Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical...Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical frameworks to systematically examine the evolution,performance,and influencing factors of governance mechanisms within these organizations.Using both quantitative and inductive analytical methods,the paper proposes innovative designs and supporting measures for improving governance mechanisms.The findings reveal that,amid large-scale farmland circulation,the governance mechanisms of agricultural production organizations in Daqing City are evolving from traditional to modern structures.However,challenges remain in areas such as decision-making efficiency,benefit distribution,and supervision mechanisms.In response,this study proposes innovative governance designs focusing on decision-making processes,profit-sharing mechanisms,and risk prevention.Corresponding policy recommendations are also provided to support the sustainable development of agricultural modernization in China.展开更多
In 2022, South China(SC) experienced record-breaking rainfall during its first rainy season, causing severe socioeconomic losses. This study examines the large-scale circulation anomalies responsible for this extreme ...In 2022, South China(SC) experienced record-breaking rainfall during its first rainy season, causing severe socioeconomic losses. This study examines the large-scale circulation anomalies responsible for this extreme event.Analysis reveals that the lower-tropospheric cyclonic anomaly over SC plays a crucial role. This cyclonic anomaly consists of extratropical northeasterly anomalies to the north of SC and tropical southwesterly anomalies to the south. Both components were particularly intense during the 2022 first rainy season, contributing to the heavy rainfall in SC. Moreover,the lower-tropospheric cyclonic anomaly is enhanced by its counterpart in the upper troposphere, which is associated with a wave train propagating from the North Atlantic to East Asia across the mid-high latitudes of the Eurasian continent.Further analysis indicates that the extratropical wave train correlates with sea surface temperature anomalies(SSTAs) in the North Atlantic. Additionally, the SSTAs over the North Indian Ocean also play a role in enhancing the tropical southwesterlies in the lower troposphere. This study highlights the combined influence of tropical and extratropical circulation anomalies, offering a comprehensive understanding of the record-breaking rainfall.展开更多
Tropospheric ozone pollution has been worsened over most regions of China,adversely affecting human health and ecosystems.The long-term ozone concentration depends largely upon atmospheric circulations.Here,we conduct...Tropospheric ozone pollution has been worsened over most regions of China,adversely affecting human health and ecosystems.The long-term ozone concentration depends largely upon atmospheric circulations.Here,we conducted meteorological adjustment to quantitatively assess the influences of meteorological factors on the ozone evolution in China's seven city clusters during thewarm season(April to October)from 2013 to 2020.Our analysis indicated that northern and eastern regions experienced ozone increases driven by emission changes.Southern regions,particularly the Pearl River Delta(PRD),exhibited ozone rise primarily due to meteorological conditions despite emission changes.In the Sichuan Basin(SCB)and Central Yangtze River Plain(CYP),where ozone levels decreased,meteorological conditions played a significant role in suppressing the ascent of ozone.Empirical orthogonal functions(EOF)analyses suggested that the spatiotemporal trend ofmeteorologyassociated ozone was strongly correlated with the variation of East Asian Trough(EAT),South Asian High(SAH)and the western Pacific subtropical high(WPSH).The top three EOF patterns explained 33.4%,21.8%,and 16.0%of the total variance inmeteorology-associated ozone.Absolute principal component scores-multiple linear regression(APCS-MLR)analyse quantitatively identified that enhanced EAT and SAH with a northward location of WPSH were favourable to surface ozone formation in central and eastern regions,but unfavourable to ozone formation in edge regions such as SCB.展开更多
Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boun...Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.展开更多
In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with th...In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with this heat wave over Northeast China are analyzed using station temperature data and NCEP–NCAR reanalysis data.The results indicate that strong anomalous positive geopotential height centers existed from the lower to upper levels over Northeast China,and the related downward motions were directly responsible for the extreme high-temperature anomalies.The northwestward shift of the western Pacific subtropical high(WPSH)and the northeastward shift of the South Asian high concurrently reinforced the geopotential height anomalies and descending flow over Northeast China.In addition,an anomalous Pacific–Japan pattern in the lower troposphere led to the northwestward shift of the WPSH,jointly favoring the anomalous geopotential height over Northeast China.Two wave trains emanating from the Atlantic region propagated eastwards along high latitudes and midlatitudes,respectively,and converged over Northeast China,leading to the enhancement of the geopotential height anomalies.展开更多
Based on an analysis of the relationship between the tropical cyclone genesis frequency and large-scale circulation anomaly in NCEP reanalysis, large-scale atmosphere circulation information forecast by the JAMSTEC SI...Based on an analysis of the relationship between the tropical cyclone genesis frequency and large-scale circulation anomaly in NCEP reanalysis, large-scale atmosphere circulation information forecast by the JAMSTEC SINTEX-F coupled model is used to build a statistical model to predict the cyclogenesis frequency over the South China Sea and the western North Pacific. The SINTEX-F coupled model has relatively good prediction skill for some circulation features associated with the cyclogenesis frequency including sea level pressure, wind vertical shear, Intertropical Convergence Zone and cross-equatorial air flows. Predictors derived from these large-scale circulations have good relationships with the cyclogenesis frequency over the South China Sea and the western North Pacific. A multivariate linear regression(MLR) model is further designed using these predictors. This model shows good prediction skill with the anomaly correlation coefficient reaching, based on the cross validation, 0.71 between the observed and predicted cyclogenesis frequency. However, it also shows relatively large prediction errors in extreme tropical cyclone years(1994 and 1998, for example).展开更多
