期刊文献+
共找到28,646篇文章
< 1 2 250 >
每页显示 20 50 100
Super-large-diameter shield tunnel undercrossing an intercity railway with oblique angle:Centrifuge test and numerical analysis
1
作者 Xing-Tao Lin Hui Zeng +2 位作者 Xuetao Wang Ming Song Xiangsheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2741-2757,共17页
With the development of urban infrastructure,it is inevitable that shield tunnels will undercross intercity railways.However,the safe operation of intercity railways requires strict subgrade deformation.On the basis o... With the development of urban infrastructure,it is inevitable that shield tunnels will undercross intercity railways.However,the safe operation of intercity railways requires strict subgrade deformation.On the basis of the engineering background of the Lianghu Tunnel in Wuhan,the three-dimensional centrifuge test and numerical back analysis were used to study the development of subgrade surface settlement during shield tunneling.A three-dimensional numerical model with the same size as the prototype was subsequently established to further study the settlement development and torsion behavior of the subgrade during tunnel excavation.The results show that the maximum settlement point of the transverse settlement trough gradually moves to the tunnel axis during tunnel excavation and that the entire subgrade experiences torsional deformation.Moreover,the effect of the intersection angle between the axes of the tunnel and the subgrade on the surface settlement of the subgrade was further studied.The results show that the intersection angle has no effect on the maximum settlement,but the width of the settlement trough increases gradually with increasing angle.Finally,on the basis of the soil arching effect caused by tunnel excavation,the subgrade settlement during tunnel excavation is reduced by reinforcing the soil in different zones of soil arching.The results show that the settlement of the subgrade caused by the shield tunnel can be effectively controlled by adding reinforcement directly to the top of the tunnel,and the maximum settlement of the subgrade surface is reduced from 24.41 mm to 9.47 mm,a reduction of approximately 61.2%. 展开更多
关键词 Super-large-diameter shield Oblique undercrossing Intercity railway Centrifuge test Numerical analysis
在线阅读 下载PDF
Failure mechanism of large-diameter shield tunnels and its effects on ground surface settlements 被引量:7
2
作者 杨宇友 李宏安 《Journal of Central South University》 SCIE EI CAS 2012年第10期2958-2965,共8页
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m... A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method. 展开更多
关键词 large-diameter shield tunnel failure mechanism ground surface settlements limit analysis theory supporting pressures
在线阅读 下载PDF
Settlement characteristics of large-diameter shield excavation below existing subway in close vicinity 被引量:34
3
作者 FANG Qian DU Jian-ming +2 位作者 LI Jian-ye ZHANG Ding-li CAO Li-qiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期882-897,共16页
A case of Qinghuayuan tunnel excavation below the existing Beijing Subway Line 10 is presented.The new Qinghuayuan tunnel,part of the Beijing-Zhangjiakou High-speed Railway,was excavated by a shield machine with an ou... A case of Qinghuayuan tunnel excavation below the existing Beijing Subway Line 10 is presented.The new Qinghuayuan tunnel,part of the Beijing-Zhangjiakou High-speed Railway,was excavated by a shield machine with an outer diameter of 12.2 m.The existing subway was excavated by shallow tunnelling method.The project layout,geological conditions,reinforcement measures,operational parameters of shield machine and monitoring results of the project are introduced.During the Qinghuayuan tunnel excavation below the existing subway,total thrust,shield driving speed,cutterhead rotation speed and torque were manually controlled below the average values obtained from the previous monitoring of this project,which could effectively reduce the disturbance of the surrounding soil induced by shield excavation.The Gaussian fitting function can appropriately fit both the ground and the existing subway settlements.The trough width is influenced not only by the excavation overburden depth,but also by the forepoling reinforcement and tail void grouting measures. 展开更多
关键词 adjacent excavation shield method operational parameters settlement characteristics
