This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter...This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.展开更多
The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,...The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components.展开更多
The level of personnel operation ability determines the expected effectiveness of large-scale complex equipment. Firstly, this paper constructs the personnel operational ability evaluation index system and analyzes th...The level of personnel operation ability determines the expected effectiveness of large-scale complex equipment. Firstly, this paper constructs the personnel operational ability evaluation index system and analyzes the data source of index. Secondly, the weight of index is determined and the fuzzy comprehensive evaluation model is proposed. Finally, results of instance analysis show that the evaluation model is feasible and effective.展开更多
With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have...With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have shown that network failures occur on the Internet inevitably and frequently.The current routing protocols deployed on the Internet adopt the reconvergence mechanism to cope with network failures.During the reconvergence process,the packets may be lost because of inconsistent routing information,which reduces the network’s availability greatly and affects the Internet service provider’s(ISP’s)service quality and reputation seriously.Therefore,improving network availability has become an urgent problem.As such,the Internet Engineering Task Force suggests the use of downstream path criterion(DC)to address all single-link failure scenarios.However,existing methods for implementing DC schemes are time consuming,require a large amount of router CPU resources,and may deteriorate router capability.Thus,the computation overhead introduced by existing DC schemes is significant,especially in large-scale networks.Therefore,this study proposes an efficient intra-domain routing protection algorithm(ERPA)in large-scale networks.Theoretical analysis indicates that the time complexity of ERPA is less than that of constructing a shortest path tree.Experimental results show that ERPA can reduce the computation overhead significantly compared with the existing algorithms while offering the same network availability as DC.展开更多
With the explosion of the number of meteoroid/orbital debris in terrestrial space in recent years, the detection environment of spacecraft becomes more complex. This phenomenon causes most current detection methods ba...With the explosion of the number of meteoroid/orbital debris in terrestrial space in recent years, the detection environment of spacecraft becomes more complex. This phenomenon causes most current detection methods based on machine learning intractable to break through the two difficulties of solving scale transformation problem of the targets in image and accelerating detection rate of high-resolution images. To overcome the two challenges, we propose a novel noncooperative target detection method using the framework of deep convolutional neural network.Firstly, a specific spacecraft simulation dataset using over one thousand images to train and test our detection model is built. The deep separable convolution structure is applied and combined with the residual network module to improve the network’s backbone. To count the different shapes of the spacecrafts in the dataset, a particular prior-box generation method based on K-means cluster algorithm is designed for each detection head with different scales. Finally, a comprehensive loss function is presented considering category confidence, box parameters, as well as box confidence. The experimental results verify that the proposed method has strong robustness against varying degrees of luminance change, and can suppress the interference caused by Gaussian noise and background complexity. The mean accuracy precision of our proposed method reaches 93.28%, and the global loss value is 13.252. The comparative experiment results show that under the same epoch and batchsize, the speed of our method is compressed by about 20% in comparison of YOLOv3, the detection accuracy is increased by about 12%, and the size of the model is reduced by nearly 50%.展开更多
A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a cens...A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a census of subgraph numbers has some drawbacks,especially the needfor a runtime increasing strongly with network size and network density.In this paper,an improvedmethod has been proposed by introducing a census algorithm of subgraph concentrations.Networkmechanism can be quickly inferred by the new method even though the network has large scale andhigh density.Therefore,the application perspective of mechanism-inferring method has been extendedinto the wider fields of large-scale complex networks.By applying the new method to a case of proteininteraction network,the authors obtain the same inferring result as the existing method,which approvesthe effectiveness of the method.展开更多
Through analysis of satellite images from Google Earth, this article expounds the characteristics of large-scale geomorphic patterns of the complex longitudinal sand ridge zone in the Taklimakan Desert, and reduces th...Through analysis of satellite images from Google Earth, this article expounds the characteristics of large-scale geomorphic patterns of the complex longitudinal sand ridge zone in the Taklimakan Desert, and reduces the large-scale geomorphic patterns to six types: parallel pattern, "日"character-shaped and "乡" character-shaped pattern, comb-shaped pattern, fork-shaped pattern, toe-shaped pattern and miscellaneous pattern. And according to the large-scale geomorphic pattern type (or composition of pattern types) as well as some other factors, the article divides the complex longitudinal sand ridge zone into 55 subzones. Lastly, aiming at the genetic problems of the large-scale geomorphic patterns, the article suggests three connective types of the sand ridges in the complex longitudinal sand ridge zone, i.e., connecting or intersecting after natural elongation, connecting in a narrow place and connecting with the aid of intermediary.展开更多
基金supported by the Na⁃tional Key R&D Program of China(No.2022YFC2204800)the Graduate Student Independent Exploration and Innovation Program of Central South University(No.2024ZZTS 0767).
文摘This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions.
基金Supported by National Natural Science Foundation of China(Grant No.52075501).