This study examined the variability in frequency of tropical night occurrence (i.e., minimum air tem- perature 25℃) in Beijing, using a homogenized daily temperature dataset during the period 1960–2008. Our result...This study examined the variability in frequency of tropical night occurrence (i.e., minimum air tem- perature 25℃) in Beijing, using a homogenized daily temperature dataset during the period 1960–2008. Our results show that tropical nights occur most frequently in late July and early August, which is consis- tent with relatively high air humidity associated with the rainy season in Beijing. In addition, year-to-year variation of tropical night occurrence indicates that the tropical nights have appeared much more frequently since 1994, which can be illustrated by the yearly days of tropical nights averaged over two periods: 9.2 days of tropical nights per year during 1994–2008 versus 3.15 days during 1960–1993. These features of tropical night variations suggest a distinction between tropical nights and extreme heat in Beijing. We further investigated the large-scale circulations associated with the year-to-year variation of tropical night occurrence in July and August, when tropical nights appear most frequently and occupy 95% of the annual sum. After comparing the results in the two reanalysis datasets (NCEP/NCAR and ERA-40) and considering the possible effects of decadal change in the frequency of tropical nights that occurred around 1993/94, we conclude that on the interannual time scale, the cyclonic anomaly with a barotropic structure centered over Beijing is responsible for less frequent tropical nights, and the anticyclonic anomaly is responsible for more frequent occurrence of tropical nights over Beijing.展开更多
To understand the spatio-temporal variability of precipitation(P)in the Third Pole region(centered on the Tibetan Plateau-TP),it is necessary to quantify the interannual periodicity of P and its relationship with larg...To understand the spatio-temporal variability of precipitation(P)in the Third Pole region(centered on the Tibetan Plateau-TP),it is necessary to quantify the interannual periodicity of P and its relationship with large-scale circulations.In this study,Morlet wavelet transform was used to detect significant(p<0.05)periodic characteristics in P data from meteorological stations in four climate domains in the Third Pole,and to reveal the major large-scale circulations that triggered the variability of periodic P,in addition to bringing large amounts of water vapour.The wavelet transform results were as follows.(1)Significant quasiperiodicity varied from 2 to 11 years.The high-frequency variability mode(2 to 6 years quasi-periods)was universal,and the low-frequency variability mode(7 to 11 years quasi-periods)was rare,occurring mainly in the westerlies and Indian monsoon domains.(2)The majority of periods were base periods(53%),followed by two-base periods.Almost all stations in the Third Pole(95%)showed one or two periods.(3)Periodicity was widely detected in the majority of years(84%).(4)The power spectra of P in the four domains were dominated by statistically significant high-frequency oscillations(ie.,with short periodicity).(5)Large-scale circulations directly and indirectly influenced the periodic P variability in the different domains.The mode of P variability in the different domains was influenced by interactions between large-scale circulation features and not only by the dominant circulation and its control of water vapour transport.The results of this study will contribute to better understanding of the causal mechanisms associated with P variability,which is important for hydrological science and waterresourcemanagement.展开更多
Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal...Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.展开更多
In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmi...In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmitted useful data of at least 30 days. The wind-driven component of the drift was removed from the original drift velocity of drifters. The wind data used are from NCEP (National Center for Environmental Prediction), USA.Trajectories and drift velocities of the 23 drifters depicted the upper circulation structure in the southern YS.There exists an anti-cyclonic eddy with a mean speed and radius of 0.063 m/s and 50km in the central southern YS, whose center lingered within 35.3-36.0°N / 123.5-124.0°E. Showed by 6 drifters, a basin-scale elliptic cyclonic gyre with a mean speed of 0.114 m/s, long and short radius of 250 and 200 km surrounds the anti-cyclonic eddy. In the southwestern part of the southern YS has obvious frontal eddy activities within about100 km with a mean speed about 0.076 m/s. All the drifters passing Korean coast were staggering for more than10 days west of a protruding cape of central Korea. A small-scale cyclonic eddy centered at around 120.5°E/35.1°N with a mean speed of 0.048 m/s was observed in western part of the southern YS.展开更多
Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spac...Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spacecraft swarms flying around an elliptic orbit is considered.The objective is to drive the entire formation to produce a specified spatial pattern.The relative motion between agents becomes complicated as the number of agents increases.Hence,a density-based method is adopted,which concerns the density evolution of the entire swarm instead of the trajectories of individuals.The density-based method manipulates the density evolution with Partial Differential Equations(PDEs).This density-based control in this work has two aspects,global pattern control of the whole swarm and local collision-avoidance between nearby agents.The global behavior of the swarm is driven via designing velocity fields.For each spacecraft,the Q-guidance steering law is adopted to track the desired velocity with accelerations in a distributed manner.However,the final stable velocity field is required to be zero in the classical density-based approach,which appears as an obstacle from the viewpoint of astrodynamics since the periodic relative motion is always time-varying.To solve this issue,a novel transformation is constructed based on the periodic solutions of Tschauner-Hempel(TH)equations.The relative motion in Cartesian coordinates is then transformed into a new coordinate system,which permits zero-velocity in a stable configuration.The local behavior of the swarm,such as achieving collision avoidance,is achieved via a carefully-designed local density estimation algorithm.Numerical simulations are provided to demonstrate the performance of this approach.展开更多
Based on the characteristic of ‘one river one oasis’ in the arid areas, the Yerqiang River Basin, which is the largest irrigated area of Xinjiang, is taken as an example in this paper, and the regional water circula...Based on the characteristic of ‘one river one oasis’ in the arid areas, the Yerqiang River Basin, which is the largest irrigated area of Xinjiang, is taken as an example in this paper, and the regional water circulation pattern is investigated through the analysis of 60 groups of isotope data in the basin. From the phreatic evaporation data analysis of different soils, we study the law of phreatic evaporation, complete the research of the main consumption path of the groundwater, and improve the assessment precision of water resources. The transformation mount of regional water resources are predicted by calculation, which provides a scientific basis for water resources assessment and allocation in arid regions, and offers a new method for the study of regional water circulation patterns.展开更多
The objective of the present work is to provide an overview of the general circulation features in the Black Sea basin. In order to achieve this, 18 years (1993-2010) of satellite data coming from the Aviso website we...The objective of the present work is to provide an overview of the general circulation features in the Black Sea basin. In order to achieve this, 18 years (1993-2010) of satellite data coming from the Aviso website were analyzed. A description of the general circulation patterns in the Black Sea is first presented. This is followed by statistical analyses of the satellite data in 20 points covering the entire area of the sea. The reference points were chosen as follows: 12 points along the Rim cyclonic current, 3 points inside the Rim cyclonic current, 4 points on the edge of two of the biggest anticyclonic gyres outside the Rim current and one point in the northwestern shelf area of the basin. Rose graphics were drawn for the reference points for winter and summer time. Finally, 9 years of in situ data obtained from the Gloria drilling platform were analyzed and compared with the satellite data. The present study shows that most of the reference points are sensitive to seasonal changes. The current velocities depend mostly on the points location: the points located on the Rim current and on the nearshore anticyclonic eddies present higher values than the ones located in or outside the general circulation features.展开更多
In recent decades,Arctic summer sea ice extent(SIE)has shown a rapid decline overlaid with large interannual variations,both of which are influenced by geopotential height anomalies over Greenland(GL-high)and the cent...In recent decades,Arctic summer sea ice extent(SIE)has shown a rapid decline overlaid with large interannual variations,both of which are influenced by geopotential height anomalies over Greenland(GL-high)and the central Arctic(CA-high).In this study,SIE along coastal Siberia(Sib-SIE)and Alaska(Ala-SIE)is found to account for about 65%and 21%of the Arctic SIE interannual variability,respectively.Variability in Ala-SIE is related to the GL-high,whereas variability in Sib-SIE is related to the CA-high.A decreased Ala-SIE is associated with decreased cloud cover and increased easterly winds along the Alaskan coast,promoting ice-albedo feedback.A decreased Sib-SIE is associated with a significant increase in water vapor and downward longwave radiation(DLR)along the Siberian coast.The years 2012 and 2020 with minimum recorded ASIE are used as examples.Compared to climatology,summer 2012 is characterized by a significantly enhanced GL-high with major sea ice loss along the Alaskan coast,while summer 2020 is characterized by an enhanced CA-high with sea ice loss focused along the Siberian coast.In 2012,the lack of cloud cover along the Alaskan coast contributed to an increase in incoming solar radiation,amplifying ice-albedo feedback there;while in 2020,the opposite occurs with an increase in cloud cover along the Alaskan coast,resulting in a slight increase in sea ice there.Along the Siberian coast,increased DLR in 2020 plays a dominant role in sea ice loss,and increased cloud cover and water vapor both contribute to the increased DLR.展开更多
The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental P...The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental Prediction-National Center for Atmospheric Research. It is found that there are two patterns of deep convection that occur at different locations and influence the summer monsoon onset over the SCS. One is over the Asia continent and the western Pacific corresponding to the southwesterly of summer monsoon prevailing over the northern and central part of the SCS, while the other is near the Philippines that affects the westerly summer monsoon as prevailing over the central and southern part of the SCS. Since these two kinds of convection affecting the summer monsoon onset do not always occur together, thus the summer monsoon onset time is different when determined by various indices.展开更多
sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which ob...sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.展开更多