在线阅读 下载PDF
Physical and mechanical response of large-diameter shield tunnellining structure under non-uniform fire: A full-scalefire test-based study
4
作者 Da-Long Jin Hui Jin +2 位作者 Da-Jun Yuan Pan-Pan Cheng Dong Pan 《Underground Space》 2025年第1期1-16,共16页
When a fire occurs in an underground shield tunnel,it can result in substantial property damage and cause permanent harm to the tunnel lining structure.This is especially true for large-diameter shield tunnels that ha... When a fire occurs in an underground shield tunnel,it can result in substantial property damage and cause permanent harm to the tunnel lining structure.This is especially true for large-diameter shield tunnels that have numerous segments and joints,and are exposed to specific fire conditions in certain areas.This paper constructs a full-scale shield tunnel fire test platform and conducts a non-uniform fire test using the lining system of a three-ring large-diameter shield tunnel with an inner diameter of 10.5 m.Based on the tests,the tem-perature field distribution,high-temperature bursting,cracking phenomena,and deformation under fire conditions are observed.Fur-thermore,the post-fire damage forms of tunnel lining structures are obtained through the post-fire ultimate loading test,and the corresponding mechanism is explained.The test results illustrate that the radial and circumferential distribution of internal temperature within the tunnel lining,as well as the radial temperature gradient distribution on the inner surface of the lining,have non-uniform dis-tribution characteristics.As a result,the macroscopic phenomena of lining concrete bursting and crack development during the fire test mainly occur near the fire source,where the temperature rise gradient is the highest.In addition,the lining structure has a deformation characteristic of local outward expansion and cannot recover after the fire load is removed.The ultimate form of damage after the fire is dominated by crush damage from the inside out of the lining joints in the fire-exposed area.The above results serve as a foundation for future tunnel fire safety design and evaluation. 展开更多
关键词 large-diameter shield tunnel Full-scale fire test Temperature field Physical damage Mechanical response
在线阅读 下载PDF
An integrated method for dynamic prediction of lithological composition in large-diameter slurry shield tunnels
5
作者 Deming Xu Yuan Wang +2 位作者 Jingqi Huang Shujun Xu Kun Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6482-6495,共14页
Accurate acquisition of the lithological composition of a tunnel face is crucial for efficient tunneling and hazard prevention in large-diameter slurry shield tunnels.While widely applied,current data-driven methods o... Accurate acquisition of the lithological composition of a tunnel face is crucial for efficient tunneling and hazard prevention in large-diameter slurry shield tunnels.While widely applied,current data-driven methods often face challenges such as indirect prediction,data sparsity,and data drift,which limit their accuracy and generalizability.This study develops an integrated method that combines a knowledge-driven method to directly compute distribution patterns of lithological components,which are used as a priori knowledge to guide the development of a data-driven method.Coupled Markov chain(CMC)and deep neural networks(DNNs)serve as the knowledge-driven and data-driven components,respectively.Additionally,a dynamic prediction strategy is proposed,where the model is continuously optimized as construction progresses and training samples accumulate,rather than being statically trained on post-construction data,as is common in data-driven methods.Finally,the proposed method is evaluated using a real-world project.The evaluation results show that the integrated method outperforms both individual data-and knowledge-driven methods,demonstrating higher predictive performance,greater stability,and greater robustness to data scarcity and data drift.Furthermore,the dynamic prediction strategy better captures the effects of gradual data accumulation and lithological spatial variability on prediction performance during construction,providing new insights for real-time prediction in practical tunneling applications. 展开更多
关键词 Lithological composition large-diameter shield Markov chain Deep neural network(DNN) Dynamic prediction
