期刊文献+
共找到28,967篇文章
< 1 2 250 >
每页显示 20 50 100
Super-large-diameter shield tunnel undercrossing an intercity railway with oblique angle:Centrifuge test and numerical analysis
1
作者 Xing-Tao Lin Hui Zeng +2 位作者 Xuetao Wang Ming Song Xiangsheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2741-2757,共17页
With the development of urban infrastructure,it is inevitable that shield tunnels will undercross intercity railways.However,the safe operation of intercity railways requires strict subgrade deformation.On the basis o... With the development of urban infrastructure,it is inevitable that shield tunnels will undercross intercity railways.However,the safe operation of intercity railways requires strict subgrade deformation.On the basis of the engineering background of the Lianghu Tunnel in Wuhan,the three-dimensional centrifuge test and numerical back analysis were used to study the development of subgrade surface settlement during shield tunneling.A three-dimensional numerical model with the same size as the prototype was subsequently established to further study the settlement development and torsion behavior of the subgrade during tunnel excavation.The results show that the maximum settlement point of the transverse settlement trough gradually moves to the tunnel axis during tunnel excavation and that the entire subgrade experiences torsional deformation.Moreover,the effect of the intersection angle between the axes of the tunnel and the subgrade on the surface settlement of the subgrade was further studied.The results show that the intersection angle has no effect on the maximum settlement,but the width of the settlement trough increases gradually with increasing angle.Finally,on the basis of the soil arching effect caused by tunnel excavation,the subgrade settlement during tunnel excavation is reduced by reinforcing the soil in different zones of soil arching.The results show that the settlement of the subgrade caused by the shield tunnel can be effectively controlled by adding reinforcement directly to the top of the tunnel,and the maximum settlement of the subgrade surface is reduced from 24.41 mm to 9.47 mm,a reduction of approximately 61.2%. 展开更多
关键词 Super-large-diameter shield Oblique undercrossing Intercity railway Centrifuge test Numerical analysis
在线阅读 下载PDF
Failure mechanism of large-diameter shield tunnels and its effects on ground surface settlements 被引量:7
2
作者 杨宇友 李宏安 《Journal of Central South University》 SCIE EI CAS 2012年第10期2958-2965,共8页
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m... A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method. 展开更多
关键词 large-diameter shield tunnel failure mechanism ground surface settlements limit analysis theory supporting pressures
在线阅读 下载PDF
Settlement characteristics of large-diameter shield excavation below existing subway in close vicinity 被引量:35
3
作者 FANG Qian DU Jian-ming +2 位作者 LI Jian-ye ZHANG Ding-li CAO Li-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期882-897,共16页
A case of Qinghuayuan tunnel excavation below the existing Beijing Subway Line 10 is presented.The new Qinghuayuan tunnel,part of the Beijing-Zhangjiakou High-speed Railway,was excavated by a shield machine with an ou... A case of Qinghuayuan tunnel excavation below the existing Beijing Subway Line 10 is presented.The new Qinghuayuan tunnel,part of the Beijing-Zhangjiakou High-speed Railway,was excavated by a shield machine with an outer diameter of 12.2 m.The existing subway was excavated by shallow tunnelling method.The project layout,geological conditions,reinforcement measures,operational parameters of shield machine and monitoring results of the project are introduced.During the Qinghuayuan tunnel excavation below the existing subway,total thrust,shield driving speed,cutterhead rotation speed and torque were manually controlled below the average values obtained from the previous monitoring of this project,which could effectively reduce the disturbance of the surrounding soil induced by shield excavation.The Gaussian fitting function can appropriately fit both the ground and the existing subway settlements.The trough width is influenced not only by the excavation overburden depth,but also by the forepoling reinforcement and tail void grouting measures. 展开更多
关键词 adjacent excavation shield method operational parameters settlement characteristics
在线阅读 下载PDF
Physical and mechanical response of large-diameter shield tunnellining structure under non-uniform fire: A full-scalefire test-based study
4
作者 Da-Long Jin Hui Jin +2 位作者 Da-Jun Yuan Pan-Pan Cheng Dong Pan 《Underground Space》 2025年第1期1-16,共16页