Having as target the semi-enclosed basin of the Black Sea,the primary purpose of the existing paper is to present an overview of its extensive physical features and circulation patterns.To achieve this goal,more than ...Having as target the semi-enclosed basin of the Black Sea,the primary purpose of the existing paper is to present an overview of its extensive physical features and circulation patterns.To achieve this goal,more than five decades of data analysis-from 1960 to 2015-were taken into consideration and the results were validated against acknowledged data,both from satellite data over the last two decades and in-situ measurements from first decades.The circulation of the Black Sea basin has been studied for almost 400 years since the Italian Count Luigi Marsigli first described the“two-layer”circulation through the Bosphorus Strait in the year 1681.Since climate change projections for the Black Sea region foresee a significant impact on the environment in the coming decades,a set of adaptation and mitigation measures is required.Therefore more research is needed.Nowadays,the warming trend adds a sense of immediate urgency because according to the National Oceanic and Atmospheric Administration’s National Centre for Environmental Information,July 2020 was the second-hottest month ever recorded for the planet.Its averaged land and ocean surface temperature tied with July 2016 as the secondhighest for the month in the 141-year NOAA’s global temperature dataset history,which dates back to 1880.It was 0.92°C above the 20th-century average of 15.8°C,with only 0.01°C less than the record extreme value measured in July of 2019.展开更多
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr...Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.展开更多
An eddy-permitting, quasi-global oceanic general circulation model, LICOM (LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physi...An eddy-permitting, quasi-global oceanic general circulation model, LICOM (LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics) Climate System Ocean Model), with a uniform grid of 0.5? × 0.5? is established. Forced by wind stresses from Hellerman and Rosenstain (1983), a 40-yr integration is conducted with sea surface temperature and salinity being restored to the Levitus 94 datasets. The evaluation of the annual mean climatology of the LICOM control run shows that the large-scale circulation can be well reproduced. A comparison between the LICOM control run and a parallel integration of L30T63, which has the same framework but a coarse resolution, is also made to con?rm the impact of resolution on the model performance. On account of the reduction of horizontal viscosity with the enhancement of the horizontal resolution, LICOM improves the simulation with respect to not only the intensity of the large scale circulations, but also the magnitude and structure of the Equatorial Undercurrent and South Equatorial Current. Taking advantage of the ?ne grid size, the pathway of the Indonesian Through?ow (ITF) is better represented in LICOM than in L30T63. The transport of ITF in LICOM is more convergent in the upper layer. As a consequence, the Indian Ocean tends to get warmer in LICOM. The poleward heat transports for both the global and individual basins are also signi?cantly improved in LICOM. A decomposed analysis indicates that the transport due to the barotropic gyre, which primarily stands for the barotropic e?ect of the western boundary currents, plays a crucial role in making the di?erence.展开更多
基金Supported by Daqing City Philosophy and Social Sciences Planning Research Project(DSGB 2025011)the Heilongjiang Province Education Science Planning Key Project(GJB1320229).
文摘Based on questionnaire surveys and field interviews conducted with various types of agricultural production organizations across five districts and four counties in Daqing City,this study combines relevant theoretical frameworks to systematically examine the evolution,performance,and influencing factors of governance mechanisms within these organizations.Using both quantitative and inductive analytical methods,the paper proposes innovative designs and supporting measures for improving governance mechanisms.The findings reveal that,amid large-scale farmland circulation,the governance mechanisms of agricultural production organizations in Daqing City are evolving from traditional to modern structures.However,challenges remain in areas such as decision-making efficiency,benefit distribution,and supervision mechanisms.In response,this study proposes innovative governance designs focusing on decision-making processes,profit-sharing mechanisms,and risk prevention.Corresponding policy recommendations are also provided to support the sustainable development of agricultural modernization in China.
基金Guangdong Major Project of Basic and Applied Basic Research (2020B0301030004)National Natural Science Foundation of China (42275041)Hainan Province Science and Technology Special Fund (SOLZSKY2025006)。
文摘In 2022, South China(SC) experienced record-breaking rainfall during its first rainy season, causing severe socioeconomic losses. This study examines the large-scale circulation anomalies responsible for this extreme event.Analysis reveals that the lower-tropospheric cyclonic anomaly over SC plays a crucial role. This cyclonic anomaly consists of extratropical northeasterly anomalies to the north of SC and tropical southwesterly anomalies to the south. Both components were particularly intense during the 2022 first rainy season, contributing to the heavy rainfall in SC. Moreover,the lower-tropospheric cyclonic anomaly is enhanced by its counterpart in the upper troposphere, which is associated with a wave train propagating from the North Atlantic to East Asia across the mid-high latitudes of the Eurasian continent.Further analysis indicates that the extratropical wave train correlates with sea surface temperature anomalies(SSTAs) in the North Atlantic. Additionally, the SSTAs over the North Indian Ocean also play a role in enhancing the tropical southwesterlies in the lower troposphere. This study highlights the combined influence of tropical and extratropical circulation anomalies, offering a comprehensive understanding of the record-breaking rainfall.
基金supported by the National Natural Science Foundation of China(No.42377095)the Open Research Fund Program of Plateau Atmosphere and Environment Key Laboratory of Sichuan Province(No.PAEKL-2024-K01)Xianyang Key Research and Development Program(No.L2022ZDYFSF040).