在线阅读 下载PDF
Influence of secondary lining thickness on mechanical behaviours of double-layer lining in large-diameter shield tunnels 被引量:2
6
作者 Shimin Wang Xuhu He +3 位作者 Xiaoyu Peng Ya Wang Zhengxin Li Zihan 《Underground Space》 SCIE EI CSCD 2024年第5期130-150,共21页
In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in t... In large-diameter shield tunnels,applying the double-layer lining structure can improve the load-bearing properties and maintain the stability of segmental lining.The secondary lining thickness is a key parameter in the design of a double lining structure,which is worth being explored.Based on an actual large-diameter shield tunnel,loading model tests are carried out to investigate the effect of the secondary lining thickness on the mechanical behaviours of the double lining structure.The test results show that within the range of secondary lining thicknesses discussed,the load-bearing limit of the double-layer lining increases with growing secondary lining thickness.As a passive support,the secondary lining acts as an auxiliary load-bearing structure by contacting the segment.And changes in secondary lining thickness have a significant effect on the contact state between the segment and secondary lining,with both the contact pressure level and the contact area between the two varying.For double-layer lining structures in large-diameter shield tunnels,it is proposed that the stiffness of the secondary lining needs to be matched to the stiffness of the segment,as this allows them to have a coordinated deformation and a good joint load-bearing effect. 展开更多
关键词 large-diameter shield tunnels Double-layer lining structure Secondary lining thickness Stiffness matching Similar model test
在线阅读 下载PDF
Prediction of longitudinal surface settlement in composite formation using large-diameter shield machine based on machine learning techniques
7
作者 Jian ZHANG Chen ZHANG +3 位作者 Hao QIAN Tugen FENG Yongzhou JIAN Ronghua WU 《Frontiers of Structural and Civil Engineering》 CSCD 2024年第12期1922-1936,共15页
The employment of large-diameter shield machines has increased the likelihood of encountering composite formations,posing engineering challenges associated with excessive surface settlement.To tackle this issue,this s... The employment of large-diameter shield machines has increased the likelihood of encountering composite formations,posing engineering challenges associated with excessive surface settlement.To tackle this issue,this study introduces a hybrid model which integrates the extreme learning machine(ELM)with the sparrow search algorithm(SSA)to predict longitudinal surface settlement.Based on on-site measurements.this study analyzed longitudinal surface settlement patterns across both homogeneous and composite formations.Tunneling parameters,geological parameters,and geometrical parameters were considered as input parameters.Furthermore,this study conducted a comparative analysis of the predictive performance among SSA-ELM,ELM,and SSA-back propagation(BP),with respect to coefficient of determination(R^(2)),mean absolute error(MAE),root mean square error(RMSE),and training time.Last,in anticipation of potential risks,a feasible optimization approach is provided.SSA-ELM outperforms both ELM and SSA-BP in terms of R^(2),MAE,and RMSE,with values of 0.8822,0.3357,and 0.4072,respectively.Regarding training time,SSA-ELM requires 0.2346 s,prior to SSA-BP with a value of 1.8427.Although it is not as fast as ELM,the discrepancy between SSA-ELM and ELM is only 0.1187 s.Overall,SSA-ELM demonstrates higher performance and serves as an effective tool to guide the construction process. 展开更多
关键词 large-diameter shield machine composite formation extreme learning machine sparrow search algorithm longitudinal surface settlement
原文传递
Response of operating metro tunnels to compensation grouting of an underlying large-diameter shield tunnel:A case study in Hangzhou 被引量:8
8
作者 Xiaolu Gan Jianlin Yu +3 位作者 Xiaonan Gong Yongmao Hou Nianwu Liu Min Zhu 《Underground Space》 SCIE EI 2022年第2期219-232,共14页