When a fire occurs in an underground shield tunnel,it can result in substantial property damage and cause permanent harm to the tunnel lining structure.This is especially true for large-diameter shield tunnels that ha... When a fire occurs in an underground shield tunnel,it can result in substantial property damage and cause permanent harm to the tunnel lining structure.This is especially true for large-diameter shield tunnels that have numerous segments and joints,and are exposed to specific fire conditions in certain areas.This paper constructs a full-scale shield tunnel fire test platform and conducts a non-uniform fire test using the lining system of a three-ring large-diameter shield tunnel with an inner diameter of 10.5 m.Based on the tests,the tem-perature field distribution,high-temperature bursting,cracking phenomena,and deformation under fire conditions are observed.Fur-thermore,the post-fire damage forms of tunnel lining structures are obtained through the post-fire ultimate loading test,and the corresponding mechanism is explained.The test results illustrate that the radial and circumferential distribution of internal temperature within the tunnel lining,as well as the radial temperature gradient distribution on the inner surface of the lining,have non-uniform dis-tribution characteristics.As a result,the macroscopic phenomena of lining concrete bursting and crack development during the fire test mainly occur near the fire source,where the temperature rise gradient is the highest.In addition,the lining structure has a deformation characteristic of local outward expansion and cannot recover after the fire load is removed.The ultimate form of damage after the fire is dominated by crush damage from the inside out of the lining joints in the fire-exposed area.The above results serve as a foundation for future tunnel fire safety design and evaluation. 展开更多
关键词 large-diameter shield tunnel Full-scale fire test Temperature field Physical damage Mechanical response
在线阅读 下载PDF
An integrated method for dynamic prediction of lithological composition in large-diameter slurry shield tunnels
5
作者 Deming Xu Yuan Wang +2 位作者 Jingqi Huang Shujun Xu Kun Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6482-6495,共14页
Accurate acquisition of the lithological composition of a tunnel face is crucial for efficient tunneling and hazard prevention in large-diameter slurry shield tunnels.While widely applied,current data-driven methods o... Accurate acquisition of the lithological composition of a tunnel face is crucial for efficient tunneling and hazard prevention in large-diameter slurry shield tunnels.While widely applied,current data-driven methods often face challenges such as indirect prediction,data sparsity,and data drift,which limit their accuracy and generalizability.This study develops an integrated method that combines a knowledge-driven method to directly compute distribution patterns of lithological components,which are used as a priori knowledge to guide the development of a data-driven method.Coupled Markov chain(CMC)and deep neural networks(DNNs)serve as the knowledge-driven and data-driven components,respectively.Additionally,a dynamic prediction strategy is proposed,where the model is continuously optimized as construction progresses and training samples accumulate,rather than being statically trained on post-construction data,as is common in data-driven methods.Finally,the proposed method is evaluated using a real-world project.The evaluation results show that the integrated method outperforms both individual data-and knowledge-driven methods,demonstrating higher predictive performance,greater stability,and greater robustness to data scarcity and data drift.Furthermore,the dynamic prediction strategy better captures the effects of gradual data accumulation and lithological spatial variability on prediction performance during construction,providing new insights for real-time prediction in practical tunneling applications. 展开更多
关键词 Lithological composition large-diameter shield Markov chain Deep neural network(DNN) Dynamic prediction
在线阅读 下载PDF
Response of operating metro tunnels to compensation grouting of an underlying large-diameter shield tunnel:A case study in Hangzhou 被引量:8
6
作者 Xiaolu Gan Jianlin Yu +3 位作者 Xiaonan Gong Yongmao Hou Nianwu Liu Min Zhu 《Underground Space》 SCIE EI 2022年第2期219-232,共14页
Due to the shield tunneling underneath,long-term settlements may develop in the existing metro tunnels.The compensation grouting is applied worldwide to stabilize the settlement of ground and existing structures.Few f... Due to the shield tunneling underneath,long-term settlements may develop in the existing metro tunnels.The compensation grouting is applied worldwide to stabilize the settlement of ground and existing structures.Few field studies concerning large-diameter shield pass-ing tunnel from below have analyzed the interaction between the compensation grouting and the existing tunnel.This paper presents a case study on the response of the operating metro tunnels to the compensation grouting of an underlying large-diameter tunnel in muddy clay stratum.The tunnel deformations before,during,and after the compensation