文摘Tropospheric ozone pollution has been worsened over most regions of China,adversely affecting human health and ecosystems.The long-term ozone concentration depends largely upon atmospheric circulations.Here,we conducted meteorological adjustment to quantitatively assess the influences of meteorological factors on the ozone evolution in China's seven city clusters during thewarm season(April to October)from 2013 to 2020.Our analysis indicated that northern and eastern regions experienced ozone increases driven by emission changes.Southern regions,particularly the Pearl River Delta(PRD),exhibited ozone rise primarily due to meteorological conditions despite emission changes.In the Sichuan Basin(SCB)and Central Yangtze River Plain(CYP),where ozone levels decreased,meteorological conditions played a significant role in suppressing the ascent of ozone.Empirical orthogonal functions(EOF)analyses suggested that the spatiotemporal trend ofmeteorologyassociated ozone was strongly correlated with the variation of East Asian Trough(EAT),South Asian High(SAH)and the western Pacific subtropical high(WPSH).The top three EOF patterns explained 33.4%,21.8%,and 16.0%of the total variance inmeteorology-associated ozone.Absolute principal component scores-multiple linear regression(APCS-MLR)analyse quantitatively identified that enhanced EAT and SAH with a northward location of WPSH were favourable to surface ozone formation in central and eastern regions,but unfavourable to ozone formation in edge regions such as SCB.
基金sponsored by the U.S. Department of Energy (DOE)supported by the Ministry of Science and Technology of China (Grant Nos. 2010CB950804 and 2013CB955801)+1 种基金the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05100300)the National Natural Science Foundation of China (Grant No. 41305011)
文摘Knowledge of the statistical characteristics of inversions and their effects on aerosols under different large-scale synoptic circulations is important for studying and modeling the diffusion of pollutants in the boundary layer. Based on results gen- erated using the self-organizing map (SOM) weather classification method, this study compares the statistical characteristics of surface-based inversions (SBIs) and elevated inversions (EIs), and quantitatively evaluates the effect of SBIs on aerosol condensation nuclei (CN) concentrations and the relationship between temperature gradients and aerosols for six prevailing synoptic patterns over the the Southern Great Plains (SGP) site during 2001-10. Large-scale synoptic patterns strongly influ- ence the statistical characteristics of inversions and the accumulation of aerosols in the low-level atmosphere. The activity, frequency, intensity, and vertical distribution of inversions are significantly different among these synoptic patterns. The verti- cal distribution of inversions varies diurnally and is significantly different among the different synoptic patterns. Anticyclonic patterns affect the accumulation of aerosols near the ground more strongly than cyclonic patterns. Mean aerosol CN con- centrations increase during SBIs compared to no inversion cases by 16.1%, 22.6%, 24.5%, 58.7%, 29.8% and 23.7% for the six synoptic patterns. This study confirms that there is a positive correlation between temperature gradients and aerosol CN concentrations near the ground at night under similar large-scale synoptic patterns. The relationship is different for different synoptic patterns and can be described by linear functions. These findings suggest that large-scale synoptic patterns change the static stability of the atmosphere and inversions in the lower atmosphere, thereby influencing the diffusion of aerosols near the ground.
基金supported by the National Natural Science Foundation of China under Grant 41775073
文摘In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with this heat wave over Northeast China are analyzed using station temperature data and NCEP–NCAR reanalysis data.The results indicate that strong anomalous positive geopotential height centers existed from the lower to upper levels over Northeast China,and the related downward motions were directly responsible for the extreme high-temperature anomalies.The northwestward shift of the western Pacific subtropical high(WPSH)and the northeastward shift of the South Asian high concurrently reinforced the geopotential height anomalies and descending flow over Northeast China.In addition,an anomalous Pacific–Japan pattern in the lower troposphere led to the northwestward shift of the WPSH,jointly favoring the anomalous geopotential height over Northeast China.Two wave trains emanating from the Atlantic region propagated eastwards along high latitudes and midlatitudes,respectively,and converged over Northeast China,leading to the enhancement of the geopotential height anomalies.
基金Specialized Science and Technology Project for Public Welfare Industry(GYHY200906015)National Basic Research Program of China(973 Program,2010CB428606)Key Technologies R&D Program of China(2009BAC51B05)
文摘Based on an analysis of the relationship between the tropical cyclone genesis frequency and large-scale circulation anomaly in NCEP reanalysis, large-scale atmosphere circulation information forecast by the JAMSTEC SINTEX-F coupled model is used to build a statistical model to predict the cyclogenesis frequency over the South China Sea and the western North Pacific. The SINTEX-F coupled model has relatively good prediction skill for some circulation features associated with the cyclogenesis frequency including sea level pressure, wind vertical shear, Intertropical Convergence Zone and cross-equatorial air flows. Predictors derived from these large-scale circulations have good relationships with the cyclogenesis frequency over the South China Sea and the western North Pacific. A multivariate linear regression(MLR) model is further designed using these predictors. This model shows good prediction skill with the anomaly correlation coefficient reaching, based on the cross validation, 0.71 between the observed and predicted cyclogenesis frequency. However, it also shows relatively large prediction errors in extreme tropical cyclone years(1994 and 1998, for example).
