韩宝成 王钰熙 +2 位作者 张晓东 徐晗 白博峰 《区域供热》 2025年第1期93-106,共14页
我国城市集中供热面积的逐年增加显著增大供热系统节能减排的压力,精细化运行调控是提高其运行能效与质量的直接有效方式。一次网作为连接热源和换热站的热流体输配管网,其规模大且拓扑结构错综复杂,导致热量在其内部传输中具有明显的... 我国城市集中供热面积的逐年增加显著增大供热系统节能减排的压力,精细化运行调控是提高其运行能效与质量的直接有效方式。一次网作为连接热源和换热站的热流体输配管网,其规模大且拓扑结构错综复杂,导致热量在其内部传输中具有明显的热延迟和热衰减特性,对其进行科学合理的分析是供热系统精准按需调控的重要前提。通过拓展大型集中供热管网非稳态水力和热力特性的数学模型及其求解算法,结合与大型集中供热管网实际运行数据对比,发现水力和热力特性模型计算误差分别为1.19%和5.43%。将上述模型及方法应用于西安市某大型集中供热管网整个供暖季水力和热力特性分析,发现其热延迟时间约为1~2 h,热响应时间约为2~4 h,且热延迟和热响应时间受热源供水流量影响显著;在典型热源供水流量和温度下,一次网热损失约占整网供热量的5%~10%,且受热源供水温度影响显著。 展开更多
关键词 大型集中供热管网 水力热力特性 热延迟 热衰减
在线阅读 下载PDF
基于BiLSTM-AdaBoost的集中供热换热站短期热负荷预测研究
8
作者 龚文杰 程宗平 +1 位作者 张春艳 马萍 《区域供热》 2025年第3期55-63,共9页
准确预测集中供热换热站热负荷是实现区域供热系统智慧供热和节能减碳的关键。以乌鲁木齐市某集中供热换热站为研究对象,提出基于BiLSTM-AdaBoost的供热负荷预测模型。引入BiLSTM网络综合考虑热负荷数据的正向和反向历史特征,提高了网... 准确预测集中供热换热站热负荷是实现区域供热系统智慧供热和节能减碳的关键。以乌鲁木齐市某集中供热换热站为研究对象,提出基于BiLSTM-AdaBoost的供热负荷预测模型。引入BiLSTM网络综合考虑热负荷数据的正向和反向历史特征,提高了网络捕捉时间序列特征联系的能力,应用AdaBoost集成算法获得准确性较高的强预测器。将所提模型与其他几种预测模型进行对比分析,结果表明,所提出的BiLSTM-AdaBoost供热负荷预测模型在热负荷预测中具有更高的预测精度,可以实现热力站供热负荷的准确预测。 展开更多
关键词 区域供热 热负荷预测 BiLSTM网络 AdaBoost集成算法
在线阅读 下载PDF
Energy and Buildings
9
《建筑节能(中英文)》 2025年第3期10-10,共1页
The present study develops a data-based compact model for the prediction of the fluid temperature evolution in district heating-and-cooling pipeline networks.This model is based on an existing“reduced-order model”by... The present study develops a data-based compact model for the prediction of the fluid temperature evolution in district heating-and-cooling pipeline networks.This model is based on an existing“reduced-order model”by the authors obtained from reduction of the“full-order model”describing the spatio-temporal energy balance for each pipe segment to a semi-analytical input-output relation between the pipe outlet temperature and the pipe inlet and ground temperatures.The proposed model(denoted XROM)expands on the original reduced-order model by incorporating variable mass flux as an additional input and thus greatly increases its practical relevance.The XROM represents variable mass flux by step-wise switching between mass-flux levels and thereby induces a prediction error relative to the true full-order model evolution after each switching.Theoretical analysis rigorously demonstrates that this error always decays and the XROM invariably converges on the full-order model evolution and,consequently,affords the same prediction accuracy.Performance analyses reveal that prediction errors are restricted to short“convergence intervals”after each mass-flux switching and the XROM therefore can handle substantially faster operating schemes than the current ones based on hourly monitoring and control.Convergence intervals of O(minutes)are namely typically sufficient-and thus switching frequencies up to O(minutes 1)permissible during dynamic operation and control