期刊文献+
共找到835篇文章
< 1 2 42 >
每页显示 20 50 100
Challenges in the Large-Scale Deployment of CCUS 被引量:2
1
作者 Zhenhua Rui Lianbo Zeng Birol Dindoruk 《Engineering》 2025年第1期17-20,共4页
1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Int... 1.Introduction Climate change mitigation pathways aimed at limiting global anthropogenic carbon dioxide(CO_(2))emissions while striving to constrain the global temperature increase to below 2℃—as outlined by the Intergovernmental Panel on Climate Change(IPCC)—consistently predict the widespread implementation of CO_(2)geological storage on a global scale. 展开更多
关键词 large-scale Deployment CCUS CHALLENGES Climate Change Mitigation
在线阅读 下载PDF
Influence of Friction Condition on Cavity Filling for Large-Scale Titanium Alloy Strut Forging
2
作者 Hu Yanghu Zhang Dawei +2 位作者 Tian Chong Chai Xing Zhao Shengdun 《稀有金属材料与工程》 北大核心 2025年第6期1462-1466,共5页
The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the... The titanium alloy strut serves as a key load-bearing component of aircraft landing gear,typically manufactured via forging.The friction condition has important influence on material flow and cavity filling during the forging process.Using the previously optimized shape and initial position of preform,the influence of the friction condition(friction factor m=0.1–0.3)on material flow and cavity filling was studied by numerical method with a shear friction model.A novel filling index was defined to reflect material flow into left and right flashes and zoom in on friction-induced results.The results indicate that the workpiece moves rigidly to the right direction,with the displacement decreasing as m increases.When m<0.18,the underfilling defect will occur in the left side of strut forging,while overflow occurs in the right forging die cavity.By combining the filling index and analyses of material flow and filling status,a reasonable friction factor interval of m=0.21–0.24 can be determined.Within this interval,the cavity filling behavior demonstrates robustness,with friction fluctuations exerting minimal influence. 展开更多
关键词 large-scale strut titanium alloy friction condition rigid movement cavity filling
原文传递
Influence of ground fissures on metro shield tunnels:Large-scale experiment and numerical analysis
3
作者 Yuxuan Gou Qiangbing Huang +2 位作者 Nina Liu Dongping Chen Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1356-1377,共22页
The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,... The recent upsurge in metro construction emphasizes the necessity of understanding the mechanical performance of metro shield tunnel subjected to the influence of ground fissures.In this study,a largescale experiment,in combination with numerical simulation,was conducted to investigate the influence of ground fissures on a metro shield tunnel.The results indicate that the lining contact pressure at the vault increases in the hanging wall while decreases in the footwall,resulting in a two-dimensional stress state of vertical shear and axial tension-compression,and simultaneous vertical dislocation and axial tilt for the segments around the ground fissure.In addition,the damage to curved bolts includes tensile yield,flexural yield,and shear twist,leading to obvious concrete lining damage,particularly at the vault,arch bottom,and hance,indicating that the joints in these positions are weak areas.The shield tunnel orthogonal to the ground fissure ultimately experiences shear failure,suggesting that the maximum actual dislocation of ground fissure that the structure can withstand is approximately 20 cm,and five segment rings in the hanging wall and six segment rings in the footwall also need to be reinforced.This study could provide a reference for metro design in ground fissure sites. 展开更多
关键词 Shield tunnel Ground fissure large-scale experiment Mechanical performance Failure mode
在线阅读 下载PDF
Large-scale experimental study on scour around both slender and large monopiles under irregular waves
4
作者 En-yu Gong Song-gui Chen +2 位作者 Xin Chen Da-wei Guan Jin-hai Zheng 《Water Science and Engineering》 2025年第3期369-377,共9页
Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by co... Offshore wind power plays a crucial role in energy strategies.The results of traditional small-scale physical models may be unreliable when extrapolated to large field scales.This study addressed this limitation by conducting large-scale(1:13)experiments to investigate the scour hole pattern and equilibrium scour depth around both slender and large monopiles under irregular waves.The experiments adopted KeuleganeCarpenter number(NKC)values from 1.01 to 8.89 and diffraction parameter(D/L,where D is the diameter of the monopile,and L is the wave length)values from 0.016 to 0.056.The results showed that changes in the maximum scour location and scour hole shape around a slender monopile were associated with NKC,with differences observed between irregular and regular waves.Improving the calculation of NKC enhanced the accuracy of existing scour formulae under irregular waves.The maximum scour locations around a large monopile were consistently found on both sides,regardless of NKC and D/L,but the scour hole topography was influenced by both parameters.Notably,the scour range around a large monopile was at least as large as the monopile diameter. 展开更多
关键词 SCOUR KeuleganeCarpenter number Irregular waves Equilibrium scour depth large-scale test
在线阅读 下载PDF
Diffusion characteristics of deep-sea mining sediment plumes in flowing water by large-scale water tank experiments
5
作者 Ze-lin LIU Xiang WU +3 位作者 Qiu-hua RAO Wei YI Shi-ping CHEN Hao ZHENG 《Transactions of Nonferrous Metals Society of China》 2025年第8期2747-2761,共15页
The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and ... The existing deep-sea sediment plume tests are mostly under small-scale static water and rarely under large-scale flowing water conditions.In this study,large-scale tank experiments of flowing water were designed and conducted to investigate the morphological characteristics and concentration evolution of the sediment plumes under different discharge rates(Q)and initial sediment concentrations(c).Viscosity tests,resuspension tests and free settling tests of the sediment solution with different c values were performed to reveal the settling mechanism of the plume diffusion process.The results show that the plume diffusion morphology variation in flowing water has four stages and the plume concentration evolution has three stages.The larger the Q,the smaller the initial incidence angle at the discharge outlet,the larger the diffusion range,the poorer the stability and the more complicated the diffusion morphology.The larger the c,the larger the settling velocity,the faster the formation of high-concentration accumulation zone,the better the stability and the clearer the diffusion boundary.The research results could provide experimental data for assessing the impact of deep-sea mining on the ocean environment. 展开更多
关键词 deep-sea mining sediment plumes diffusion characteristics flowing water large-scale water tank experiment
在线阅读 下载PDF
Optimization design of launch window for large-scale constellation using improved genetic algorithm
6
作者 LIU Yue HOU Xiangzhen +3 位作者 CAI Xi LI Minghu CHANG Xinya WANG Miao 《先进小卫星技术(中英文)》 2025年第4期23-32,共10页
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ... The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes. 展开更多
关键词 deployment strategy optimization launching schedule constraints improved genetic algorithm large-scale constellation
在线阅读 下载PDF
Key parameters and evaluation methods for large-scale production of lacustrine shale oil
7
作者 KUANG Lichun WU Songtao +3 位作者 XING Haoting WU Kunyu SHEN Yue WANG Zhenlin 《Petroleum Exploration and Development》 2025年第4期883-893,共11页
Based on the analysis of typical lacustrine shale oil zones in China and their geological characteristics,this study elucidates the fundamental differences between the enrichment patterns of shale oil sweet spots and ... Based on the analysis of typical lacustrine shale oil zones in China and their geological characteristics,this study elucidates the fundamental differences between the enrichment patterns of shale oil sweet spots and conventional oil and gas.The key parameters and evaluation methods for assessing the large-scale production potential of lacustrine shale oil are proposed.The results show that shale oil is a petroleum resource that exists in organic-rich shale formations,in other words,it is preserved in its source bed,following a different process of generation-accumulation-enrichment from conventional oil and gas.Thus,the concept of“reservoir”seems to be inapplicable to shale oil.In China,lacustrine shale oil is distributed widely,but the geological characteristics and sweet spots enrichment patterns of shale oil vary significantly in lacustrine basins where the water environment and the tectonic evolution and diagenetic transformation frameworks are distinct.The core of the evaluation of lacustrine shale oil is“sweet spot volume”.The key factors for evaluating the large-scale production of continental shale oil are the oil storage capacity,oil-bearing capacity and oil producing capacity.The key