This article focuses on the study of stability of motion of the phase systems described by differential equations whose right-hand sides are periodic in the angular coordinate. The article deals with the mathematical ...This article focuses on the study of stability of motion of the phase systems described by differential equations whose right-hand sides are periodic in the angular coordinate. The article deals with the mathematical model which has been investigated for stability "in the large" using the second Lyapunov method. Based on the theoretical results obtained in the work,the computational experiments on concrete examples of electric power systems, which showedthe sufficient efficacy of the proposed method for the studied phase system, were conducted.展开更多
Vortex/flame interaction is an important mechanism for unsteady combustion in a swirl combustion system. Technology of low emission stirred swirl (TeLESS), which is characterized with stratified swirl flow, has been...Vortex/flame interaction is an important mechanism for unsteady combustion in a swirl combustion system. Technology of low emission stirred swirl (TeLESS), which is characterized with stratified swirl flow, has been developed in Beihang University to reduce NOx emission. However, large-scale flow structure would be induced in strong swirl flow. Experiments and computational fluid dynamics (CFD) simulation were carried out to investigate the unsteady flow feature and its mechanism in TeLESS combustor. Hotwire was firstly applied to testing the unsteady flow feature and a distinct mode with 2244 Hz oscillation frequency occurred at the pilot swirl outlet. The flow mode amplitude decayed convectively. Large eddy simulation (LES) was then applied to predicting this flow mode and know about its mechanism. The deviation of mode prediction compared with hotwire test was 0.8%. The spiral isobaric structure in pilot flow passage indicates that precessing vortex core (PVC) existed. The velocity spectrum and phase lag analysis suggest that the periodic movement at the pilot outlet was dominated by precessing movement. Negative tangen- tial momentum gradient reflects that the swirl flow was unstable. Another phenomenon was found out that the PVC movement was intermittently rotated alon~ the symmetric axis.展开更多
Aiming at scheduling problems of networked control system (NCS) used to fulfill motion synthesis and cooperation control of the distributed multi-mechatronic systems, the differences of network scheduling and task s...Aiming at scheduling problems of networked control system (NCS) used to fulfill motion synthesis and cooperation control of the distributed multi-mechatronic systems, the differences of network scheduling and task scheduling are compared, and the mathematic description of task scheduling is presented. A performance index function of task scheduling of NCS according to task balance and traffic load matching principles is defined. According to this index, a static scheduling method is designed and implemented to controlling task set simulation of the DCY100 transportation vehicle. The simulation results are applied successfully to practical engineering in this case so as to validate the effectiveness of the proposed performance index and scheduling algorithm.展开更多
Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade compone...Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications.展开更多
Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number ...Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number based on momentum thickness is Reo = 2 460. The in- stantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid, which is flanked on either side by high- speed ones. Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases, and the main vortex characteristic in different wall-normal re- gions can be reflected by comparing the proportion of ejec- tion and its contribution to Reynolds stress with that of sweep event. The pre-multiplied power spectra and two-point cor- relations indicate the presence of large-scale motions in the boundary layer, which are consistent with what have been termed very large scale motions (VLSMs). The three dimen-sional spatial correlations of three components of veloc- ity further indicate that the elongated low-speed and high- speed regions will be accompanied by a counter-rotating roll modes, as the statistical imprint of hairpin packet structures, all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).展开更多
Based on the real-time synchronous measurements of the wind velocity,temperature,the PM10 concentration at 16 m and 47 m during a dust storm event,in which Reynolds number Re exceeds 6×106,this study reveals the ...Based on the real-time synchronous measurements of the wind velocity,temperature,the PM10 concentration at 16 m and 47 m during a dust storm event,in which Reynolds number Re exceeds 6×106,this study reveals the existence of the very large scale motions(VLSMs) during the stable stage both in the stream velocity and the temperature field at the two heights,whose streamwise scales reach up to 10 times the thickness of the boundary layer.The streamwise velocity and the PM10 concentration display a similar frequency corresponding to the peaks of their energy spectra,which implies that the VLSMs of streamwise flow have a significant role in dust transportation.In contrast,the salient deviations of the PM10 concentration at 47 m from the Gaussian distribution are revealed,which means that 47 m is not in the dust transportation layer,but is a region where the dust transportation layer and the outer flow intersect each other.Analysis demonstrates that the energy spectra of the PM10 concentrations at 16 m and 47 m display the "-1" scaling law feature,which has the same frequency range(0.001-0.1 Hz) as that of the wind velocity.This provides a new paradigm for the existence of the self-similarity scaling region in turbulent flow.展开更多