基金supported by the National Natural Science Foundation of China(Grants No.51979071,51779073,and 51809073)the Jiangsu Provincial Natural Science Fund for Distinguished Young Scholars(Grant No.BK20180021)the National Ten Thousand Talent Program for Young Top-Notch Talents,and the Six Talent Peaks Project of Jiangsu Province.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST Grant No 2010-0028715)
文摘This study examined the variability in frequency of tropical night occurrence (i.e., minimum air tem- perature 25℃) in Beijing, using a homogenized daily temperature dataset during the period 1960–2008. Our results show that tropical nights occur most frequently in late July and early August, which is consis- tent with relatively high air humidity associated with the rainy season in Beijing. In addition, year-to-year variation of tropical night occurrence indicates that the tropical nights have appeared much more frequently since 1994, which can be illustrated by the yearly days of tropical nights averaged over two periods: 9.2 days of tropical nights per year during 1994–2008 versus 3.15 days during 1960–1993. These features of tropical night variations suggest a distinction between tropical nights and extreme heat in Beijing. We further investigated the large-scale circulations associated with the year-to-year variation of tropical night occurrence in July and August, when tropical nights appear most frequently and occupy 95% of the annual sum. After comparing the results in the two reanalysis datasets (NCEP/NCAR and ERA-40) and considering the possible effects of decadal change in the frequency of tropical nights that occurred around 1993/94, we conclude that on the interannual time scale, the cyclonic anomaly with a barotropic structure centered over Beijing is responsible for less frequent tropical nights, and the anticyclonic anomaly is responsible for more frequent occurrence of tropical nights over Beijing.
基金National Natural Science Foundation of China,No.42271141,No.42071129National Key Basic Research and Development Project,No.2022YFF1300902。
文摘To understand the spatio-temporal variability of precipitation(P)in the Third Pole region(centered on the Tibetan Plateau-TP),it is necessary to quantify the interannual periodicity of P and its relationship with large-scale circulations.In this study,Morlet wavelet transform was used to detect significant(p<0.05)periodic characteristics in P data from meteorological stations in four climate domains in the Third Pole,and to reveal the major large-scale circulations that triggered the variability of periodic P,in addition to bringing large amounts of water vapour.The wavelet transform results were as follows.(1)Significant quasiperiodicity varied from 2 to 11 years.The high-frequency variability mode(2 to 6 years quasi-periods)was universal,and the low-frequency variability mode(7 to 11 years quasi-periods)was rare,occurring mainly in the westerlies and Indian monsoon domains.(2)The majority of periods were base periods(53%),followed by two-base periods.Almost all stations in the Third Pole(95%)showed one or two periods.(3)Periodicity was widely detected in the majority of years(84%).(4)The power spectra of P in the four domains were dominated by statistically significant high-frequency oscillations(ie.,with short periodicity).(5)Large-scale circulations directly and indirectly influenced the periodic P variability in the different domains.The mode of P variability in the different domains was influenced by interactions between large-scale circulation features and not only by the dominant circulation and its control of water vapour transport.The results of this study will contribute to better understanding of the causal mechanisms associated with P variability,which is important for hydrological science and waterresourcemanagement.
基金National Basic Research Program of China under contract No. 2007 CB816003the Key International Co-operative Proiect of the National Natural Science Foundation of China under contract No.40510073the International Cooperative Proiect of the Mini-stry of Science and Technology of China under contract No.2006DFB21630.
文摘Patterns of the South China Sea (SCS) circulation variability are extracted from merged satellite altimetry data from October 1992 through August 2004 by using the self-organizing map (SOM). The annual cycle, seasonal and inter-annual variations of the SCS surface circulation are identified through the evolution of the characteristic circulation patterns.The annual cycle of the SCS general circulation patterns is described as a change between two opposite basin-scale SW-NE oriented gyres embedded with eddies: low sea surface height anomaly (SSHA) (cyclonic) in winter and high SSHA (anticyclonic) in summer half year. The transition starts from July—August (January—February) with a high (low) SSHA tongue east of Vietnam around 12°~14° N, which develops into a big anticyclonic (cyclonic) gyre while moving eastward to the deep basin. During the transitions, a dipole structure, cyclonic (anticyclonic) in the north and anticyclonic (cyclonic) in the south, may be formed southeast off Vietnam with a strong zonal jet around 10°~12° N. The seasonal variation is modulated by the interannual variations. Besides the strong 1997/1998 event in response to the peak Pacific El Nio in 1997, the overall SCS sea level is found to have a significant rise during 1999~2001, however, in summer 2004 the overall SCS sea level is lower and the basin-wide anticyclonic gyre becomes weaker than the other years.
文摘In summer of 2001, 2002 and 2003, ten, six and seventeen satellite-tracked surface drifters with drogues centered at 15 and 4 m were deployed, respectively, in the southern Yellow Sea (YS). 23 drifters of them transmitted useful data of at least 30 days. The wind-driven component of the drift was removed from the original drift velocity of drifters. The wind data used are from NCEP (National Center for Environmental Prediction), USA.Trajectories and drift velocities of the 23 drifters depicted the upper circulation structure in the southern YS.There exists an anti-cyclonic eddy with a mean speed and radius of 0.063 m/s and 50km in the central southern YS, whose center lingered within 35.3-36.0°N / 123.5-124.0°E. Showed by 6 drifters, a basin-scale elliptic cyclonic gyre with a mean speed of 0.114 m/s, long and short radius of 250 and 200 km surrounds the anti-cyclonic eddy. In the southwestern part of the southern YS has obvious frontal eddy activities within about100 km with a mean speed about 0.076 m/s. All the drifters passing Korean coast were staggering for more than10 days west of a protruding cape of central Korea. A small-scale cyclonic eddy centered at around 120.5°E/35.1°N with a mean speed of 0.048 m/s was observed in western part of the southern YS.