parameters for evaluating these capacities are total porosity,oil content,and free oil content,respectively.It is recommended to determine the total porosity of shale by combining helium porosity measurement with nuclear magnetic resonance(NMR)method,the oil content of key layers by using organic solvent extraction,NMR method and high pressure mercury intrusion methods,and the free oil content by using NMR fluid distribution secondary spectral stripping decomposition and logging.The research results contribute supplemental insights on continental shale oil deliverability in China,and provide a scientific basis for the rapid exploration and large-scale production of lacustrine shale oil. 展开更多
关键词 sweet spot oil content free oil nano-pore total porosity evaluation of oil production capacity large-scale production unconventional oil and gas lacustrine shale oil
在线阅读 下载PDF
An improved efficient adaptive method for large-scale multiexplosives explosion simulations
8
作者 Tao Li Cheng Wang Baojun Shi 《Defence Technology(防务技术)》 2025年第3期28-47,共20页
Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise re... Shock wave caused by a sudden release of high-energy,such as explosion and blast,usually affects a significant range of areas.The utilization of a uniform fine mesh to capture sharp shock wave and to obtain precise results is inefficient in terms of computational resource.This is particularly evident when large-scale fluid field simulations are conducted with significant differences in computational domain size.In this work,a variable-domain-size adaptive mesh enlargement(vAME)method is developed based on the proposed adaptive mesh enlargement(AME)method for modeling multi-explosives explosion problems.The vAME method reduces the division of numerous empty areas or unnecessary computational domains by adaptively suspending enlargement operation in one or two directions,rather than in all directions as in AME method.A series of numerical tests via AME and vAME with varying nonintegral enlargement ratios and different mesh numbers are simulated to verify the efficiency and order of accuracy.An estimate of speedup ratio is analyzed for further efficiency comparison.Several large-scale near-ground explosion experiments with single/multiple explosives are performed to analyze the shock wave superposition formed by the incident wave,reflected wave,and Mach wave.Additionally,the vAME method is employed to validate the accuracy,as well as to investigate the performance of the fluid field and shock wave propagation,considering explosive quantities ranging from 1 to 5 while maintaining a constant total mass.The results show a satisfactory correlation between the overpressure versus time curves for experiments and numerical simulations.The vAME method yields a competitive efficiency,increasing the computational speed to 3.0 and approximately 120,000 times in comparison to AME and the fully fine mesh method,respectively.It indicates that the vAME method reduces the computational cost with minimal impact on the results for such large-scale high-energy release problems with significant differences in computational domain size. 展开更多
关键词 large-scale explosion Shock wave Adaptive method Fluid field simulations Efficient method
在线阅读 下载PDF
Exploring Optimization Strategies for Island Power Grid Line Layout Oriented Towards Large-Scale Distributed Renewable Energy Integration
9
作者 Zhenhuan Song Wenxin Liu 《Proceedings of Business and Economic Studies》 2025年第4期495-502,共8页
The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context ... The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context of large-scale distributed renewable energy integration into the power grid,conventional island power grid line layouts can no longer meet actual demands.It is necessary to combine the operational characteristics of island power systems and historical load data to perform load forecasting,thereby generating power grid line layout paths.This article focuses on large-scale distributed renewable energy integration,summarizing optimization strategies for island power grid line layouts,and providing a solid guarantee for the safe and stable operation of island power systems. 展开更多
关键词 Island power grid Line layout Optimization strategy Distributed renewable energy large-scale
在线阅读 下载PDF
The Dynamic Behavior of Asymmetric Large-Scale Ring Neural Network with Multiple Delays
10
作者 ZHANG Wen-yu LI Ming-hui CHENG Zun-shui 《Chinese Quarterly Journal of Mathematics》 2025年第2期169-179,共11页