grouting were monitored and analyzed.The long-term tunnel settlements were mitigated and stabilized by the timely compensation grouting.Smaller settlement rates were observed during the grouting treatment,and the settlement was gradually stabilized three months after the grouting.The grouting holes at the tunnel invert were used initially for better grouting efficiency.The horizontal displacement and convergence developed during the grouting construc-tion and remained stable after the grouting process.Moreover,some limitations of the grouting treatment were discussed.The tunnel settlement in the section close to the center-line of the south-line tunnel cannot be prevented effectively.The differential displacement cannot be reduced by this grouting program. 展开更多
关键词 Grouting treatment shield under-crossing large-diameter shield tunnel Tunnel settlement
在线阅读 下载PDF
Influence of secondary lining thickness on mechanical behaviours of double-layer lining in large-diameter shield tunnels 被引量:2
7
作者 Shimin Wang Xuhu He +3 位作者 Xiaoyu Peng Ya Wang Zhengxin Li Zihan 《Underground Space》 SCIE EI CSCD 2024年第5期130-150,共21页
In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in t... In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in the design of a double lining structure,which is worth being explored.Based on an actual large-diameter shield tunnel,loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure.The test results show that within the range of secondary lining thicknesses discussed,the load-bearing limit of the double-layer lining increases with growing secondary lining thickness.As a passive support,the secondary lining acts as an auxiliary load-bearing structure by contacting the segment.And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining,with both the contact pressure level and the contact area between the two varying.For double-layer lining structures in large-diameter shield tunnels,it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment,as this allows them to have a coordinated deformation and a good joint load-bearing effect. 展开更多
关键词 large-diameter shield tunnels Double-layer lining structure Secondary lining thickness Stiffness matching Similar model test
在线阅读 下载PDF
Prediction of longitudinal surface settlement in composite formation using large-diameter shield machine based on machine learning techniques
8
作者 Jian ZHANG Chen ZHANG +3 位作者 Hao QIAN Tugen FENG Yongzhou JIAN Ronghua WU 《Frontiers of Structural and Civil Engineering》 CSCD 2024年第12期1922-1936,共15页
The employment of large-diameter shield machines has increased the likelihood of encountering composite formations,posing engineering challenges associated with excessive surface settlement.To tackle this issue,this s... The employment of large-diameter shield machines has increased the likelihood of encountering composite formations,posing engineering challenges associated with excessive surface settlement.To tackle this issue,this study introduces a hybrid model which integrates the extreme learning machine(ELM)with the sparrow search algorithm(SSA)to predict longitudinal surface settlement.Based on on-site measurements.this study analyzed longitudinal surface settlement patterns across both homogeneous and composite formations.Tunneling parameters,geological parameters,and geometrical parameters were considered as input parameters.Furthermore,this study conducted a comparative analysis of the predictive performance among SSA-ELM,ELM,and SSA-back propagation(BP),with respect to coefficient of determination(R^(2)),mean absolute error(MAE),root mean square error(RMSE),and training time.Last,in anticipation of potential risks,a feasible optimization approach is provided.SSA-ELM outperforms both ELM and SSA-BP in terms of R^(2),MAE,and RMSE,with values of 0.8822,0.3357,and 0.4072,respectively.Regarding training time,SSA-ELM requires 0.2346 s,prior to SSA-BP with a value of 1.8427.Although it is not as fast as ELM,the discrepancy between SSA-ELM and ELM is only 0.1187 s.Overall,SSA-ELM demonstrates higher performance and serves as an effective tool to guide the construction process. 展开更多
关键词 large-diameter shield machine composite formation extreme learning machine sparrow search algorithm longitudinal surface settlement
原文传递
Case Study on Synchronous Construction Technology for Secondary Lining of Large-diameter Single track Shiel Shield-bored ored Tunnel
9
作者 WANG Zhenfei ZHAI Jinying(Translated) 《Chinese Railways》 2023年第2期29-34,共6页
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the... The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future. 展开更多
关键词 large-diameter shield-bored tunnel synchronous construction of secondary lining super-long invert lining construction jumbo California switch "arch+side wall"lining jumbo
原文传递
Optimization and engineering practice of large-diameter drilling hole-anchoring hole spacing based on stress relief-support reinforcement cooperative effect