Due to the shield tunneling underneath,long-term settlements may develop in the existing metro tunnels.The compensation grouting is applied worldwide to stabilize the settlement of ground and existing structures.Few f... Due to the shield tunneling underneath,long-term settlements may develop in the existing metro tunnels.The compensation grouting is applied worldwide to stabilize the settlement of ground and existing structures.Few field studies concerning large-diameter shield pass-ing tunnel from below have analyzed the interaction between the compensation grouting and the existing tunnel.This paper presents a case study on the response of the operating metro tunnels to the compensation grouting of an underlying large-diameter tunnel in muddy clay stratum.The tunnel deformations before,during,and after the compensation grouting were monitored and analyzed.The long-term tunnel settlements were mitigated and stabilized by the timely compensation grouting.Smaller settlement rates were observed during the grouting treatment,and the settlement was gradually stabilized three months after the grouting.The grouting holes at the tunnel invert were used initially for better grouting efficiency.The horizontal displacement and convergence developed during the grouting construc-tion and remained stable after the grouting process.Moreover,some limitations of the grouting treatment were discussed.The tunnel settlement in the section close to the center-line of the south-line tunnel cannot be prevented effectively.The differential displacement cannot be reduced by this grouting program. 展开更多
关键词 Grouting treatment shield under-crossing large-diameter shield tunnel Tunnel settlement
在线阅读 下载PDF
Case Study on Synchronous Construction Technology for Secondary Lining of Large-diameter Single track Shiel Shield-bored ored Tunnel
9
作者 WANG Zhenfei ZHAI Jinying(Translated) 《Chinese Railways》 2023年第2期29-34,共6页
The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the... The synchronous construction of the secondary lining during the boring of large-diameter shield faces challenges such as the design of the lining jumbo,the high requirements on the performance for the lining jumbo,the organization of the construction activities in the small and confined area,the horizontal transportation for shield boring and high safety management requirements.A super-long invert lining construction jumbo,as well as the matching California switch,is developed,which provides solution for the confliction between the invert lining construction and the horizontal transportation.The procedure and method for the synchronous operation of the shield boring and the secondary lining are developed by referring to the synchronous construction of the secondary lining during the boring of the TBMs in hard rocks.Due to the adoption of the synchronous operation of the shield boring and the secondary lining,the construction period is shortened and the construction cost is reduced.The paper can provide reference for the synchronous construction of the secondary lining in similar projects in the future. 展开更多
关键词 large-diameter shield-bored tunnel synchronous construction of secondary lining super-long invert lining construction jumbo California switch "arch+side wall"lining jumbo
原文传递
High-strain dynamic model of large-diameter pipe piles with soil plug for vertical vibration analysis
10
作者 Yuan Tu M.H.El Naggar +2 位作者 Kuihua Wang Wenbing Wu Minjie Wen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4440-4461,共22页
A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the... A rigorous analytical model is developed for simulating the vibration behaviors of large-diameter openended pipe piles(OEPPs)and surrounding soil undergoing high-strain impact loading.To describe the soil behavior,the soil along pile shaft is divided into slip and nonslip zones and the base soil is modeled as a fictitious-soil pile(FSP)to account for the wave propagation in the soil.True soil properties are adopted and slippage at the pile-soil interface is considered,allowing realistic representation of largediameter OEPP mechanics.The developed model is validated by comparing with conventional models and finite element method(FEM).It is further used to successfully simulate and interpret the behaviors of a steel OEPP during the offshore field test.It is found that the variation in the vertical vibrations of shaft soil along radial direction is significant for large-diameter OEPPs,and the velocity amplitudes of the internal and external soil attenuate following different patterns.The shaft soil motion may not attenuate with depth due to the soil slippage,while the wave attenuation at base soil indicates an influence depth,with a faster attenuation rate than that in the pile.The findings from the current study should aid in simulating the vibration behaviors of large-diameter OEPP-soil system under high-strain dynamic loading. 展开更多