The slack-taut state of tether is a particular adverse circumstance, which may influence the normal operation state of tension leg platform (TLP). The dynamic responses of TLP with slack-taut tether are studied with...The slack-taut state of tether is a particular adverse circumstance, which may influence the normal operation state of tension leg platform (TLP). The dynamic responses of TLP with slack-taut tether are studied with consideration of several nonlinear factors introduced by large amplitude motions. The time histories of stresses of tethers of a typical TLP in slack- taut state are given. In addition, the sensitivities of slack to stiffness and mass are investigated by varying the stiffness of tether and mass of TLP. It is found that slack is sensitive to the mass of TLP. The critical curved surfaces ( over which indicates the slack) for the increase of mass are obtained.展开更多
A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynami...A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystemmodeling framework. It is clearly elucidated for the first time that,dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beamand the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can't be provided. First,the continuous dynamic models of the flexible beamand the central rigid body are established via structural dynamics and angular momentumtheory respectively. Then,based on the conclusions of orthogonalization about the normal constrained modes,the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations showthat: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper,which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately,and has a clear modeling mechanism,concise expressions and a good convergence.展开更多
The dynamics of a flexible manipulator is investigated in this paper. From the point of view of dynamic balance, the motion equations of a rotating beam with tip load are established by us ing Hamilton' s principl...The dynamics of a flexible manipulator is investigated in this paper. From the point of view of dynamic balance, the motion equations of a rotating beam with tip load are established by us ing Hamilton' s principle. By taking into account the effects of dynamic stiffening and dynamic softening, the stability of the system is proved by employing Lyapunov' s approach. Furthermore, the method of power series is proposed to find the exact solution of the eigenvalue problem The effects of rotating speed and tip load on the vibration behavior of the flexible manipulator are shown in numerical results.展开更多
Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library...Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams.展开更多
A gyro-stabilizer is the interesting system that it can apply to marine vessels for diminishes roll motion.Today it has potentially light weight with no hydrodynamics drag and effective at zero forward speed.The...A gyro-stabilizer is the interesting system that it can apply to marine vessels for diminishes roll motion.Today it has potentially light weight with no hydrodynamics drag and effective at zero forward speed.The twin-gyroscope was chosen.Almost,the modelling for designing the system use linear model that it might not comprehensive mission requirement such as high sea condition.The non-linearity analysis was proved by comparison the results between linear and non-linear model of gyro-stabilizer throughout frequency domain also same wave input,constrains and limitations.Moreover,they were cross checked by simulating in time domain.The comparison of interested of linear and non-linear close loop model in frequency domain has demonstrated the similar characteristics but gave different values at same frequency obviously.The results were confirmed again by simulation in irregular beam sea on time domain and they demonstrate the difference of behavior of both systems while the gyro-stabilizers are switching on and off.From the resulting analysis,the non-linear gyro-stabilizer model gives more real results that correspond to more accuracy in a designing gyro-stabilizer control system for various amplitudes and frequencies operating condition especially high sea condition.展开更多
This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Sh...This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement is significant for the maneuverability and control system design.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics tests of large drift angle were conducted through Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) under low speed.Multiple regression method is adopted to process the test data and obtain the related hydrodynamic coefficients.Simulations were designed for the horizontal plane motion of large drift angle to verify the coefficients calculated.And the results show that the data can satisfy with the design requirements of the ROV developed.展开更多
文摘This article focuses on the study of stability of motion of the phase systems described by differential equations whose right-hand sides are periodic in the angular coordinate. The article deals with the mathematical model which has been investigated for stability "in the large" using the second Lyapunov method. Based on the theoretical results obtained in the work,the computational experiments on concrete examples of electric power systems, which showedthe sufficient efficacy of the proposed method for the studied phase system, were conducted.
基金AVIC Commercial Aircraft Engine Co.Ltd.’s support on combustion instability investigation
文摘Vortex/flame interaction is an important mechanism for unsteady combustion in a swirl combustion system. Technology of low emission stirred swirl (TeLESS), which is characterized with stratified swirl flow, has been developed in Beihang University to reduce NOx emission. However, large-scale flow structure would be induced in strong swirl flow. Experiments and computational fluid dynamics (CFD) simulation were carried out to investigate the unsteady flow feature and its mechanism in TeLESS combustor. Hotwire was firstly applied to testing the unsteady flow feature and a distinct mode with 2244 Hz oscillation frequency occurred at the pilot swirl outlet. The flow mode amplitude decayed convectively. Large eddy simulation (LES) was then applied to predicting this flow mode and know about its mechanism. The deviation of mode prediction compared with hotwire test was 0.8%. The spiral isobaric structure in pilot flow passage indicates that precessing vortex core (PVC) existed. The velocity spectrum and phase lag analysis suggest that the periodic movement at the pilot outlet was dominated by precessing movement. Negative tangen- tial momentum gradient reflects that the swirl flow was unstable. Another phenomenon was found out that the PVC movement was intermittently rotated alon~ the symmetric axis.