actions-for reliable predictions.Quantification of these convergence intervals by an easy-to-use empirical relation furthermore enables a priori determination of the conditions for reliable predictions.Moreover,the XROM can capture the full 3D system dynamics(provided incompressible flow and heat-transfer mechanisms depending linearly on temperature)versus the essentially 1D approximation of current compact pipe models yet at similar computational cost.These attributes advance(parts of)district heating and cooling networks demanding prediction accuracies beyond 1D as its primary application area.This makes the XROM complementary to said pipe models and thereby expands the modelling capabilities for handling the growing complexity of(next-generation)networks. 展开更多
关键词 district heating network Reduced-order model Variable mass flux Linear time-variant system Input-output relation
在线阅读 下载PDF
Topology reduction through machine learning to accelerate dynamic simulation of district heating
10
作者 Dubon Rodrigue Mohamed Tahar Mabrouk +2 位作者 Bastien Pasdeloup Patrick Meyer Bruno Lacarrière 《Energy and AI》 EI 2024年第3期247-260,共14页
District heating networks (DHNs) provide an efficient heat distribution solution in urban areas, accomplished through interconnected and insulated pipes linking local heat sources to local consumers. This efficiency i... District heating networks (DHNs) provide an efficient heat distribution solution in urban areas, accomplished through interconnected and insulated pipes linking local heat sources to local consumers. This efficiency is further enhanced by the capacity of these networks to integrate renewable heat sources and thermal storage systems. However, integration of these systems adds complexity to the physical dynamics of the network, necessitating complex dynamic simulation models. These dynamic physical simulations are computationally expensive, limiting their adoption, particularly in large-scale networks. To address this challenge, we propose a methodology utilizing Artificial Neural Networks (ANNs) to reduce the computational time associated with the DHNs dynamic simulations. Our approach consists in replacing predefined clusters of substations within the DHNs with trained surrogate ANNs models, effectively transforming these clusters into single nodes. This creates a hybrid simulation framework combining the predictions of the ANNs models with the accurate physical simulations of remaining substation nodes and pipes. We evaluate different architectures of Artificial Neural Network on diverse clusters from four synthetic DHNs with realistic heating demands. Results demonstrate that ANNs effectively learn cluster dynamics irrespective of topology or heating demand levels. Through our experiments, we achieved a 27% reduction in simulation time by replacing 39% of consumer nodes while maintaining acceptable accuracy in preserving the generated heat powers by sources. 展开更多