10
作者 GUO Wei-yao WANG Xiang-yu +4 位作者 YIN Li-ming ZHENG Yong-sheng JI Xin-bo LIU Guang-zhao WU Zhen 《Journal of Central South University》 2025年第10期3968-3984,共17页
Large-diameter drilling method is a prevalent method for preventing and controlling rock burst,and the spacing between the large-diameter drilling hole and anchoring hole is a critical factor influencing the roadway s... Large-diameter drilling method is a prevalent method for preventing and controlling rock burst,and the spacing between the large-diameter drilling hole and anchoring hole is a critical factor influencing the roadway stability and relief effectiveness.In this study,a mechanical model for optimal matching between the large-diameter drilling hole and anchoring hole was established following the principle of synergistic control.The influence of large-diameter drilling hole diameter on the optimal spacing under the synergistic relief effect was investigated by integrating theoretical analysis,numerical simulation,and field practice.The results suggest that the hole spacing achieved a synergistic effect in a certain range when the optimal hole spacing increased linearly with the hole diameter.For instance,when the anchoring hole diameter was 20 mm,an increase in the aperture ratio from 5 to 10 brought about an increase in the optimal spacing from 0.25 m to 0.45 m.Additionally,the vertical stress between the large-diameter drilling hole and anchor hole increased nonlinearly under the condition of constant pore ratio but varying hole spacing.Both excessively small and excessively large hole spacings were detrimental to the pressure relief effect.In the engineering practice,optimizing the hole spacing from 0.55 m to 0.45 m in the 1208 working face contributed to reducing coal body drilling cuttings and the roadway moving quantity by 33%and 19.2%,respectively.This demonstrates that the pressure relief-support reinforcement synergistic effect should be fully considered in optimization design. 展开更多
关键词 rock burst pressure relief-support reinforcement large-diameter drilling hole anchoring hole hole spacing vertical stress
在线阅读 下载PDF
Preparation and tailoring electromagnetic shielding and microwave absorbing performance of Fe_(3)O_(4)modified activated carbon foam based on mesophase coal pitch pyrolysis foaming
11
作者 GE Yuanyuan WANG Yuzhe +4 位作者 XU Guozhong ZHU Yaming YUAN Xia SHI Guimei ZHONG Xiangyun 《燃料化学学报(中英文)》 北大核心 2026年第1期120-134,共15页
The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D i... The development of materials with excellent microwave absorption(MWA)and electromagnetic interference(EMI)shielding performances has currently received attention.Herein,mesophase pitch-based carbon foam(MPCF)with 3D interconnected pore structure was prepared through the high pressure pyrolysis of mesophase coal tar pitch.It is found that the 3D interconnected cellular pores of MPCF facilitate multiple reflections of electromagnetic waves,which results in the minimum reflection loss(RLmin)value of MPCF reaches-37.84 dB with the effective absorption bandwidth(EAB)of 5.44 GHz at a thickness of 2.70 mm,and the total average electromagnetic shielding effectiveness(SE_(T))under 3.00 mm thickness achieves 26.52 dB in X-band.Subsequently,MPCF is activated by KOH to obtain activated carbon foam(A-MPCF).The average SE_(T)of A-MPCF achieves 103.00 dB for abundant nanopores on the pore cell walls,which leads to a transition from the multiple reflections of electromagnetic waves on the walls to diffuse reflection.Unfortunately,the reflection coefficient(R)of A-MPCF increases from 0.78 to 0.90.To reduce the R value,Fe_(3)O_(4)/A-MPCF was fabricated via the in situ growth of nano Fe_(3)O_(4)on A-MPCF.Consequently,the R value of Fe_(3)O_(4)/A-MPCF was reduced from 0.90 to 0.74,whereas the MWA performance was only slightly decreased.This work proposes a simple strategy for simultaneously adjusting MWA and EMI shielding performances of materials. 展开更多
关键词 carbon foam microwave absorption electromagnetic interference shielding mesophase pitch
在线阅读 下载PDF
Enhanced electromagnetic wave absorption in biochar/yttrium iron garnet hybrid composites for electromagnetic interference shielding applications
12
作者 Ozgur Yasin Keskin 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期335-346,共12页
Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the... Biochar and biochar composites are versatile materials that can be used in many applications.In this study,biochar was prepared from sawdust and combined with the yttrium iron garnet(YIG)nanocrystal to investigate the shielding effectiveness of the composite structure.Firstly,the effect of the pyrolysis temperature on the shielding effectiveness of biochar was investigated.Secondly,biochars combined with YIG nanocrystals with different contents and shielding effectiveness of the composites were investigated.The electromagnetic effectiveness of the samples was investigated within the X band(8-12 GHz).The findings indicate that biochar demonstrates enhanced absorption properties with elevated pyrolysis temperatures.Biochars demonstrated an approximate 40 d B shielding effectiveness,while YIG exhibited approximately 7 d B,corresponding to absorption at 8 GHz.However,the combination of biochar and YIG exhibited exceptional absorption,reaching 67.12 d B at 8 GHz. 展开更多