The dynamic behaviors of a large-scale ring neural network with a triangular coupling structure are investigated.The characteristic equation of the high-dimensional system using Coate’s flow graph method is calculate... The dynamic behaviors of a large-scale ring neural network with a triangular coupling structure are investigated.The characteristic equation of the high-dimensional system using Coate’s flow graph method is calculated.Time delay is selected as the bifurcation parameter,and sufficient conditions for stability and Hopf bifurcation are derived.It is found that the connection coefficient and time delay play a crucial role in the dynamic behaviors of the model.Furthermore,a phase diagram of multiple equilibrium points with one saddle point and two stable nodes is presented.Finally,the effectiveness of the theory is verified through simulation results. 展开更多
关键词 large-scale neural network Asymmetric ring Coates’flow graph method BIFURCATION DELAY
在线阅读 下载PDF
Shear strength characteristics of mixing slag-stone ballast reinforcement with tire geo-scrap using large-scale direct shear tests
11
作者 Morteza Esmaeili Hamidreza Heydari +1 位作者 Maziar Mokhtari Sara Darvishi 《Railway Engineering Science》 2025年第1期94-107,共14页
Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts.Strengthening the ballast layer with different types of reinforcements ... Utilizing the ballast layer with more durable and stable characteristics can help avoid significant expenses due to decreased maintenance efforts.Strengthening the ballast layer with different types of reinforcements or substituting the stone aggregates with the appropriate granular materials could potentially help to achieve this goal by reducing the ballast deterioration.One of the exquisite and most effective solutions to eliminate these challenges is to use waste materials such as steel slag aggregates and useless tires.Utilizing these waste materials in the ballasted railway track will contribute to sustainable development,an eco-friendly system,and green infrastructure.So in a state-of-the-art insightful,the ballast aggregates,including a mixture of steel slag and stone aggregates,are reinforced with a novel kind of geo-grid made of waste tire strips known as geo-scraps.This laboratory research tried to explain the shear strength behavior of the introduced mixing slag-stone ballast reinforced with tire geo-scrap.To achieve this goal,a series of large-scale direct shear tests were performed on the ballast which is reinforced by tire geo-scrap and included various combinations of slag and stone aggregates.The concluded results indicate that the optimal mixing ratio is attained by a combination of 75%slag and 25%stone aggregates which is reinforced by tire geo-scrap at a placing level of 120 mm.In this case,the shear strength,internal friction angle,vertical displacement,and dilatancy angle of stone–slag ballast reinforced with geo-scraps exhibited average changes of+28%,+9%,-28%,and-15%,respectively. 展开更多
关键词 Ballast deterioration Ballast stabilization Steel slag aggregates large-scale direct shear test Waste tire geoscrap
在线阅读 下载PDF
Quantitative impacts of dominant large-scale circulation systems on surface ozone pollution in China
12
作者 Shu Zhang Zibing Yuan +1 位作者 Zhonghua Zheng Kaihui Zhao 《Journal of Environmental Sciences》 2025年第10期42-55,共14页
Tropospheric ozone pollution has been worsened over most regions of China,adversely affecting human health and ecosystems.The long-term ozone concentration depends largely upon atmospheric circulations.Here,we conduct... Tropospheric ozone pollution has been worsened over most regions of China,adversely affecting human health and ecosystems.The long-term ozone concentration depends largely upon atmospheric circulations.Here,we conducted meteorological adjustment to quantitatively assess the influences of meteorological factors on the ozone evolution in China's seven city clusters during thewarm season(April to October)from 2013 to 2020.Our analysis indicated that northern and eastern regions experienced ozone increases driven by emission changes.Southern regions,particularly the Pearl River Delta(PRD),exhibited ozone rise primarily due to meteorological conditions despite emission changes.In the Sichuan Basin(SCB)and Central Yangtze River Plain(CYP),where ozone levels decreased,meteorological conditions played a significant role in suppressing the ascent of ozone.Empirical orthogonal functions(EOF)analyses suggested that the spatiotemporal trend ofmeteorologyassociated ozone was strongly correlated with the variation of East Asian Trough(EAT),South Asian High(SAH)and the western Pacific subtropical high(WPSH).The top three EOF patterns explained 33.4%,21.8%,and 16.0%of the total variance inmeteorology-associated ozone.Absolute principal component scores-multiple linear regression(APCS-MLR)analyse quantitatively identified that enhanced EAT and SAH with a northward location of WPSH were favourable to surface ozone formation in central and eastern regions,but unfavourable to ozone formation in edge regions such as SCB. 展开更多