关键词 district heating network Topology reduction Artificial neural networks Hybrid modeling Graph based formulation
在线阅读 下载PDF
基于物联网的集中供热管网智能动态平衡调控方法研究
11
作者 胡月波 孙宗宇 +2 位作者 石磊 苏博 叶少华 《建筑技术》 2025年第2期163-167,共5页
针对集中供热系统运行能耗高、水力失调等问题,研究指出了供热管网调节的必要性,并鉴于物联网在供热系统中的广泛应用,通过对供热系统连接方式和自动调控的优化,在基于分阶段变流量质调节方法的原理基础上,利用物联网信息交互技术弥补... 针对集中供热系统运行能耗高、水力失调等问题,研究指出了供热管网调节的必要性,并鉴于物联网在供热系统中的广泛应用,通过对供热系统连接方式和自动调控的优化,在基于分阶段变流量质调节方法的原理基础上,利用物联网信息交互技术弥补了供热系统中“信息控制滞后”的弊端,实现了供热系统的智能动态平衡调控管理。研究过程中分别对该方法的技术路线、关键技术和调节方法进行了分析阐述,其研究成果应用在实际工程中取得了较好的效果。 展开更多
关键词 物联网 供热系统 供热管网 调控方法
在线阅读 下载PDF
结合水力仿真与神经网络的供热管网阻塞诊断
12
作者 杨佳霖 赵鹏翔 +2 位作者 王冰 李娜 郭东旭 《测试技术学报》 2025年第3期354-362,372,共10页
为了准确诊断供热管网阻塞故障,提升供热系统的运行可靠性,提出了基于水力仿真与神经网络的阻塞诊断方法。首先,为了获得大量表征管网阻塞运行特征的数据样本,基于水力仿真建立了阻塞仿真专家数据库;其次,结合表征学习和管网实际数据获... 为了准确诊断供热管网阻塞故障,提升供热系统的运行可靠性,提出了基于水力仿真与神经网络的阻塞诊断方法。首先,为了获得大量表征管网阻塞运行特征的数据样本,基于水力仿真建立了阻塞仿真专家数据库;其次,结合表征学习和管网实际数据获得了管网实际水力特征,并建立了阻塞表征专家数据库;最后,基于已建立的数据库训练并测试了卷积神经网络阻塞诊断模型。以某城市实际供热管网为案例进行了研究,结果表明,阻塞表征数据可有效表达管网实际水力特征,以仿真数据和表征数据为样本,卷积网络阻塞诊断准确率大于85%。 展开更多
关键词 区域供热管网 阻塞故障诊断 表征学习 卷积神经网络 水力工况仿真
在线阅读 下载PDF
Collaborative Planning of Distributed Wind Power Generation and Distribution Network with Large-scale Heat Pumps 被引量:7
13
作者 Quansheng Cui Xiaomin Bai Weijie Dong 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第3期335-347,共13页
With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in po... With the advancement of clean heating projects and the integration of large-scale distributed heat pumps into rural distribution networks in northern China,power grid companies face tremendous pressure to invest in power grid upgrades,which bring opportunities for renewable power generation integration.The combination of heating by distributed renewable energy with the flexible operation of heat pumps is a feasible alternative for dealing with grid reinforcement challenges resulting from heating electrification.In this paper,a mathematical model of the collaborative planning of distributed wind power generation(DWPG)and distribution network with large-scale heat pumps is developed.In this model,the operational flexibility of the heat pump load is fully considered and the requirements of a comfortable indoor temperature are met.By applying this model,the goals of not only increasing the profit of DWPG but also reducing the cost of the power grid upgrade can be achieved. 展开更多
关键词 Collaborative planning distribution network distributed wind power generation large-scale distributed heat pumps
原文传递
Dynamic modeling of thermal conditions for hot-water district-heating networks 被引量:9
14
作者 周守军 田茂诚 +1 位作者 赵有恩 郭敏 《Journal of Hydrodynamics》 SCIE EI CSCD 2014年第4期531-537,共7页