基金co-supported by the Strategic Priority Program on Space Science of the Chinese Academy of Sciences (No.XDA15014902)the Key Research Program of the Chinese Academy of Sciences (No. ZDRW-KT-2019-1-0102)
文摘Space swarms,enabled by the miniaturization of spacecraft,have the potential capability to lower costs,increase efficiencies,and broaden the horizons of space missions.The formation control problem of large-scale spacecraft swarms flying around an elliptic orbit is considered.The objective is to drive the entire formation to produce a specified spatial pattern.The relative motion between agents becomes complicated as the number of agents increases.Hence,a density-based method is adopted,which concerns the density evolution of the entire swarm instead of the trajectories of individuals.The density-based method manipulates the density evolution with Partial Differential Equations(PDEs).This density-based control in this work has two aspects,global pattern control of the whole swarm and local collision-avoidance between nearby agents.The global behavior of the swarm is driven via designing velocity fields.For each spacecraft,the Q-guidance steering law is adopted to track the desired velocity with accelerations in a distributed manner.However,the final stable velocity field is required to be zero in the classical density-based approach,which appears as an obstacle from the viewpoint of astrodynamics since the periodic relative motion is always time-varying.To solve this issue,a novel transformation is constructed based on the periodic solutions of Tschauner-Hempel(TH)equations.The relative motion in Cartesian coordinates is then transformed into a new coordinate system,which permits zero-velocity in a stable configuration.The local behavior of the swarm,such as achieving collision avoidance,is achieved via a carefully-designed local density estimation algorithm.Numerical simulations are provided to demonstrate the performance of this approach.
文摘Based on the characteristic of ‘one river one oasis’ in the arid areas, the Yerqiang River Basin, which is the largest irrigated area of Xinjiang, is taken as an example in this paper, and the regional water circulation pattern is investigated through the analysis of 60 groups of isotope data in the basin. From the phreatic evaporation data analysis of different soils, we study the law of phreatic evaporation, complete the research of the main consumption path of the groundwater, and improve the assessment precision of water resources. The transformation mount of regional water resources are predicted by calculation, which provides a scientific basis for water resources assessment and allocation in arid regions, and offers a new method for the study of regional water circulation patterns.
文摘The objective of the present work is to provide an overview of the general circulation features in the Black Sea basin. In order to achieve this, 18 years (1993-2010) of satellite data coming from the Aviso website were analyzed. A description of the general circulation patterns in the Black Sea is first presented. This is followed by statistical analyses of the satellite data in 20 points covering the entire area of the sea. The reference points were chosen as follows: 12 points along the Rim cyclonic current, 3 points inside the Rim cyclonic current, 4 points on the edge of two of the biggest anticyclonic gyres outside the Rim current and one point in the northwestern shelf area of the basin. Rose graphics were drawn for the reference points for winter and summer time. Finally, 9 years of in situ data obtained from the Gloria drilling platform were analyzed and compared with the satellite data. The present study shows that most of the reference points are sensitive to seasonal changes. The current velocities depend mostly on the points location: the points located on the Rim current and on the nearshore anticyclonic eddies present higher values than the ones located in or outside the general circulation features.
基金the National Key Research and Development Program of China(Grant Nos.2021YFC2802504 and 2019YFC1509104)the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021008).
文摘In recent decades,Arctic summer sea ice extent(SIE)has shown a rapid decline overlaid with large interannual variations,both of which are influenced by geopotential height anomalies over Greenland(GL-high)and the central Arctic(CA-high).In this study,SIE along coastal Siberia(Sib-SIE)and Alaska(Ala-SIE)is found to account for about 65%and 21%of the Arctic SIE interannual variability,respectively.Variability in Ala-SIE is related to the GL-high,whereas variability in Sib-SIE is related to the CA-high.A decreased Ala-SIE is associated with decreased cloud cover and increased easterly winds along the Alaskan coast,promoting ice-albedo feedback.A decreased Sib-SIE is associated with a significant increase in water vapor and downward longwave radiation(DLR)along the Siberian coast.The years 2012 and 2020 with minimum recorded ASIE are used as examples.Compared to climatology,summer 2012 is characterized by a significantly enhanced GL-high with major sea ice loss along the Alaskan coast,while summer 2020 is characterized by an enhanced CA-high with sea ice loss focused along the Siberian coast.In 2012,the lack of cloud cover along the Alaskan coast contributed to an increase in incoming solar radiation,amplifying ice-albedo feedback there;while in 2020,the opposite occurs with an increase in cloud cover along the Alaskan coast,resulting in a slight increase in sea ice there.Along the Siberian coast,increased DLR in 2020 plays a dominant role in sea ice loss,and increased cloud cover and water vapor both contribute to the increased DLR.
基金The authors appreciate the support for this work from China Ministry of Education and the Key Laboratory for Tropical Marine Environmental Dynamics(LED)of South China Sea Institute of Oceanology,Chinese Acadermy of Sciences(via KECX2-205).