关键词 Fictitious-soil pile large-diameter pipe piles Soil plug Pile vibration Elastic wave propagation High-strain dynamic analysis
在线阅读 下载PDF
Synergistic improvement of mechanical and electromagnetic shielding properties of a Mg-Li-Y-Zn alloy following heat treatment 被引量:2
11
作者 Jinsheng Li Liping Zhong +3 位作者 Junli Wang Zhongxue Feng Yan Qu Ruidong Xu 《Journal of Magnesium and Alloys》 2025年第3期1243-1257,共15页
The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent... The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent heat treatment at 300,450,and 500°C.The material properties of the resulting samples were assessed through microstructural observation,tensile testing,electrical conductivity measurements,and electromagnetic shielding effectiveness(EMI-SE)testing.The influence of the Mg-8Li-3Y-2Zn alloy microstructure on its mechanical and electromagnetic shielding properties in different states was investigated.It was found that the as-cast alloy containsα-Mg,β-Li,Mg_(3)Zn_(3)Y_(2),and Mg_(12)ZnY phases.Following heat treatment at 500℃(HT500),the blockα-Mg phase transformedfine needle-shapes,its tensile strength increased to 263.7 MPa,and its elongation reached 45.3%.The mechanical properties of the alloy were significantly improved by the synergistic effects imparted by the needle-shapedα-Mg phase,solid solution strengthening,and precipitation strengthening.The addition of Y and Zn improved the EMI-SE of Mg-8Li-1Zn alloy,wherein the HT500 sample exhibits the highest SE,maintaining a value of 106.7–76.9 dB in the frequency range of 30–4500 MHz;this performance has rarely been reported for electromagnetically shielded alloys.This effect was mainly attributed to the multiple reflections of electromagnetic waves caused by the severe impedance mismatch of the abundant phase boundaries,which were in turn provided by the dual-phase(α/β)and secondary phases.Furthermore,the presence of nano-precipitation was also believed to enhance the absorption of electromagnetic waves. 展开更多
关键词 Mg-Li alloy Microstructure Heat treatment Mechanical properties Electromagnetic shielding
在线阅读 下载PDF
Janus structure design of polyimide composite foam for absorption-dominated EMI shielding and thermal insulation 被引量:2
12
作者 Ruixing Hao Yaqi Yang +3 位作者 Peiyou He Yaqing Liu Guizhe Zhao Hongji Duan 《Journal of Materials Science & Technology》 2025年第3期317-326,共10页
In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electrom... In the present work,by virtue of the synergistic and independent effects of Janus structure,an asymmetric nickel-chain/multiwall carbon nanotube/polyimide(Ni/MWCNTs/PI)composite foam with absorption-dominated electromagnetic interference(EMI)shielding and thermal insulation performances was successfully fabricated through an ordered casting and directional freeze-drying strategy.Water-soluble polyamic acid(PAA)was chosen to match the oriented freeze-drying method to acquire oriented pores,and the thermal imidization process from PAA to PI exactly eliminated the interface of the multilayered structure.By controlling the electro-magnetic gradient and propagation path of the incident microwaves in the MWCNT/PI and Ni/PI layers,the PI composite foam exhibited an efficient EMI SE of 55.8 dB in the X-band with extremely low reflection characteristics(R=0.22).The asymmetric conductive net-work also greatly preserved the thermal insulation properties of PI.The thermal conductivity(TC)of the Ni/MWCNT/PI composite foam was as low as 0.032 W/(m K).In addition,owing to the elimination of MWCNT/PI and Ni/PI interfaces during the thermal imidization process,the composite foam showed satisfactory compressive strength.The fabricated PI composite foam could provide reliable electromagnetic protection in complex applications and withstand high temperatures,which has great potential in cuttingedge applications such as advanced aircraft. 展开更多
关键词 Electromagnetic interference shielding(EMI) Thermal insulation POLYIMIDE Janus structure Low reflection
原文传递
A special core-shell material(Mxene@Ag@Phytate)to improve EVA composite fire safety,radiation cross-linking effect,and electromagnetic shielding 被引量:2