关键词 Surface ozone trend Meteorological adjustment large-scale circulation systems Empirical orthogonal functions (EOF)
原文传递
Exponential Attitude-Orbit Coordinated Control for Gravitational-Wave Detection Spacecraft Formation with Large-Scale Communication Delays
13
作者 XING Youpeng SONG Yinsheng +1 位作者 YIN Zeyang CHEN Xiaofang 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期70-79,共10页
This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter... This paper concerns the exponential attitude-orbit coordinated control problems for gravitational-wave detection formation spacecraft systems.Notably,the large-scale communication delays resulting from oversized inter-satellite distance of space-based laser interferometers are first modeled.Subject to the delayed communication behaviors,a new delay-dependent attitude-orbit coordinated controller is designed.Moreover,by reconstructing the less conservative Lyapunov-Krasovskii functional and free-weight matrices,sufficient criteria are derived to ensure the exponential stability of the closed-loop relative translation and attitude error system.Finally,a simulation example is employed to illustrate the numerical validity of the proposed controller for in-orbit detection missions. 展开更多
关键词 gravitational-wave detection spacecraft formation attitude-orbit coordinated control large-scale communication delays exponential stability
在线阅读 下载PDF
Large-scale laboratory investigation of pillar-support interaction
14
作者 Akash Chaurasia Gabriel Walton +4 位作者 Sankhaneel Sinha Timothy J.Batchler Kieran Moore Nicholas Vlachopoulos Bradley Forbes 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期71-93,共23页
Underground mine pillars provide natural stability to the mine area,allowing safe operations for workers and machinery.Extensive prior research has been conducted to understand pillar failure mechanics and design safe... Underground mine pillars provide natural stability to the mine area,allowing safe operations for workers and machinery.Extensive prior research has been conducted to understand pillar failure mechanics and design safe pillar layouts.However,limited studies(mostly based on empirical field observation and small-scale laboratory tests)have considered pillar-support interactions under monotonic loading conditions for the design of pillar-support systems.This study used a series of large-scale laboratory compression tests on porous limestone blocks to analyze rock and support behavior at a sufficiently large scale(specimens with edge length of 0.5 m)for incorporation of actual support elements,with consideration of different w/h ratios.Both unsupported and supported(grouted rebar rockbolt and wire mesh)tests were conducted,and the surface deformations of the specimens were monitored using three-dimensional(3D)digital image correlation(DIC).Rockbolts instrumented with distributed fiber optic strain sensors were used to study rockbolt strain distribution,load mobilization,and localized deformation at different w/h ratios.Both axial and bending strains were observed in the rockbolts,which became more prominent in the post-peak region of the stress-strain curve. 展开更多
关键词 Grouted rockbolt Welded wire mesh Porous limestone Digital image correlation Distributed fiber optic sensing large-scale laboratory tests
在线阅读 下载PDF
Decomposition for Large-Scale Optimization Problems:An Overview
15
作者 Thai Doan CHUONG Chen LIU Xinghuo YU 《Artificial Intelligence Science and Engineering》 2025年第3期157-174,共18页
Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale opti... Formalizing complex processes and phenomena of a real-world problem may require a large number of variables and constraints,resulting in what is termed a large-scale optimization problem.Nowadays,such large-scale optimization problems are solved using computing machines,leading to an enormous computational time being required,which may delay deriving timely solutions.Decomposition methods,which partition a large-scale optimization problem into lower-dimensional subproblems,represent a key approach to addressing time-efficiency issues.There has been significant progress in both applied mathematics and emerging artificial intelligence approaches on this front.This work aims at providing an overview of the decomposition methods from both the mathematics and computer science points of view.We also remark on the state-of-the-art developments and recent applications of the decomposition methods,and discuss the future research and development perspectives. 展开更多