文摘The characteristics of circulation corresponding to two kinds of indices of summer monsoon onset over the South China Sea (SCS) have been discussed using the reanalysis data of the National Centers for Environmental Prediction-National Center for Atmospheric Research. It is found that there are two patterns of deep convection that occur at different locations and influence the summer monsoon onset over the SCS. One is over the Asia continent and the western Pacific corresponding to the southwesterly of summer monsoon prevailing over the northern and central part of the SCS, while the other is near the Philippines that affects the westerly summer monsoon as prevailing over the central and southern part of the SCS. Since these two kinds of convection affecting the summer monsoon onset do not always occur together, thus the summer monsoon onset time is different when determined by various indices.
文摘sing the natural limestone samples taken from the field with dimension of 500 mm×500 mm×1 000 mm, the D-D (dilatancy-diffusion) seismogeny pattern was modeled under the condition of water injection, which observes the time-space evolutionary features about the relative physics fields of the loaded samples from deformation, formation of microcracks to the occurrence of main rupture. The results of observed apparent resistivity show: ① The process of the deformation from microcrack to main rupture on the loaded rock sample could be characterized by the precursory spatial-temporal changes in the observation of apparent resistivity; ② The precursory temporal changes of observation in apparent resistivity could be divided into several stages, and its spatial distribution shows the difference in different parts of the rock sample; ③ Before the main rupture of the rock sample the obvious ″tendency anomaly′ and ′short-term anomaly″ were observed, and some of them could be likely considered as the ″impending earthquake ″anomaly precursor of apparent resistivity. The changes and distribution features of apparent resistivity show that they are intrinsically related to the dilatancy phenomenon of the loaded rock sample. Finally, this paper discusses the mechanism of resistivity change of loaded rock sample theoretically.
基金This work was carried out in the framework of the research project DREAM(Dynamics of the REsources and technological Advance in harvesting Marine renewable energy),supported by the Romanian Executive Agency for Higher Education,Research,Development and Innovation Funding-UEFISCDI,grant number PN-III-P4-IDPCE-2020-0008.
文摘Having as target the semi-enclosed basin of the Black Sea,the primary purpose of the existing paper is to present an overview of its extensive physical features and circulation patterns.To achieve this goal,more than five decades of data analysis-from 1960 to 2015-were taken into consideration and the results were validated against acknowledged data,both from satellite data over the last two decades and in-situ measurements from first decades.The circulation of the Black Sea basin has been studied for almost 400 years since the Italian Count Luigi Marsigli first described the“two-layer”circulation through the Bosphorus Strait in the year 1681.Since climate change projections for the Black Sea region foresee a significant impact on the environment in the coming decades,a set of adaptation and mitigation measures is required.Therefore more research is needed.Nowadays,the warming trend adds a sense of immediate urgency because according to the National Oceanic and Atmospheric Administration’s National Centre for Environmental Information,July 2020 was the second-hottest month ever recorded for the planet.Its averaged land and ocean surface temperature tied with July 2016 as the secondhighest for the month in the 141-year NOAA’s global temperature dataset history,which dates back to 1880.It was 0.92°C above the 20th-century average of 15.8°C,with only 0.01°C less than the record extreme value measured in July of 2019.
基金support by the Open Project of Xiangjiang Laboratory(22XJ02003)the University Fundamental Research Fund(23-ZZCX-JDZ-28,ZK21-07)+5 种基金the National Science Fund for Outstanding Young Scholars(62122093)the National Natural Science Foundation of China(72071205)the Hunan Graduate Research Innovation Project(CX20230074)the Hunan Natural Science Foundation Regional Joint Project(2023JJ50490)the Science and Technology Project for Young and Middle-aged Talents of Hunan(2023TJZ03)the Science and Technology Innovation Program of Humnan Province(2023RC1002).
文摘Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges.
基金the Chinese Academy of Sciences "Innovation Program" (Grant No. ZKCX2-SW-210) the National Key Program for Developing Basic Sciences (Grant No.ZKCX2-SW-210)+1 种基金 the National Key Program for Developing Basic Sciences (Grant G 1999043808 , G2000078502) the National Natural Science Foundation of China under Grant Nos. 40233031 , 40231004.
文摘An eddy-permitting, quasi-global oceanic general circulation model, LICOM (LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics) Climate System Ocean Model), with a uniform grid of 0.5? × 0.5? is established. Forced by wind stresses from Hellerman and Rosenstain (1983), a 40-yr integration is conducted with sea surface temperature and salinity being restored to the Levitus 94 datasets. The evaluation of the annual mean climatology of the LICOM control run shows that the large-scale circulation can be well reproduced. A comparison between the LICOM control run and a parallel integration of L30T63, which has the same framework but a coarse resolution, is also made to con?rm the impact of resolution on the model performance. On account of the reduction of horizontal viscosity with the enhancement of the horizontal resolution, LICOM improves the simulation with respect to not only the intensity of the large scale circulations, but also the magnitude and structure of the Equatorial Undercurrent and South Equatorial Current. Taking advantage of the ?ne grid size, the pathway of the Indonesian Through?ow (ITF) is better represented in LICOM than in L30T63. The transport of ITF in LICOM is more convergent in the upper layer. As a consequence, the Indian Ocean tends to get warmer in LICOM. The poleward heat transports for both the global and individual basins are also signi?cantly improved in LICOM. A decomposed analysis indicates that the transport due to the barotropic gyre, which primarily stands for the barotropic e?ect of the western boundary currents, plays a crucial role in making the di?erence.