13
作者 Si-Yi Xu Dan-Yi Li +4 位作者 Wen-Rui Wang Lin Lin Ying Sun Ji-Hao Li Lin-Fan Li 《Nuclear Science and Techniques》 2025年第2期27-39,共13页
High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polym... High-performance MXene-based polymer nanocomposites are well-suited for various industrial applications owing to their excellent mechanical,thermal,and other properties.However,the fabrication of flame-retardant polymer/MXene nanocom-posites remains challenging owing to the limited flame-retardant properties of MXene itself.This study prepared a novel MXene@Ag@PA hybrid material via radiation modification and complexation reaction.This material was used to further enhance the key properties of ethylene-vinyl acetate(EVA),such as its mechanical properties,thermal conductivity,flame retardancy,and electromagnetic shielding.The addition of two parts of this hybrid material increased the thermal conduc-tivity of EVA by 44.2%and reduced its peak exothermic rate during combustion by 30.1%compared with pure EVA.The material also significantly reduced smoke production and increased the residue content.In the X-band,the electromagnetic shielding effectiveness of the EVA composites reached 20 dB.Moreover,the MXene@Ag@PA hybrid material could be used to further enhance the mechanical properties of EVA composites under electron-beam irradiation.Thus,this study contributes to the development of MXene-based EVA advanced materials that are fire-safe,have high strength,and exhibit good electromagnetic shielding performance for various applications. 展开更多
关键词 MXene@Ag@PA Ethylene-vinyl acetate(EVA) Flame retardancy Electromagnetic shielding performance
在线阅读 下载PDF
Metal foams for the interfering energy conversion:Electromagnetic wave absorption,shielding,and sound attenuation 被引量:1
14
作者 Yujing Zhang Rui Liu +5 位作者 Chuyang Liu Yilin Zhang Liang Yan Jie Jiang Er Liu Feng Xu 《Journal of Materials Science & Technology》 2025年第12期258-282,共25页
Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight natur... Metal foams are a fascinating group of materials that possess distinct physicochEMIcal properties and interconnected strut features with high surface area-to-volume ratios, high specific strength and lightweight nature. These characteristics make them ideal for applications in vibration damping, heat insulation and weight reduction. In recent years, there has been increasing interest in the application of interfering energy conversion such as electromagnetic wave (EMW) and sound, where the metal foams could emerge as a solution. This paper will present a comprehensive review of the preparation methods as well as the interference energy converting mechanisms for metal foams. Typically, the progress and prospective aspects of metal foams for EMW absorption, electromagnetic interference (EMI) shielding and sound absorption have been emphasized. Through this review, we aspire to offer valuable insights for the development of multifunctional applications with metal foam materials. 展开更多
关键词 Metal foams EMW absorption EMI shielding Sound absorption
原文传递
High toughness and strong electromagnetic shielding properties of PAM/PEG dual network hydrogels 被引量:1
15
作者 Kunlan Diao Yuhuan Xu +5 位作者 Jingyu Du Teng Zhou Xiao Zhan Daohai Zhang Xiaosi Qi Shuhao Qin 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期747-755,共9页
With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in... With the wide application of electromagnetic wave,a high performance electromagnetic shielding material is urgently needed to solve the harm caused by electromagnetic wave.Complete cross-linking strategy is adopted in this paper.Polyacrylamide(PAM)was synthesized by in-situ polymerization of acrylamide(AM)monomer.The obtained PAM was blended with polyethylene glycol(PEG)to prepare PAM/PEG hydrogels and form rigid support structures.Subsequently,the modified carbon nanotubes(S-CNTs)were incorpor-ated into sodium alginate(SA)and PAM/PEG.Finally,Na+was used to trigger SA self-assembly,which significantly improved the mechanical properties and electrical conductivity of the hydrogels,and prepared PAM/PEG/SA/S-CNTs-Na hydrogels with high tough-ness and strong electromagnetic interference(EMI)shielding efficiency(SE).The results showed that the compressive strength of PAM/PEG/SA/S-CNTs-Na hydrogel was 19.05 MPa,which was 7.69%higher than that of PAM/PEG hydrogel(17.69 MPa).More en-couraging,the average EMI SE of PAM/PEG/SA/S-CNTs-Na hydrogels at a thickness of only 3 mm and a CNTs content of 16.53wt%was 32.92 dB,which is 113.21%higher than that of PAM/PEG hydrogels(15.44 dB). 展开更多