关键词 BIOCHAR electromagnetic shielding electromagnetic wave absorption COMPOSITE
在线阅读 下载PDF
Advancing device-level strategies for MXene-based green electromagnetic shielding:From attenuation mechanisms to architecture design
13
作者 Siteng Li Jincheng Shu +3 位作者 Yulin Guo Zhifang Liu Yilin Sun Weijia Luo 《Nano Research》 2026年第1期1299-1328,共30页
The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,t... The widespread proliferation of modern wireless devices coupled with overlapping power emissions has brought about electromagnetic(EM)pollution issues,posing many challenges to environment and human health.Therefore,the development of EM shielding devices with high green shielding index(gs)is essential,as they offer absorption-dominant protection that minimizes reflections and safeguards both health and electronics.MXene,with its intrinsic ultra-high electrical conductivity,liquid-phase tunable surface chemistry,low density,large specific surface area,thermal stability,and mechanical stability,has become the leading two-dimensional(2D)material driving the development of green EM shielding devices.In this review we emphasize device-level strategies with engineered architectures for MXene-based green EM shielding.We first examine MXene’s crystal and electronic structure and the fundamental attenuation mechanisms in MXene-based devices.Then we survey fabrication and assembly methods,analyzing three device-level strategies for MXene-based green EM shielded devices:3D architectures,metastructure/meta-surfaces,and external stimulus.Throughout,we highlight how MXene’s distinguished properties enable green EM interference(EMI)shielding devices that minimize secondary interference.Finally,we discuss the challenges faced in the effective utilization of MXene-based in green EM shielding devices,provide insights into these challenges,and offer guidelines for developing the solutions of next-generation green MXene-based EM shielding devices. 展开更多
关键词 MXene attenuation mechanisms architecture design green electromagnetic(EM)shielding
原文传递
Layered MXene-phase change composites for integrated photothermal regulation and electromagnetic shielding
14
作者 Teng Li Yuanjun Yang +5 位作者 Yawen Fan Danyuan Huang Li Zhang Xinpeng Hu Ying Chen Xinxin Sheng 《Nano Research》 2026年第1期655-664,共10页
Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctio... Efficient thermal management and electromagnetic interference(EMI)shielding are critical challenges for the reliable operation of portable electronic devices.Herein,we report the design and fabrication of multifunctional layered composite phase change materials(CPCMs)comprising alternating cellulose nanofiber/phase change capsule/sodium alginate(CNF/PCC/SA)layers and MXene/sodium alginate(MXene/SA)layers.The strong interfacial adhesion and controlled multilayer architecture enable the CPCM to achieve high electrical conductivity(up to 279.8 S/cm)and excellent EMI shielding effectiveness(up to 57.6 dB in the X-band).The layered structure enhances electromagnetic wave attenuation via multiple internal reflections and polarization losses,outperforming homogeneous composites.Moreover,the CPCMs exhibit superior light absorption(maximum nearly 100% for the optimized 5-layer structure)and efficient light-to-thermal conversion,achieving rapid temperature increases and uniform heat distribution under light irradiation.Additionally,the phase change capsules enable latent heat storage,ensuring thermal buffering and prolonged temperature regulation.This work provides novel insights into the rational design of multifunctional composites integrating wireless thermal management and EMI shielding,with promising applications in wearable electronics and smart thermal regulation. 展开更多
关键词 electromagnetic interference(EMI)shielding phase change thermal management FUNCTIONAL
原文传递
Impedance of RF shield on ceramic chamber in the rapid cycling synchrotron of China Spallation Neutron Source
15
作者 Liang‑Sheng Huang Bin Wu +6 位作者 Ming‑Yang Huang Ren‑Hong Liu Biao Tan Peng‑Cheng Wang Yong‑Chuan Xiao Li‑Rui Zeng Xiao Li 《Nuclear Science and Techniques》 2026年第1期130-140,共11页