To investigate the dynamic characteristics of the thermal conditions of hot-water district-heating networks, a dynamic modeling method is proposed with consideration of the heat dissipations in pipes and the character... To investigate the dynamic characteristics of the thermal conditions of hot-water district-heating networks, a dynamic modeling method is proposed with consideration of the heat dissipations in pipes and the characteristic line method is adopted to solve it. Besides, the influences of different errors, space steps and initial values on the convergence of the dynamic model results are analyzed for a model network. Finally, a part of a certain city district-heating system is simulated and the results are compared with the actual operation data in half an hour from 6 secondary heat stations. The results indicate that the relative errors for the supply pressure and temperature in 5 stations are all within 2%, except in one station, where the relative error approaches 4%. So the proposed model and algorithm are validated. 展开更多
关键词 district-heating network thermal conditions dynamic modeling characteristic line method
原文传递
基于数据增广的区域供热系统热力站负荷预测模型准确率提升方法研究 被引量:1
15
作者 白云 林小杰 +2 位作者 钟崴 罗政 章宁 《暖通空调》 2024年第9期143-152,158,共11页
开展了热力站数据生成模型研究,基于生成对抗网络和去噪扩散概率模型建立了数据生成模型,通过学习气象、室温、热力站运行数据的联合分布,对原始训练数据进行增广,为预测模型训练提供充足的数据支撑,从而提高预测模型的准确率。在北京... 开展了热力站数据生成模型研究,基于生成对抗网络和去噪扩散概率模型建立了数据生成模型,通过学习气象、室温、热力站运行数据的联合分布,对原始训练数据进行增广,为预测模型训练提供充足的数据支撑,从而提高预测模型的准确率。在北京市某热力站进行了验证和实际测试,结果表明:该方法可以将热力站一次侧电动调节阀开度和二次网供水温度的预测误差分别降低约7%和11%;同时,应用准确率提升后的负荷预测值进行供热量调节得到的预计室温与室温目标值之间的偏差可进一步降低5.44%。基于生成对抗网络的生成模型能够扩展预测模型的预测范围,基于去噪扩散概率模型的生成模型能够在原预测范围内提高预测模型的准确率。本文研究可为进一步提高区域供热系统热力站负荷预测能力与按需精准调控水平提供支撑。 展开更多
关键词 区域供热 热力站 负荷预测 数据增广 生成对抗网络 去噪扩散概率模型 生成模型
在线阅读 下载PDF
智慧供热系统低碳运行的设计与研究 被引量:7
16
作者 席江涛 聂诚飞 查波 《暖通空调》 2024年第2期56-62,共7页
先进的控制系统是保证区域供暖系统精准管控和节能运行的关键。因此针对能源管控中心和各换热站及其二次侧输配管网建立智慧供热系统,实现区域供暖系统的智慧和低碳运行。该系统首先在软件层基于人工智能技术对各换热站及其二次侧输配... 先进的控制系统是保证区域供暖系统精准管控和节能运行的关键。因此针对能源管控中心和各换热站及其二次侧输配管网建立智慧供热系统,实现区域供暖系统的智慧和低碳运行。该系统首先在软件层基于人工智能技术对各换热站及其二次侧输配管网的主要调节设备进行基于负荷预测的分布式优化提前联动控制策略设计研究;然后在硬件层对现场设备的监控和分布式控制架构进行设计;最后在网络层基于无源光网络技术完成数据传输方案的设计,将软件层控制策略与硬件层监控设备进行有机结合。通过在实际工程中对该智慧供热系统的运行进行调试,能够满足运维人员对系统运行的智慧化需求和末端用户的热舒适需求,实现区域供暖系统的节能低碳运行。 展开更多
关键词 智慧供热 低碳运行 区域供暖 人工智能 无源光网络技术 分布式控制
在线阅读 下载PDF
Neural Network Based Feasible Region Approximation Model for Optimal Operation of Integrated Electricity and Heating System 被引量:3
17
作者 Xuewei Wu Bin Zhang +1 位作者 Mads Pagh Nielsen Zhe Chen 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第5期1808-1819,共12页