基金This project is supported by National Natural Science Foundation of China (No. 50575013)
文摘Aiming at scheduling problems of networked control system (NCS) used to fulfill motion synthesis and cooperation control of the distributed multi-mechatronic systems, the differences of network scheduling and task scheduling are compared, and the mathematic description of task scheduling is presented. A performance index function of task scheduling of NCS according to task balance and traffic load matching principles is defined. According to this index, a static scheduling method is designed and implemented to controlling task set simulation of the DCY100 transportation vehicle. The simulation results are applied successfully to practical engineering in this case so as to validate the effectiveness of the proposed performance index and scheduling algorithm.
基金Project supported by the National Natural Science Foundation of China(Nos.12372071 and 12372070)the Aeronautical Science Fund of China(No.2022Z055052001)the Foundation of China Scholarship Council(No.202306830079)。
文摘Currently,there are a limited number of dynamic models available for braided composite plates with large overall motions,despite the incorporation of three-dimensional(3D)braided composites into rotating blade components.In this paper,a dynamic model of 3D 4-directional braided composite thin plates considering braiding directions is established.Based on Kirchhoff's plate assumptions,the displacement variables of the plate are expressed.By incorporating the braiding directions into the constitutive equation of the braided composites,the dynamic model of the plate considering braiding directions is obtained.The effects of the speeds,braiding directions,and braided angles on the responses of the plate with fixed-axis rotation and translational motion,respectively,are investigated.This paper presents a dynamic theory for calculating the deformation of 3D braided composite structures undergoing both translational and rotational motions.It also provides a simulation method for investigating the dynamic behavior of non-isotropic material plates in various applications.
基金supported by the National Natural Science Foundation of China (10832001 and 10872145)the State Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional co- herent structures in the logarithmic region of the turbulent boundary layer in a water tunnel. The Reynolds number based on momentum thickness is Reo = 2 460. The in- stantaneous velocity fields give evidence of hairpin vortices aligned in the streamwise direction forming very long zones of low speed fluid, which is flanked on either side by high- speed ones. Statistical support for the existence of hairpins is given by conditional averaged eddy within an increasing spanwise width as the distance from the wall increases, and the main vortex characteristic in different wall-normal re- gions can be reflected by comparing the proportion of ejec- tion and its contribution to Reynolds stress with that of sweep event. The pre-multiplied power spectra and two-point cor- relations indicate the presence of large-scale motions in the boundary layer, which are consistent with what have been termed very large scale motions (VLSMs). The three dimen-sional spatial correlations of three components of veloc- ity further indicate that the elongated low-speed and high- speed regions will be accompanied by a counter-rotating roll modes, as the statistical imprint of hairpin packet structures, all of which together make up the characteristic of coherent structures in the logarithmic region of the turbulent boundary layer (TBL).
基金supported by the National Natural Science Foundation of China (Grant Nos. 11232006,11121202,10972164,40830103,and 11072097)the State Key Dvelopment Program for Basic Research of China (Grant No. 2009CB421304)
文摘Based on the real-time synchronous measurements of the wind velocity,temperature,the PM10 concentration at 16 m and 47 m during a dust storm event,in which Reynolds number Re exceeds 6×106,this study reveals the existence of the very large scale motions(VLSMs) during the stable stage both in the stream velocity and the temperature field at the two heights,whose streamwise scales reach up to 10 times the thickness of the boundary layer.The streamwise velocity and the PM10 concentration display a similar frequency corresponding to the peaks of their energy spectra,which implies that the VLSMs of streamwise flow have a significant role in dust transportation.In contrast,the salient deviations of the PM10 concentration at 47 m from the Gaussian distribution are revealed,which means that 47 m is not in the dust transportation layer,but is a region where the dust transportation layer and the outer flow intersect each other.Analysis demonstrates that the energy spectra of the PM10 concentrations at 16 m and 47 m display the "-1" scaling law feature,which has the same frequency range(0.001-0.1 Hz) as that of the wind velocity.This provides a new paradigm for the existence of the self-similarity scaling region in turbulent flow.