In a rapid cycling synchrotron(RCS),the magnetic field is synchronized with the beam energy,creating a highly dynamic magnetic environment.A ceramic chamber with a shielding layer(RF shield),composed of a series of co... In a rapid cycling synchrotron(RCS),the magnetic field is synchronized with the beam energy,creating a highly dynamic magnetic environment.A ceramic chamber with a shielding layer(RF shield),composed of a series of copper strips connected to a capacitor at either end,is typically employed as a vacuum chamber to mitigate eddy current effects and beam coupling impedance.Consequently,the ceramic chamber exhibits a thin-walled multilayered complex structure.Previous theoretical studies have suggested that the impedance of such a structure has a negligible impact on the beam.However,recent impedance measurements of the ceramic chamber in the China Spallation Neutron Source(CSNS)RCS revealed a resonance in the low-frequency range,which was confirmed by further theoretical analysis as a source of beam instability in the RCS.Currently,the magnitude of this impedance cannot be accurately assessed using theoretical calculations.In this study,we used the CST Microwave Studio to confirm the impedance of the ceramic chamber.Further simulations covering six different types of ceramic chambers were conducted to develop an impedance model in the RCS.Additionally,this study investigates the resonant characteristics of the ceramic chamber impedance,finding that the resonant frequency is closely related to the capacitance of the capacitors.This finding provides clear directions for further impedance optimization and is crucial for achieving a beam power of 500 kW for the CSNS Phase-Ⅱ project(CSNS-Ⅱ).However,careful attention must be paid to the voltage across the capacitors. 展开更多
关键词 Beam coupling impedance Ceramic chamber RF shield RESONANCE High dynamic magnetic environment
在线阅读 下载PDF
Lightweight,rigid,ordered RSF/PVA/MXene aerogels with Janus structure for effective electromagnetic interference shielding with low reflectivity
16
作者 Bohan Ding Yanxiang Wang +5 位作者 Yingfan Li Haotian Jiang Peiyi Gao Yue Sun Jinghe Guo Chao Teng 《Nano Research》 2026年第1期1277-1289,共13页
Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electrom... Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices. 展开更多
关键词 vertically oriented aerogels electromagnetic interference shielding low reflectivity regenerated silk fibroin directional freeze drying LIGHTWEIGHT
原文传递
Forming Characteristics of Al-alloy Large-diameter Thin-walled Tubes in NC-bending Under Axial Compressive Loads 被引量:7
17
作者 闫晶 杨合 +1 位作者 詹梅 李恒 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第4期461-469,共9页
Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes ... Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes (AATTs). It may be a way solving this problem to exert axial compression loads (ACL) on the tube end in the bending. Thus, this article establishes a three-dimensional (3D) elastic-plastic explicit finite element (FE) model for the bending under ACL and has its reliability verified. Through a multi-index orthogonal experiment design, a combination of process parameters, each expressed by a proper range, for this FE model is derived to overcome the compression instability on tube ends. By combining the FE model with a wrinkling energy prediction model, an in-depth study is conducted on the forming characteristics of large-diameter AATTs with small bending radii and it can be concluded that (1) The larger the tube diameters and the smaller the bending radii, the larger the induced tangent tension stress zones on tube intrados, by which the tube maximum tangent compression stress zones will be partitioned in the bending processes; thus, the smaller the ACL roles in decreasing thinning degrees and the larger the compression instability possibilities on tube ends. (2) The tube wrinkling possibilities under ACL are larger than without ACL acting in the earlier forming periods, and smaller in the later ones. (3) For the tubes with a size factor less than 80, the ACL roles in decreasing thinning degrees are stronger than in increasing wrinkling possibilities. 展开更多
关键词 numerical control systems BENDING FORMING axial compression finite element modeling large-diameter Al-alloy thin-walled tubes
原文传递
Theoretical Analysis and Experimental Study on Breakaway Torque of Large-diameter Magnetic Liquid Seal at Low Temperature 被引量:4
18
作者 ZHANG Haina LI Decai +1 位作者 WANG Qinglei ZHANG Zhili 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期695-700,共6页
