The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up ...The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up new industrial opportunities in both air and space,with satellite-powered computing emerging as a new computing paradigm:Orbital Edge Computing(OEC).Compared to terrestrial edge computing,the mobility of LEO satellites and their limited communication,computation,and storage resources pose challenges in designing task-specific scheduling algorithms.Previous survey papers have largely focused on terrestrial edge computing or the integration of space and ground technologies,lacking a comprehensive summary of OEC architecture,algorithms,and case studies.This paper conducts a comprehensive survey and analysis of OEC's system architecture,applications,algorithms,and simulation tools,providing a solid background for researchers in the field.By discussing OEC use cases and the challenges faced,potential research directions for future OEC research are proposed.展开更多
This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires t...This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme.展开更多
Tropospheric ozone pollution has been worsened over most regions of China,adversely affecting human health and ecosystems.The long-term ozone concentration depends largely upon atmospheric circulations.Here,we conduct...Tropospheric ozone pollution has been worsened over most regions of China,adversely affecting human health and ecosystems.The long-term ozone concentration depends largely upon atmospheric circulations.Here,we conducted meteorological adjustment to quantitatively assess the influences of meteorological factors on the ozone evolution in China's seven city clusters during thewarm season(April to October)from 2013 to 2020.Our analysis indicated that northern and eastern regions experienced ozone increases driven by emission changes.Southern regions,particularly the Pearl River Delta(PRD),exhibited ozone rise primarily due to meteorological conditions despite emission changes.In the Sichuan Basin(SCB)and Central Yangtze River Plain(CYP),where ozone levels decreased,meteorological conditions played a significant role in suppressing the ascent of ozone.Empirical orthogonal functions(EOF)analyses suggested that the spatiotemporal trend ofmeteorologyassociated ozone was strongly correlated with the variation of East Asian Trough(EAT),South Asian High(SAH)and the western Pacific subtropical high(WPSH).The top three EOF patterns explained 33.4%,21.8%,and 16.0%of the total variance inmeteorology-associated ozone.Absolute principal component scores-multiple linear regression(APCS-MLR)analyse quantitatively identified that enhanced EAT and SAH with a northward location of WPSH were favourable to surface ozone formation in central and eastern regions,but unfavourable to ozone formation in edge regions such as SCB.展开更多
Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap fr...Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap from traditional robotics to hierarchical and end-to-end models.This algorithmic advancement poses a critical challenge in achieving balanced system-wide performance.Therefore,algorithm-hardware co-design has emerged as the primary methodology,which ana-lyzes algorithm behaviors on hardware to identify common computational properties.These properties can motivate algo-rithm optimization to reduce computational complexity and hardware innovation from architecture to circuit for high performance and high energy efficiency.We then reviewed recent works on robotic and embodied AI algorithms and computing hard-ware to demonstrate this algorithm-hardware co-design methodology.In the end,we discuss future research opportunities by answering two questions:(1)how to adapt the computing platforms to the rapid evolution of embodied AI algorithms,and(2)how to transform the potential of emerging hardware innovations into end-to-end inference improvements.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
According the to the model of single tank fire control system, this paper makes use of decomposition-coordination theory of large-scale systems to discuss the shooting problem of multiple tank the control systems, and...According the to the model of single tank fire control system, this paper makes use of decomposition-coordination theory of large-scale systems to discuss the shooting problem of multiple tank the control systems, and alalyzes specifically the three-tank the control systems and models.the process was imitated in computer, and the optimal shooting element of 3TS system was got. In addition, probability of hitting the target was calculated.展开更多
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti...Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.展开更多
The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet ...The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet the stringent latency requirements of modern IoT systems,while pure edge computing faces resource constraints that limit processing capabilities.This paper addresses these challenges by proposing a novel Deep Reinforcement Learning(DRL)-enhanced priority-based scheduling framework for hybrid edge-cloud computing environments.Our approach integrates adaptive priority assignment with a two-level concurrency control protocol that ensures both optimal performance and data consistency.The framework introduces three key innovations:(1)a DRL-based dynamic priority assignmentmechanism that learns fromsystem behavior,(2)a hybrid concurrency control protocol combining local edge validation with global cloud coordination,and(3)an integrated mathematical model that formalizes sensor-driven transactions across edge-cloud architectures.Extensive simulations across diverse workload scenarios demonstrate significant quantitative improvements:40%latency reduction,25%throughput increase,85%resource utilization(compared to 60%for heuristicmethods),40%reduction in energy consumption(300 vs.500 J per task),and 50%improvement in scalability factor(1.8 vs.1.2 for EDF)compared to state-of-the-art heuristic and meta-heuristic approaches.These results establish the framework as a robust solution for large-scale IoT and autonomous applications requiring real-time processing with consistency guarantees.展开更多
