期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Global open source and international standards promote the inclusive development of large models
1
作者 Lin Yonghua 《China Standardization》 2025年第5期25-25,共1页
In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes tech... In the era of AI,especially large models,the importance of open source has become increasingly prominent.First,open source allows innovation to avoid starting from scratch.Through iterative innovation,it promotes technical exchanges and learning globally.Second,resources required for large model R&D are difficult for a single institution to obtain.The evaluation of general large models also requires the participation of experts from various industries.Third,without open source collaboration,it is difficult to form a unified upper-layer software ecosystem.Therefore,open source has become an important cooperation mechanism to promote the development of AI and large models.There are two cases to illustrate how open source and international standards interact with each other. 展开更多
关键词 open source large model international standards inclusive development iterative innovationit large modelsthe evaluation general large models large models
原文传递
A Large Language Model Evaluation Method for Legal Case Retrieval
2
作者 Yiwen Wang Xiaobing Zhao +3 位作者 Xiaoke Qi Bo Chen Chuanlian Ma Yang Xu 《Data Intelligence》 2025年第2期440-460,共21页
The purpose of this paper is to explore the application of large language models(LLMs)in legal case retrieval and to evaluate their potential for providing legal professionals with more efficient work aids.Currently,a... The purpose of this paper is to explore the application of large language models(LLMs)in legal case retrieval and to evaluate their potential for providing legal professionals with more efficient work aids.Currently,although pre-trained models have made great progress in legal case retrieval,they are often limited to specific types of law(e.g.,criminal law,civil law,etc.)and lack the ability to generalize across different types of law.Moreover,most models can only deal with a single task,whereas the legal case retrieval task requires a model to have a superb comprehension of legal texts,involving multiple subtasks and requiring multitasking capabilities.Therefore,the large language model,which has super generalization and multitasking ability,can solve the above problems.In order to explore the application of large language models for legal case retrieval in the legal domain,this paper evaluates a series of emerging large language models,including multilingual models,homegrown large models,and models specifically designed for the legal domain.These models are used to retrieve legal cases and its associated subtasks.Based on the Supreme People’s Court definition,the legal case retrieval task is broken down into seven subtasks:event detection,fact generation,trigger word extraction,keyword extraction,summarization,dispute focus identification,and reasoning generation.Using a variety of evaluation metrics,the experiments demonstrated that these emerging models have significant potential in the field of legal case retrieval,even with few shot samples.The research in this paper not only introduces new ideas in the field of legal case retrieval,but also empirically verifies the potential of LLMs to improve the quality and efficiency of retrieval.It proves the value of large language models in this field and is expected to significantly enhance the efficiency of legal practitioners,as well as promote the consistency and fairness of legal judgments through the use of emerging technologies. 展开更多
关键词 Legal case retrieval large language modeling applications Few-shot evaluation Multitasking for legal texts large language model evaluation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部