The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magne... The existing researches of the magnetic liquid rotation seal have been mainly oriented to the seal at normal temperature and the seal with the smaller shaft diameter less than 100 mm. However, the large-diameter magnetic liquid rotation seal at low temperature has not been reported both in theory and in application up to now. A key factor restricting the application of the large-diameter magnetic liquid rotation seal at low temperature is the high breakaway torque. In this paper, the factors that influence the breakaway torque including the number of seal stages, the injected quantity of magnetic liquid and the standing time at normal temperature are studied. Two kinds of magnetic liquid with variable content of large particles are prepared first, and a seal feedthrough with 140 mm shaft diameter is used in the experiments. All experiments are carried out in a low temperature chamber with a temperature range from 200℃ to -100℃. Different numbers of seal stages are tested under the same condition to study the relation between the breakaway torque and the number of seal stages. Variable quantity of magnetic liquid is injected in the seal gap to get the relation curve of the breakaway torque and the injecting quantity of magnetic liquid. In the experiment for studying the relation between the breakaway torque and the standing time at the normal temperature, the seal feedtrough is laid at normal temperature for different period of time before it is put in the low temperature chamber. The experimental results show that the breakaway torque is proportional to the number of seal stages, the injected quantity of magnetic liquid and the standing time at the normal temperature. Meanwhile, the experimental results are analyzed and the torque formula of magnetic liquid rotation seal at low temperature is deduced from the Navier-Stokes equation on the base of the model of magnetic liquid rotation seal. The presented research can make wider application of the magnetic liquid seal in general. And the large-diameter magnetic liquid rotation seal at low temperature designed by using present research results are to be used in some special fields, such as the military field, etc. 展开更多
关键词 magnetic liquid breakaway torque low temperature large-diameter
在线阅读 下载PDF
An Approach to Stability Analysis of Embedded Large-Diameter Cylinder Quay 被引量:7
19
作者 WANG Yuanzhan(王元战) +1 位作者 ZHU Zhenyu(祝振宇) 《China Ocean Engineering》 SCIE EI 2002年第3期383-393,共11页
The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used i... The large-diameter cylinder structure, which is made of large successive bottomless cylinders placed on foundation bed or partly driven into soil, is a recently developed retaining structure in China. It can be used in port, coastal and offshore works. The method for stability analysis of the large-diameter cylinder structure, especially for stability analysis of the embedded large-diameter cylinder structure, is an important issue. In this paper, an idea is presented that is, embedded large-diameter cylinder quays can be divided into two types, i.e. the gravity wall type and the cylinder pile wall type. A method for stability analysis of the large-diameter cylinder quay of the cylinder pile wall type is developed and a method for stability analysis of the large-diameter cylinder quay of the gravity wall type is also proposed. The effect of significant parameters on the stability of the large-diameter cylinder quay of the cylinder pile wall type is investigated through numerical calculation. 展开更多
关键词 large-diameter cylinder quay cylinder pile wall stability analysis
在线阅读 下载PDF
A theoretical analysis of vertical dynamic response of large-diameter pipe piles in layered soil 被引量:5
20
作者 丁选明 郑长杰 刘汉龙 《Journal of Central South University》 SCIE EI CAS 2014年第8期3327-3337,共11页
Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was de... Considering the viscous damping of the soil and soil-pile vertical coupled vibration,a computational model of large-diameter pipe pile in layered soil was established.The analytical solution in frequency domain was derived by Laplace transformation method.The responses in time domain were obtained by inverse Fourier transformation.The results of the analytical solution proposed agree well with the solutions in homogenous soil.The effects of the shear modulus and damping coefficients of the soil at both outer and inner sides of the pipe pile were researched.The results indicate that the shear modulus of the outer soil has more influence on velocity admittance than the inner soil.The smaller the shear modulus,the larger the amplitude of velocity admittance.The velocity admittance weakened by the damping of the outer soil is more obvious than that weakened by the damping of the inner soil.The displacements of the piles with the same damping coefficients of the outer soil have less difference.Moreover,the effects of the distribution of soil layers are analyzed.The results indicate that the effect of the upper soil layer on dynamic response of the pipe pile is more obvious than that of the bottom soil layer.A larger damping coefficient of the upper layer results in a smaller velocity admittance.The dynamic response of the pipe pile in layered soil is close to that of the pipe pile in homogenous soil when the properties of the upper soil layer are the same. 展开更多
关键词 dynamic response large-diameter pipe pile layered soil velocity admittance dynamic stiffness
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部