This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)co... This paper proposes a neural network based feasible region approximation model of a district heating system(DHS),and it is intended to be used for optimal operation of integrated electricity and heating system(IEHS)considering privacy protection.In this model,a neural network is trained to approximate the feasible region of the DHS operation and then is reformulated as a set of mixed-integer linear constraints.Based on the received approximation models of DHSs and detailed electricity system model,the electricity operator conducts centralized optimization,and then sends specific heating generation plans back to corresponding heating operators.Furthermore,subsequent optimization is formulated for each DHS to obtain detailed operation strategy based on received heating generation plan.In this scheme,optimization of the IEHS could be achieved and privacy protection requirement is satisfied since the feasible region approximation model does not contain detailed system parameters.Case studies conducted on a small-scale system demonstrate accuracy of the proposed strategy and a large-scale system verify its application possibility. 展开更多
关键词 Artificial intelligence district heating system integrated energy system machine learning multi-energy systems neural network optimal operation wind power
原文传递
集中供热热力站短期热负荷预测模型对比研究 被引量:4
18
作者 果泽泉 何波 +6 位作者 何强 周继平 蒋雅玲 张凡 陈超 郭放 鄢烈详 《区域供热》 2024年第1期146-158,共13页
以湖北省十堰市一个集中供热热力站为对象,基于实测运行数据和气象数据进行供热负荷预测研究。分别采用随机森林(Random Forest,RF)、极度梯度提升(eXtreme Gradient Boosting,XGBoost)、BP神经网络、支持向量回归(Support Vector Regre... 以湖北省十堰市一个集中供热热力站为对象,基于实测运行数据和气象数据进行供热负荷预测研究。分别采用随机森林(Random Forest,RF)、极度梯度提升(eXtreme Gradient Boosting,XGBoost)、BP神经网络、支持向量回归(Support Vector Regression,SVR)、长短期记忆(Long Short Term Memory,LSTM)神经网络5种方法进行预测模型训练及测试,基于粒子群优化算法(Particle Swarm Optimization,PSO)优化各模型参数,获得最优模型,在此基础上针对不同模型在不同短期负荷预测情景下的表现进行对比研究。研究结果表明:在未来24h预测情景下,随机森林、XGBoost模型的预测精度最高,二者的平均绝对误差(MAE)分别为0.84 W/m^(2)及1.00 W/m^(2)。在未来1h预测情景下,SVR模型的预测精度最高,其MAE为0.18 W/m^(2)。 展开更多
关键词 集中供热 负荷预测 随机森林 极度梯度提升 BP神经网络 支持向量回归 长短期记忆神经网络
在线阅读 下载PDF
基于需求响应的电热综合能源市场MPEC优化
19
作者 杨莹 耿光辉 +2 位作者 曾小雨 钟懿文 唐霜华 《黑龙江科技大学学报》 CAS 2024年第1期138-144,共7页
为促进电热综合能源市场多能流协同消纳,减少负荷不平衡所带来用能波动的问题,基于价格弹性矩阵建立电、热需求响应模型,以能量枢纽为利益主体,利用均衡约束数学规划模型,制定综合能源市场竞标策略。实现电、热网运营商运行成本最小的同... 为促进电热综合能源市场多能流协同消纳,减少负荷不平衡所带来用能波动的问题,基于价格弹性矩阵建立电、热需求响应模型,以能量枢纽为利益主体,利用均衡约束数学规划模型,制定综合能源市场竞标策略。实现电、热网运营商运行成本最小的同时,使能量枢纽运营主体获得最大收益,并且有效降低系统总耗能。结果表明,系统在综合需求响应机制的作用下削峰填谷、平衡系统用能,以能量枢纽获益降低160.44元为代价,换取减少能耗2.3 MW,且冬夏两季能量枢纽收益和系统整体能耗百分比变化较小,分别为3.42%和0.604%。 展开更多
关键词 区域配电网 能量枢纽 区域供热网 MPEC 需求响应
在线阅读 下载PDF
集中供热末端调控及分户热计量系统的实现
20
作者 丁隆厚 《建筑节能(中英文)》 CAS 2024年第8期88-91,132,共5页
实现分户热计量收费是我国供热体制改革的主要目标之一,有效的末端调控和合理的计量收费策略,是关系着供热体制改革能否顺利推进的重要因素。给出了一种基于ZigBee技术实现的供热末端调控系统,可根据场所人员活动规律自动进行分区、分... 实现分户热计量收费是我国供热体制改革的主要目标之一,有效的末端调控和合理的计量收费策略,是关系着供热体制改革能否顺利推进的重要因素。给出了一种基于ZigBee技术实现的供热末端调控系统,可根据场所人员活动规律自动进行分区、分时段调控室内温度,节约热力资源,提高供热效率,降低取暖费用。同时,给出了一种按照供热效果进行统计分析的模型,提出了一种改善分户热计量的新方法;以每栋楼的用热总量计算该栋楼的总供热费用,按照用户的供热面积、实际供热效果和用热量相结合,计算每个用户的热效值和整栋楼总热效值,分摊计算出每个用户的取暖费用,使每个用户的取暖费用真实地反映其用热效果。 展开更多
关键词 分区分时供热 分户热计量 供热调节控制 供暖节能 ZIGBEE网络
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部