关键词 POLYACRYLAMIDE polyethylene glycol sodium alginate carbon nanotubes electromagnetic shielding
在线阅读 下载PDF
Multistage microcellular waterborne polyurethane composite with optionally low-reflection behavior for ultra-efficient electromagnetic interference shielding 被引量:3
16
作者 Jianming Yang Hu Wang +4 位作者 Hexin Zhang Peng Lin Hong Gao Youyi Xia Xia Liao 《Journal of Materials Science & Technology》 2025年第5期132-140,共9页
Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fif... Electromagnetic interference(EMI)shielding materials with superior shielding efficiency and low-reflection properties hold promising potential for utilization across electronic components,precision instruments,and fifth-generation communication equipment.In this study,multistage microcellular waterborne polyurethane(WPU)composites were constructed via gradient induction,layer-by-layer casting,and supercritical carbon dioxide foaming.The gradient-structured WPU/ironcobalt loaded reduced graphene oxide(FeCo@rGO)foam serves as an impedance-matched absorption layer,while the highly conductive WPU/silver loaded glass microspheres(Ag@GM)layer is employed as a reflection layer.Thanks to the incorporation of an asymmetric structure,as well as the introduction of gradient and porous configurations,the composite foam demonstrates excellent conductivity,outstanding EMI SE(74.9 dB),and minimal reflection characteristics(35.28%)in 8.2-12.4 GHz,implying that more than 99.99999%of electromagnetic(EM)waves were blocked and only 35.28%were reflected to the external environment.Interestingly,the reflectivity of the composite foam is reduced to 0.41%at 10.88 GHz due to the resonance for incident and reflected EM waves.Beyond that,the composite foam is characterized by low density(0.47 g/cm^(3))and great stability of EMI shielding properties.This work offers a viable approach for craft-ing lightweight,highly shielding,and minimally reflective EMI shielding composites. 展开更多
关键词 Electromagnetic interference shielding Supercritical carbon dioxide(ScCO_(2))foaming Low reflectivity Multilayered structure MICROCELLULAR
原文传递
Hierarchically Porous Polypyrrole Foams Contained Ordered Polypyrrole Nanowire Arrays for Multifunctional Electromagnetic Interference Shielding and Dynamic Infrared Stealth 被引量:1
17
作者 Yu-long Liu Ting-yu Zhu +5 位作者 Qin Wang Zi-jie Huang De-xiang Sun Jing-hui Yang Xiao-dong Qi Yong Wang 《Nano-Micro Letters》 2025年第4期399-418,共20页
As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal... As modern communication and detection technologies advance at a swift pace,multifunctional electromagnetic interference(EMI)shielding materials with active/positive infrared stealth,hydrophobicity,and electric-thermal conversion ability have received extensive attention.Meeting the aforesaid requirements simultaneously remains a huge challenge.In this research,the melamine foam(MF)/polypyrrole(PPy)nanowire arrays(MF@PPy)were fabricated via one-step electrochemical polymerization.The hierarchical MF@PPy foam was composed of three-dimensional PPy micro-skeleton and ordered PPy nanowire arrays.Due to the upwardly grown PPy nanowire arrays,the MF@PPy foam possessed good hydrophobicity ability with a water contact angle of 142.00°and outstanding stability under various harsh environments.Meanwhile,the MF@PPy foam showed excellent thermal insulation property on account of the low thermal conductivity and elongated ligament characteristic of PPy nanowire arrays.Furthermore,taking advantage of the high conductivity(128.2 S m^(-1)),the MF@PPy foam exhibited rapid Joule heating under 3 V,resulting in dynamic infrared stealth and thermal camouflage effects.More importantly,the MF@PPy foam exhibited remarkable EMI shielding effectiveness values of 55.77 dB and 19,928.57 dB cm^(2)g^(-1).Strong EMI shielding was put down to the hierarchically porous PPy structure,which offered outstanding impedance matching,conduction loss,and multiple attenuations.This innovative approach provides significant insights to the development of advanced multifunctional EMI shielding foams by constructing PPy nanowire arrays,showing great applications in both military and civilian fields. 展开更多