This study aims to examine the challenges and future directions of large-scale wooden construction education at universities in Japan and Finland.It compares the wooden construction curricula at universities and the a...This study aims to examine the challenges and future directions of large-scale wooden construction education at universities in Japan and Finland.It compares the wooden construction curricula at universities and the architectural education initiatives undertaken by firms specializing in large-scale wood construction design in both countries.The target applications for large-scale wooden construction are residential,commercial,and public buildings.Comparing university education revealed many commonalities between the two countries,allowing them to be classified into two types:“seminar-centered”and“lecture-centered”.Japanese universities are categorized by building type and scale for educational purposes.Finnish universities focus their education on the properties and functions of wood.Based on these results,we infer that incorporating both Japan’s architecture-planning-focused education and Finland’s materials-focused education into teaching,using familiar housing buildings as a theme,will lead to the wider adoption of large-scale wooden construction.展开更多
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded...Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadra...The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.展开更多
This paper presents a kind of artificial intelligent system-generalized computing system (GCS for short), and introduces its mathematical description, implement problem and learning problem.
The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components...The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.展开更多
The problem of robust stabilization for a class of discrete-time switched large-scale systems with parameter uncertainties and nonlinear interconnected terms is considered. By using state feedback and Lyapunov functio...The problem of robust stabilization for a class of discrete-time switched large-scale systems with parameter uncertainties and nonlinear interconnected terms is considered. By using state feedback and Lyapunov function technique, a decentralized switching control approach is put forward to guarantee the solutions of large-scale systems converge to the origin globally. A numerical example and a corresponding simulation result are utilized to verify the effectiveness of the presented approach.展开更多
This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonline...This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.展开更多
The H_(∞)output feedback control problem for a class of large-scale nonlinear systems with time delay in both state and input is considered in this paper.It is assumed that the interconnected nonlinearities are limit...The H_(∞)output feedback control problem for a class of large-scale nonlinear systems with time delay in both state and input is considered in this paper.It is assumed that the interconnected nonlinearities are limited by constant multiplied by unmeasured states,delayed states and external disturbances.Different from existing methods to study the H_(∞)control of large-scale nonlinear systems,the static gain control technique is utilized to obtain an observer-based output feedback control strategy,which makes the closed-loop system globally asymptotically stable and attenuates the effect of external disturbances.An example is finally carried out to show the feasibility of the proposed control strategy.展开更多
An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbance...An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.展开更多
基金funded by the Hong Kong-Macao-Taiwan Science and Technology Cooperation Project of the Science and Technology Innovation Action Plan in Shanghai,China(23510760200)the Oriental Talent Youth Program of Shanghai,China(No.Y3DFRCZL01)+1 种基金the Outstanding Program of the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y2023080)the Strategic Priority Research Program of the Chinese Academy of Sciences Category A(No.XDA0360404).
文摘The number of satellites,especially those operating in Low-Earth Orbit(LEO),has been exploding in recent years.Additionally,the burgeoning development of Artificial Intelligence(AI)software and hardware has opened up new industrial opportunities in both air and space,with satellite-powered computing emerging as a new computing paradigm:Orbital Edge Computing(OEC).Compared to terrestrial edge computing,the mobility of LEO satellites and their limited communication,computation,and storage resources pose challenges in designing task-specific scheduling algorithms.Previous survey papers have largely focused on terrestrial edge computing or the integration of space and ground technologies,lacking a comprehensive summary of OEC architecture,algorithms,and case studies.This paper conducts a comprehensive survey and analysis of OEC's system architecture,applications,algorithms,and simulation tools,providing a solid background for researchers in the field.By discussing OEC use cases and the challenges faced,potential research directions for future OEC research are proposed.
基金supported by the National Natural Science Foundation of China under Grant 62073190the Science Center Program of National Natural Science Foundation of China under Grant 62188101.
文摘This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme.
基金supported by the National Natural Science Foundation of China(No.42377095)the Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(No.PAEKL-2024-K01)Xianyang Key Research and Development Program(No.L2022ZDYFSF040).