关键词 decomposition methods nonlinear optimization large-scale problems computational intelligence
在线阅读 下载PDF
Irreversibility as a signature of non-equilibrium phase transition in large-scale human brain networks:An fMRI study
16
作者 Jing Wang Kejian Wu +1 位作者 Jiaqi Dong Lianchun Yu 《Chinese Physics B》 2025年第5期636-644,共9页
It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the ... It has been argued that the human brain,as an information-processing machine,operates near a phase transition point in a non-equilibrium state,where it violates detailed balance leading to entropy production.Thus,the assessment of irreversibility in brain networks can provide valuable insights into their non-equilibrium properties.In this study,we utilized an open-source whole-brain functional magnetic resonance imaging(fMRI)dataset from both resting and task states to evaluate the irreversibility of large-scale human brain networks.Our analysis revealed that the brain networks exhibited significant irreversibility,violating detailed balance,and generating entropy.Notably,both physical and cognitive tasks increased the extent of this violation compared to the resting state.Regardless of the state(rest or task),interactions between pairs of brain regions were the primary contributors to this irreversibility.Moreover,we observed that as global synchrony increased within brain networks,so did irreversibility.The first derivative of irreversibility with respect to synchronization peaked near the phase transition point,characterized by the moderate mean synchronization and maximized synchronization entropy of blood oxygenation level-dependent(BOLD)signals.These findings deepen our understanding of the non-equilibrium dynamics of large-scale brain networks,particularly in relation to their phase transition behaviors,and may have potential clinical applications for brain disorders. 展开更多
关键词 large-scale brain networks FMRI IRREVERSIBILITY non-equilibrium phase transition
原文传递
Deformation Monitoring Technology and Early Warning Management for Large-Scale Railway Adjacent Operating Lines
17
作者 HU Mingjie WANG Pan +2 位作者 HU Gaofeng XIANG Yang XIE Haizhen 《Wuhan University Journal of Natural Sciences》 2025年第4期392-404,共13页
This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is... This study employs deformation monitoring data acquired during the construction of the Haoji railway large-scale bridge to investigate the displacement behavior of the subgrades,catenary columns,and tracks.Emphasis is placed on data acquisition and processing methods using total stations and automated monitoring systems.Through a comprehensive analysis of lateral,longitudinal,and vertical displacement data from 26 subgrade monitoring points,catenary columns,and track sections,this research evaluates how construction activities influence railway structures.The results show that displacement variations in the subgrades,catenary columns,and tracks remained within the established alert thresholds,exhibiting stable deformation trends and indicating that any adverse environmental impact was effectively contained.Furthermore,this paper proposes an early warning mechanism based on an automated monitoring system,which can promptly detect abnormal deformations and initiate emergency response procedures,thereby ensuring the safe operation of the railway.The integration of big data analysis and deformation prediction models offers a practical foundation for future safety management in railway construction. 展开更多
关键词 large-scale railway deformation monitoring automated monitoring early warning mechanism
原文传递
Research on Material Flow Law and Control for Diffluence Upsetting-Extrusion Forming of Large-Scale Magnesium Alloy Complex Housing
18
作者 Ang Wu Zhimin Zhang +1 位作者 Yong Xue Jian Xu 《Chinese Journal of Mechanical Engineering》 2025年第3期259-277,共19页