文摘The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components.
基金supported by the Natural Science Foundation of China(71704184)Projects of the of the National Social Science Foundation of China(15GJ003-245)Science Foundation of Equipment Research(JJ20172A05095)
文摘The level of personnel operation ability determines the expected effectiveness of large-scale complex equipment. Firstly, this paper constructs the personnel operational ability evaluation index system and analyzes the data source of index. Secondly, the weight of index is determined and the fuzzy comprehensive evaluation model is proposed. Finally, results of instance analysis show that the evaluation model is feasible and effective.
基金the National Natural Science Foundation of China(No.61702315)the Key R&D program(international science and technology cooperation project)of Shanxi Province China(No.201903D421003)the National Key Research and Development Program of China(No.2018YFB1800401).
文摘With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks,minimizing network disruption caused by network failure has become critical.However,a large number of relevant studies have shown that network failures occur on the Internet inevitably and frequently.The current routing protocols deployed on the Internet adopt the reconvergence mechanism to cope with network failures.During the reconvergence process,the packets may be lost because of inconsistent routing information,which reduces the network’s availability greatly and affects the Internet service provider’s(ISP’s)service quality and reputation seriously.Therefore,improving network availability has become an urgent problem.As such,the Internet Engineering Task Force suggests the use of downstream path criterion(DC)to address all single-link failure scenarios.However,existing methods for implementing DC schemes are time consuming,require a large amount of router CPU resources,and may deteriorate router capability.Thus,the computation overhead introduced by existing DC schemes is significant,especially in large-scale networks.Therefore,this study proposes an efficient intra-domain routing protection algorithm(ERPA)in large-scale networks.Theoretical analysis indicates that the time complexity of ERPA is less than that of constructing a shortest path tree.Experimental results show that ERPA can reduce the computation overhead significantly compared with the existing algorithms while offering the same network availability as DC.
基金supported by the National Natural Science Foundation of China(No.61473100)。
文摘With the explosion of the number of meteoroid/orbital debris in terrestrial space in recent years, the detection environment of spacecraft becomes more complex. This phenomenon causes most current detection methods based on machine learning intractable to break through the two difficulties of solving scale transformation problem of the targets in image and accelerating detection rate of high-resolution images. To overcome the two challenges, we propose a novel noncooperative target detection method using the framework of deep convolutional neural network.Firstly, a specific spacecraft simulation dataset using over one thousand images to train and test our detection model is built. The deep separable convolution structure is applied and combined with the residual network module to improve the network’s backbone. To count the different shapes of the spacecrafts in the dataset, a particular prior-box generation method based on K-means cluster algorithm is designed for each detection head with different scales. Finally, a comprehensive loss function is presented considering category confidence, box parameters, as well as box confidence. The experimental results verify that the proposed method has strong robustness against varying degrees of luminance change, and can suppress the interference caused by Gaussian noise and background complexity. The mean accuracy precision of our proposed method reaches 93.28%, and the global loss value is 13.252. The comparative experiment results show that under the same epoch and batchsize, the speed of our method is compressed by about 20% in comparison of YOLOv3, the detection accuracy is increased by about 12%, and the size of the model is reduced by nearly 50%.
基金supported by the National Natural Science Foundation of China under Grant No. 70401019
文摘A Mechanism-Inferring method of networks exploited from machine learning theory caneffectively evaluate the predicting performance of a network model.The existing method for inferringnetwork mechanisms based on a census of subgraph numbers has some drawbacks,especially the needfor a runtime increasing strongly with network size and network density.In this paper,an improvedmethod has been proposed by introducing a census algorithm of subgraph concentrations.Networkmechanism can be quickly inferred by the new method even though the network has large scale andhigh density.Therefore,the application perspective of mechanism-inferring method has been extendedinto the wider fields of large-scale complex networks.By applying the new method to a case of proteininteraction network,the authors obtain the same inferring result as the existing method,which approvesthe effectiveness of the method.
基金Supported by Major Orientation Foundation of the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX3-SW-342)
文摘Through analysis of satellite images from Google Earth, this article expounds the characteristics of large-scale geomorphic patterns of the complex longitudinal sand ridge zone in the Taklimakan Desert, and reduces the large-scale geomorphic patterns to six types: parallel pattern, "日"character-shaped and "乡" character-shaped pattern, comb-shaped pattern, fork-shaped pattern, toe-shaped pattern and miscellaneous pattern. And according to the large-scale geomorphic pattern type (or composition of pattern types) as well as some other factors, the article divides the complex longitudinal sand ridge zone into 55 subzones. Lastly, aiming at the genetic problems of the large-scale geomorphic patterns, the article suggests three connective types of the sand ridges in the complex longitudinal sand ridge zone, i.e., connecting or intersecting after natural elongation, connecting in a narrow place and connecting with the aid of intermediary.