文摘Tropospheric ozone pollution has been worsened over most regions of China,adversely affecting human health and ecosystems.The long-term ozone concentration depends largely upon atmospheric circulations.Here,we conducted meteorological adjustment to quantitatively assess the influences of meteorological factors on the ozone evolution in China's seven city clusters during thewarm season(April to October)from 2013 to 2020.Our analysis indicated that northern and eastern regions experienced ozone increases driven by emission changes.Southern regions,particularly the Pearl River Delta(PRD),exhibited ozone rise primarily due to meteorological conditions despite emission changes.In the Sichuan Basin(SCB)and Central Yangtze River Plain(CYP),where ozone levels decreased,meteorological conditions played a significant role in suppressing the ascent of ozone.Empirical orthogonal functions(EOF)analyses suggested that the spatiotemporal trend ofmeteorologyassociated ozone was strongly correlated with the variation of East Asian Trough(EAT),South Asian High(SAH)and the western Pacific subtropical high(WPSH).The top three EOF patterns explained 33.4%,21.8%,and 16.0%of the total variance inmeteorology-associated ozone.Absolute principal component scores-multiple linear regression(APCS-MLR)analyse quantitatively identified that enhanced EAT and SAH with a northward location of WPSH were favourable to surface ozone formation in central and eastern regions,but unfavourable to ozone formation in edge regions such as SCB.
基金supported in part by NSFC under Grant 62422407in part by RGC under Grant 26204424in part by ACCESS–AI Chip Center for Emerging Smart Systems, sponsored by the Inno HK initiative of the Innovation and Technology Commission of the Hong Kong Special Administrative Region Government
文摘Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap from traditional robotics to hierarchical and end-to-end models.This algorithmic advancement poses a critical challenge in achieving balanced system-wide performance.Therefore,algorithm-hardware co-design has emerged as the primary methodology,which ana-lyzes algorithm behaviors on hardware to identify common computational properties.These properties can motivate algo-rithm optimization to reduce computational complexity and hardware innovation from architecture to circuit for high performance and high energy efficiency.We then reviewed recent works on robotic and embodied AI algorithms and computing hard-ware to demonstrate this algorithm-hardware co-design methodology.In the end,we discuss future research opportunities by answering two questions:(1)how to adapt the computing platforms to the rapid evolution of embodied AI algorithms,and(2)how to transform the potential of emerging hardware innovations into end-to-end inference improvements.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
文摘According the to the model of single tank fire control system, this paper makes use of decomposition-coordination theory of large-scale systems to discuss the shooting problem of multiple tank the control systems, and alalyzes specifically the three-tank the control systems and models.the process was imitated in computer, and the optimal shooting element of 3TS system was got. In addition, probability of hitting the target was calculated.
基金The Australian Research Council(DP200101197,DP230101107).
文摘Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R909),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The exponential growth of Internet ofThings(IoT)devices has created unprecedented challenges in data processing and resource management for time-critical applications.Traditional cloud computing paradigms cannot meet the stringent latency requirements of modern IoT systems,while pure edge computing faces resource constraints that limit processing capabilities.This paper addresses these challenges by proposing a novel Deep Reinforcement Learning(DRL)-enhanced priority-based scheduling framework for hybrid edge-cloud computing environments.Our approach integrates adaptive priority assignment with a two-level concurrency control protocol that ensures both optimal performance and data consistency.The framework introduces three key innovations:(1)a DRL-based dynamic priority assignmentmechanism that learns fromsystem behavior,(2)a hybrid concurrency control protocol combining local edge validation with global cloud coordination,and(3)an integrated mathematical model that formalizes sensor-driven transactions across edge-cloud architectures.Extensive simulations across diverse workload scenarios demonstrate significant quantitative improvements:40%latency reduction,25%throughput increase,85%resource utilization(compared to 60%for heuristicmethods),40%reduction in energy consumption(300 vs.500 J per task),and 50%improvement in scalability factor(1.8 vs.1.2 for EDF)compared to state-of-the-art heuristic and meta-heuristic approaches.These results establish the framework as a robust solution for large-scale IoT and autonomous applications requiring real-time processing with consistency guarantees.
基金supported by the Sugiyama Jogakuen University’s School Research Fund.