基金supported by the National High-Tech Research and Development Program of China(863 Program,Grant No.2006AA09Z350)the National Natural Science Foundation of China(Grant No.10702073)the"Knowledge Innovation Program"of Chinese Academy of Sciences(Grant No.KJCX2-YW-L02)
文摘The slack-taut state of tether is a particular adverse circumstance, which may influence the normal operation state of tension leg platform (TLP). The dynamic responses of TLP with slack-taut tether are studied with consideration of several nonlinear factors introduced by large amplitude motions. The time histories of stresses of tethers of a typical TLP in slack- taut state are given. In addition, the sensitivities of slack to stiffness and mass are investigated by varying the stiffness of tether and mass of TLP. It is found that slack is sensitive to the mass of TLP. The critical curved surfaces ( over which indicates the slack) for the increase of mass are obtained.
文摘A rigid flexible coupling physical model which can represent a flexible spacecraft is investigated in this paper. By applying the mechanics theory in a non-inertial coordinate system,the rigid flexible coupling dynamic model with dynamic stiffening is established via the subsystemmodeling framework. It is clearly elucidated for the first time that,dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beamand the transverse vibration deformation of the beam. The modeling approach in this paper successfully avoids problems which are caused by other popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical explanation for dynamic stiffening can't be provided. First,the continuous dynamic models of the flexible beamand the central rigid body are established via structural dynamics and angular momentumtheory respectively. Then,based on the conclusions of orthogonalization about the normal constrained modes,the finite dimensional dynamic model suitable for controller design is obtained. The numerical simulation validations showthat: dynamic stiffening is successfully incorporated into the dynamic characteristics of the first-order model established in this paper,which can indicate the dynamic responses of the rigid flexible coupling system with large overall motion accurately,and has a clear modeling mechanism,concise expressions and a good convergence.
文摘The dynamics of a flexible manipulator is investigated in this paper. From the point of view of dynamic balance, the motion equations of a rotating beam with tip load are established by us ing Hamilton' s principle. By taking into account the effects of dynamic stiffening and dynamic softening, the stability of the system is proved by employing Lyapunov' s approach. Furthermore, the method of power series is proposed to find the exact solution of the eigenvalue problem The effects of rotating speed and tip load on the vibration behavior of the flexible manipulator are shown in numerical results.
基金the National Natural Science Foundation of China(No.19832040)
文摘Based on the deformation theory of elastic beams, the coupling effect between the coupling displacements of a point on the middle line of beam and large overall motion is presented. The 'coupling matrix library' and Jourdain's variation principle and single direction recursive formulation method are used to establish the general coupling dynamical equations of flexible multibody system. Two typical examples show the coupling effect between coupling displacements and large overall motion on the dynamics of flexible multibody system consisting of beams.
文摘A gyro-stabilizer is the interesting system that it can apply to marine vessels for diminishes roll motion.Today it has potentially light weight with no hydrodynamics drag and effective at zero forward speed.The twin-gyroscope was chosen.Almost,the modelling for designing the system use linear model that it might not comprehensive mission requirement such as high sea condition.The non-linearity analysis was proved by comparison the results between linear and non-linear model of gyro-stabilizer throughout frequency domain also same wave input,constrains and limitations.Moreover,they were cross checked by simulating in time domain.The comparison of interested of linear and non-linear close loop model in frequency domain has demonstrated the similar characteristics but gave different values at same frequency obviously.The results were confirmed again by simulation in irregular beam sea on time domain and they demonstrate the difference of behavior of both systems while the gyro-stabilizers are switching on and off.From the resulting analysis,the non-linear gyro-stabilizer model gives more real results that correspond to more accuracy in a designing gyro-stabilizer control system for various amplitudes and frequencies operating condition especially high sea condition.
基金Project supported by the National High Technology Research and Development Progm of China (863 Program,Grant No.2008AA092301)
文摘This article presents the newly designed oblique towing test in the horizontal plane for the scaled model of 4 500 m deep sea open-framed Remotely Operated Vehicle (ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement is significant for the maneuverability and control system design.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics tests of large drift angle were conducted through Large Amplitude Horizontal Planar Motion Mechanism (LAHPMM) under low speed.Multiple regression method is adopted to process the test data and obtain the related hydrodynamic coefficients.Simulations were designed for the horizontal plane motion of large drift angle to verify the coefficients calculated.And the results show that the data can satisfy with the design requirements of the ROV developed.