The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,... The current research on the manufacturing of large-scale and complex components focuses mainly on the casting processes.Compared with casting,plastic forming has significant advantages in terms of performance.However,effectively controlling the material flow to achieve a reduced loading force and near-uniformity in the isothermal plastic forming process of large-scale asymmetric magnesium alloy complex housings(LSMACHs)is challenging.This study proposes a material flow control method based on the diffluence upsetting-extrusion forming(DUEF)process by dividing different forging deformation regions,combining these with the principal stress method,and establishing an efficient and accurate design procedure.A rational preformed billet was designed successfully using this method.Subsequently,a finite element simulation was employed to analyze the multiphysics fields of the DUEF process.The results indicated that compared with the traditional closed-die forging(TCDF)process,the DUEF process could control the orderly flow of materials,achieve short-distance filling of materials,and reduce hydrostatic stress.Simultaneously,it improved the deformation uniformity by 20.3%and reduced the loading force by 22.6%.Finally,the rationality of the proposed method was validated through physical experiments.Compared with the TCDF process,the DUEF process exhibited a low loading force and uniform mechanical properties.The proposed material flow control method based on the DUEF process provides a new technological approach for the plastic formation of LSMACH and similar components. 展开更多
关键词 large-scale magnesium alloy complex housing Diffluence upsetting-extrusion forming Material flow control Deformation uniformity Loading force
在线阅读 下载PDF
Applicable Regions of Spherical and Plane Wave Models for Extremely Large-Scale Array Communications
19
作者 Li Renwang Sun Shu Tao Meixia 《China Communications》 2025年第5期128-151,共24页
Extremely large-scale array(XL-array)communications can significantly improve the transmission rate,spectral efficiency,and spatial resolution,and has great potential in next-generation mobile communication networks.A... Extremely large-scale array(XL-array)communications can significantly improve the transmission rate,spectral efficiency,and spatial resolution,and has great potential in next-generation mobile communication networks.A crucial problem in XLarray communications is to determine the boundary of applicable regions of the plane wave model(PWM)and spherical wave model(SWM).In this paper,we propose new PWM/SWM demarcations for XL-arrays from the viewpoint of channel gain and rank.Four sets of results are derived for four different array setups.First,an equi-power line is derived for a point-touniform linear array(ULA)scenario,where an inflection point is found at±π6 central incident angles.Second,an equi-power surface is derived for a point-touniform planar array(UPA)scenario,and it is proved that cos2(ϕ)cos2(φ)=12 is a dividing curve,where ϕ andφdenote the elevation and azimuth angles,respectively.Third,an accurate and explicit expression of the equi-rank surface is obtained for a ULA-to-ULA scenario.Finally,an approximated expression of the equirank surface is obtained for a ULA-to-UPA scenario.With the obtained closed-form expressions,the equirank surface for any antenna structure and any angle can be well estimated.Furthermore,the effect of scatterers is also investigated,from which some insights are drawn. 展开更多
关键词 effective rank extremely large-scale array(XL-array) near-/far-field Rayleigh distance spherical/plane wave
在线阅读 下载PDF
Event-triggered control for a class of large-scale nonlinear systems with neutral delays and unknown backlash-like hysteresis
20
作者 Yiyu Feng Weihao Pan +1 位作者 Yanan Qi Xianfu Zhang 《Control Theory and Technology》 2025年第2期253-265,共13页
This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires t... This paper investigates the problem of dynamic event-triggered control for a class of large-scale nonlinear systems.In particular,both neutral delays and unknown backlash-like hysteresis are considered.This requires to integrate a compensation mechanism into the event-triggered control architecture.To this end,dynamic gain and adaptive control techniques are introduced to address the effects of neutral delays,unknown hysteresis and parameter uncertainties simultaneously.By introducing a non-negative internal dynamic variable,a dynamic event-triggered controller is designed using the hyperbolic tangent function to reduce the communication burden.By means of the Lyapunov–Krasovskii method,it is demonstrated that all signals of the closed-loop system are globally bounded and eventually converge to a tunable bounded region.Moreover,the Zeno behavior is avoided.Finally,a simulation example is presented to verify the validity of the control scheme. 展开更多
关键词 large-scale nonlinear systems Neutral delays Unknown backlash-like hysteresis Event-triggered control
原文传递
上一页 1 2 42 下一页 到第
使用帮助 返回顶部