文摘This study aims to examine the challenges and future directions of large-scale wooden construction education at universities in Japan and Finland.It compares the wooden construction curricula at universities and the architectural education initiatives undertaken by firms specializing in large-scale wood construction design in both countries.The target applications for large-scale wooden construction are residential,commercial,and public buildings.Comparing university education revealed many commonalities between the two countries,allowing them to be classified into two types:“seminar-centered”and“lecture-centered”.Japanese universities are categorized by building type and scale for educational purposes.Finnish universities focus their education on the properties and functions of wood.Based on these results,we infer that incorporating both Japan’s architecture-planning-focused education and Finland’s materials-focused education into teaching,using familiar housing buildings as a theme,will lead to the wider adoption of large-scale wooden construction.
基金supported by the National Natural Science Foundation of China(62303273,62373226)the National Research Foundation,Singapore through the Medium Sized Center for Advanced Robotics Technology Innovation(WP2.7)
文摘Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
基金This project was supported by the National Natural Science Foundation of China (60474078)Science Foundation of High Education of Jiangsu of China (04KJD120016).
文摘The decentralized robust guaranteed cost control problem is studied for a class of interconnected singular large-scale systems with time-delay and norm-bounded time-invariant parameter uncertainty under a given quadratic cost performance function. The problem that is addressed in this study is to design a decentralized robust guaranteed cost state feedback controller such that the closed-loop system is not only regular, impulse-free and stable, but also guarantees an adequate level of performance for all admissible uncertainties. A sufficient condition for the existence of the decentralized robust guaranteed cost state feedback controllers is proposed in terms of a linear matrix inequality (LMI) via LMI approach. When this condition is feasible, the desired state feedback decentralized robust guaranteed cost controller gain matrices can be obtained. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed approach.
文摘This paper presents a kind of artificial intelligent system-generalized computing system (GCS for short), and introduces its mathematical description, implement problem and learning problem.
文摘The problem of stabilizing a class of large-scale non-linear multiple delay systems is considered.The complicated system is decomposed into several subsystems; each function of them is expressed by a set of components of the overall state vector,with interconnections between them, and the subsystems are coupled by the delayed state. In this paper, a method is devised to be a suitable choice of state feedback controls of every subsystems, moreover, it is proved that the large-scale system is exponential stable.
基金supported by the Scientific Research Project of Liaoning Provincial Education Department,China(No.L2013229)the Mathematics Subject Development Project of Shenyang Jianzhu University,China(No.XKHY-78)
文摘The problem of robust stabilization for a class of discrete-time switched large-scale systems with parameter uncertainties and nonlinear interconnected terms is considered. By using state feedback and Lyapunov function technique, a decentralized switching control approach is put forward to guarantee the solutions of large-scale systems converge to the origin globally. A numerical example and a corresponding simulation result are utilized to verify the effectiveness of the presented approach.
基金supported by the National Natural Science Foundation of China(No.60574023)the Natural Science Foundation of Shandong Province(No.Z2005G01)
文摘This paper studies the optimal control with zero steady-state error problem for nonlinear large-scale systems affected by external persistent disturbances.The nonlinear large-scale system is transformed into N nonlinear subsystems with interconnect terms.Based on the internal model principle,a disturbance compensator is constructed such that the ith subsystem with external persistent disturbances is transformed into an augmented subsystem without disturbances.According to the sensitivity approach,the optimal tracking control law for the ith nonlinear subsystem can be obtained.The optimal tracking control law for the nonlinear large-scale systems can be obtained.A numerical simulation shows that the method is effective.
基金The work was supported by the National Natural Science Foundation of China(Nos.61973189,62073190,61873334)the Research Fund for the Taishan Scholar Project of Shandong Province of China(No.ts20190905)the Foundation for Innovative Research Groups of National Natural Science Foundation of China(No.61821004).
文摘The H_(∞)output feedback control problem for a class of large-scale nonlinear systems with time delay in both state and input is considered in this paper.It is assumed that the interconnected nonlinearities are limited by constant multiplied by unmeasured states,delayed states and external disturbances.Different from existing methods to study the H_(∞)control of large-scale nonlinear systems,the static gain control technique is utilized to obtain an observer-based output feedback control strategy,which makes the closed-loop system globally asymptotically stable and attenuates the effect of external disturbances.An example is finally carried out to show the feasibility of the proposed control strategy.
基金This work was supported in part by the National Natural Science Foundation of China(61873151,62073201)in part by the Shandong Provincial Natural Science Foundation of China(ZR2019MF009)+2 种基金the Taishan Scholar Project of Shandong Province of China(tsqn201909078)the Major Scientific and Technological Innovation Project of Shandong Province,China(2019JAZZ020812)in part by the Major Program of Shandong Province Natural Science Foundation,China(ZR2018ZB0419).
文摘An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.