关键词 Polypyrrole nanowire arrays Hierarchical foam HYDROPHOBICITY Infrared stealth Electromagnetic interference shielding
在线阅读 下载PDF
Multifunctional Nacre‑Like Nanocomposite Papers for Electromagnetic Interference Shielding via Heterocyclic Aramid/MXene Template‑Assisted In‑Situ Polypyrrole Assembly
18
作者 Jinhua Xiong Xu Zhao +6 位作者 Zonglin Liu He Chen Qian Yan Huanxin Lian Yunxiang Chen Qingyu Peng Xiaodong He 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期37-54,共18页
Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication,... Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication, and portable/wearable electronic equipment.In this work, a nacre-inspired multifunctional heterocyclic aramid(HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper withlarge-scale, high strength, super toughness, and excellent tolerance tocomplex conditions is fabricated through the strategy of HA/MXenehydrogel template-assisted in-situ assembly of PPy. Benefiting from the"brick-and-mortar" layered structure and the strong hydrogen-bondinginteractions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa),outstanding toughness (57.6 MJ m−3), exceptional foldability, and structural stability against ultrasonication. By using the template effect ofHA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly,the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dBat an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2g−1. In addition, the papers also have excellent applicationsin electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developinghigh-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management. 展开更多
关键词 MXene Remarkable mechanical properties Heterocyclic aramid Electromagnetic interference shielding POLYPYRROLE Multifunctionality
在线阅读 下载PDF
Deformation analysis of ground and existing tunnel induced by overlapped curved shield tunneling 被引量:1
19
作者 Yingnan Liu Huayang Lei +2 位作者 Liang Shi Gang Zheng Mengting Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期795-809,共15页
The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield... The deformation caused by tunnel excavation is quite important for safety,especially when it is adjacent to the existing tunnel.Nevertheless,the investigation of deformation characteristics in overlapped curved shield tunneling remains inadequate.The analytical solution for calculating the deformation of the ground and existing tunnel induced by overlapped curved shield tunneling is derived by the Mirror theory,Mindlin solution and Euler-Bernoulli-Pasternak model,subsequently validated through both finite element simulation and field monitoring.It is determined that the overcutting plays a crucial role in the ground settlement resulting from curved shield tunneling compared to straight shield tunneling.The longitudinal settlement distribution can be categorized into five areas,with the area near the tunnel surface experiencing the most dramatic settlement changes.The deformation of the existing tunnel varies most significantly with turning radius compared to tunnel clearance and grouting pressure,especially when the turning radius is less than 30 times the tunnel diameter.The tunnel crown exhibits larger displacement than the tunnel bottom,resulting in a distinctive‘vertical egg'shape.Furthermore,an optimized overcutting mode is proposed,involving precise control of the extension speed and angular velocity of the overcutting cutter,which effectively mitigates ground deformation,ensuring the protection of the existing tunnel during the construction. 展开更多
关键词 Overlapped curved shield tunneling Analytical solution Ground deformation Existing tunnel Overcutting mode
在线阅读 下载PDF
SCS-Net:A DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures 被引量:1
20
作者 Wanli DU Guangzhi CHEN +4 位作者 Ziang ZHANG Xinsong WANG Shunchuan YANG Xingye CHEN Donglin SU 《Chinese Journal of Aeronautics》 2025年第3期505-520,共16页
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai... As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed. 展开更多
关键词 Deep neural networkcs Measurement-computation fusion Electromagnetic shielding effectiveness Slotted composite structures Structural paranmeters
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部