期刊文献+
共找到322篇文章
< 1 2 17 >
每页显示 20 50 100
DeepGut:A collaborative multimodal large language model framework for digestive disease assisted diagnosis and treatment
1
作者 Xiao-Han Wan Mei-Xia Liu +6 位作者 Yan Zhang Guan-Jun Kou Lei-Qi Xu Han Liu Xiao-Yun Yang Xiu-Li Zuo Yan-Qing Li 《World Journal of Gastroenterology》 2025年第31期92-100,共9页
BACKGROUND Gastrointestinal diseases have complex etiologies and clinical presentations.An accurate diagnosis requires physicians to integrate diverse information,including medical history,laboratory test results,and ... BACKGROUND Gastrointestinal diseases have complex etiologies and clinical presentations.An accurate diagnosis requires physicians to integrate diverse information,including medical history,laboratory test results,and imaging findings.Existing artificial intelligence-assisted diagnostic tools are limited to single-modality information,resulting in recommendations that are often incomplete and may be associated with clinical or legal risks.AIM To develop and evaluate a collaborative multimodal large language model(LLM)framework for clinical decision-making in digestive diseases.METHODS In this observational study,DeepGut,a multimodal LLM collaborative diagnostic framework,was developed to integrate four distinct large models into a four-tiered structure.The framework sequentially accomplishes multimodal infor-mation extraction,logical“chain”construction,diagnostic and treatment suggestion generation,and risk analysis.The model was evaluated using objective metrics,which assess the reliability and comprehensiveness of model-generated results,and subjective expert opinions,which examine the effectiveness of the framework in assisting physicians.RESULTS The diagnostic and treatment recommendations generated by the DeepGut framework achieved exceptional performance,with a diagnostic accuracy of 97.8%,diagnostic completeness of 93.9%,treatment plan accuracy of 95.2%,and treatment plan completeness of 98.0%,significantly surpassing the capabilities of single-modal LLM-based diagnostic tools.Experts evaluating the framework commended the completeness,relevance,and logical coherence of its outputs.However,the collaborative multimodal LLM approach resulted in increased input and output token counts,leading to higher computational costs and extended diagnostic times.CONCLUSION The framework achieves successful integration of multimodal diagnostic data,demonstrating enhanced performance enabled by multimodal LLM collaboration,which opens new horizons for the clinical application of artificial intelligence-assisted technology. 展开更多
关键词 Gastrointestinal diseases Artificial intelligence-assisted diagnosis and treatment Multimodal large language model Multiple large language model collaboration DeepGut
在线阅读 下载PDF
Large language models for robotics:Opportunities,challenges,and perspectives 被引量:3
2
作者 Jiaqi Wang Enze Shi +7 位作者 Huawen Hu Chong Ma Yiheng Liu Xuhui Wang Yincheng Yao Xuan Liu Bao Ge Shu Zhang 《Journal of Automation and Intelligence》 2025年第1期52-64,共13页
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua... Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction. 展开更多
关键词 large language models ROBOTICS Generative AI Embodied intelligence
在线阅读 下载PDF
Evaluating research quality with Large Language Models:An analysis of ChatGPT’s effectiveness with different settings and inputs 被引量:1
3
作者 Mike Thelwall 《Journal of Data and Information Science》 2025年第1期7-25,共19页
Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether ... Purpose:Evaluating the quality of academic journal articles is a time consuming but critical task for national research evaluation exercises,appointments and promotion.It is therefore important to investigate whether Large Language Models(LLMs)can play a role in this process.Design/methodology/approach:This article assesses which ChatGPT inputs(full text without tables,figures,and references;title and abstract;title only)produce better quality score estimates,and the extent to which scores are affected by ChatGPT models and system prompts.Findings:The optimal input is the article title and abstract,with average ChatGPT scores based on these(30 iterations on a dataset of 51 papers)correlating at 0.67 with human scores,the highest ever reported.ChatGPT 4o is slightly better than 3.5-turbo(0.66),and 4o-mini(0.66).Research limitations:The data is a convenience sample of the work of a single author,it only includes one field,and the scores are self-evaluations.Practical implications:The results suggest that article full texts might confuse LLM research quality evaluations,even though complex system instructions for the task are more effective than simple ones.Thus,whilst abstracts contain insufficient information for a thorough assessment of rigour,they may contain strong pointers about originality and significance.Finally,linear regression can be used to convert the model scores into the human scale scores,which is 31%more accurate than guessing.Originality/value:This is the first systematic comparison of the impact of different prompts,parameters and inputs for ChatGPT research quality evaluations. 展开更多
关键词 ChatGPT large language models LLMs SCIENTOMETRICS Research Assessment
在线阅读 下载PDF
Evaluating large language models as patient education tools for inflammatory bowel disease:A comparative study 被引量:1
4
作者 Yan Zhang Xiao-Han Wan +6 位作者 Qing-Zhou Kong Han Liu Jun Liu Jing Guo Xiao-Yun Yang Xiu-Li Zuo Yan-Qing Li 《World Journal of Gastroenterology》 2025年第6期34-43,共10页
BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patie... BACKGROUND Inflammatory bowel disease(IBD)is a global health burden that affects millions of individuals worldwide,necessitating extensive patient education.Large language models(LLMs)hold promise for addressing patient information needs.However,LLM use to deliver accurate and comprehensible IBD-related medical information has yet to be thoroughly investigated.AIM To assess the utility of three LLMs(ChatGPT-4.0,Claude-3-Opus,and Gemini-1.5-Pro)as a reference point for patients with IBD.METHODS In this comparative study,two gastroenterology experts generated 15 IBD-related questions that reflected common patient concerns.These questions were used to evaluate the performance of the three LLMs.The answers provided by each model were independently assessed by three IBD-related medical experts using a Likert scale focusing on accuracy,comprehensibility,and correlation.Simultaneously,three patients were invited to evaluate the comprehensibility of their answers.Finally,a readability assessment was performed.RESULTS Overall,each of the LLMs achieved satisfactory levels of accuracy,comprehensibility,and completeness when answering IBD-related questions,although their performance varies.All of the investigated models demonstrated strengths in providing basic disease information such as IBD definition as well as its common symptoms and diagnostic methods.Nevertheless,when dealing with more complex medical advice,such as medication side effects,dietary adjustments,and complication risks,the quality of answers was inconsistent between the LLMs.Notably,Claude-3-Opus generated answers with better readability than the other two models.CONCLUSION LLMs have the potential as educational tools for patients with IBD;however,there are discrepancies between the models.Further optimization and the development of specialized models are necessary to ensure the accuracy and safety of the information provided. 展开更多
关键词 Inflammatory bowel disease large language models Patient education Medical information accuracy Readability assessment
暂未订购
On large language models safety,security,and privacy:A survey 被引量:1
5
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 large language models Privacy issues Safety issues Security issues
在线阅读 下载PDF
When Software Security Meets Large Language Models:A Survey 被引量:1
6
作者 Xiaogang Zhu Wei Zhou +3 位作者 Qing-Long Han Wanlun Ma Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期317-334,共18页
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ... Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research. 展开更多
关键词 large language models(LLMs) software analysis software security software testing
在线阅读 下载PDF
The Security of Using Large Language Models:A Survey With Emphasis on ChatGPT 被引量:1
7
作者 Wei Zhou Xiaogang Zhu +4 位作者 Qing-Long Han Lin Li Xiao Chen Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期1-26,共26页
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec... ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users. 展开更多
关键词 Artificial intelligence(AI) ChatGPT large language models(LLMs) SECURITY
在线阅读 下载PDF
Large Language Model Agent with VGI Data for Mapping 被引量:1
8
作者 SONG Jiayu ZHANG Yifan +1 位作者 WANG Zhiyun YU Wenhao 《Journal of Geodesy and Geoinformation Science》 2025年第2期57-73,共17页
In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach th... In recent years,Volunteered Geographic Information(VGI)has emerged as a crucial source of mapping data,contributed by users through crowdsourcing platforms such as OpenStreetMap.This paper presents a novel approach that Integrates Large Language Models(LLMs)into a fully automated mapping workflow,utilizing VGI data.The process leverages Prompt Engineering,which involves designing and optimizing input instructions to ensure the LLM produces desired mapping outputs.By constructing precise and detailed prompts,LLM agents are able to accurately interpret mapping requirements,and autonomously extract,analyze,and process VGI geospatial data.They dynamically interact with mapping tools to automate the entire mapping process—from data acquisition to map generation.This approach significantly streamlines the creation of high-quality mapping outputs,reducing the time and resources typically required for such tasks.Moreover,the system lowers the barrier for non-expert users,enabling them to generate accurate maps without extensive technical expertise.Through various case studies,we demonstrate the LLM application across different mapping scenarios,highlighting its potential to enhance the efficiency,accuracy,and accessibility of map production.The results suggest that LLM-powered mapping systems can not only optimize VGI data processing but also expand the usability of ubiquitous mapping across diverse fields,including urban planning and infrastructure development. 展开更多
关键词 Volunteered Geographic Information(VGI) Geospatial Artificial Intelligence(GeoAI) AGENT large language model
在线阅读 下载PDF
Cognitive Biases in Artificial Intelligence:Susceptibility of a Large Language Model to Framing Effect and Confirmation Bias
9
作者 Li Hao Wang You Yang Xueling 《心理科学》 北大核心 2025年第4期892-906,共15页
The rapid advancement of Artificial Intelligence(AI)and Large Language Models(LLMs)has led to their increasing integration into various domains,from text generation and translation to question-answering.However,a crit... The rapid advancement of Artificial Intelligence(AI)and Large Language Models(LLMs)has led to their increasing integration into various domains,from text generation and translation to question-answering.However,a critical question remains:do these sophisticated models,much like humans,exhibit susceptibility to cognitive biases?Understanding the presence and nature of such biases in AI is paramount for assessing their reliability,enhancing their performance,and predicting their societal impact.This research specifically investigates the susceptibility of Google’s Gemini 1.5 Pro and DeepSeek,two prominent LLMs,to framing effects and confirmation bias.The study meticulously designed a series of experimental trials,systematically manipulating information proportions and presentation orders to evaluate these biases.In the framing effect experiment,a genetic testing decision-making scenario was constructed.The proportion of positive and negative information(e.g.,20%,50%,or 80%positive)and their presentation order were varied.The models’inclination towards undergoing genetic testing was recorded.For the confirmation bias experiment,two reports-one positive and one negative-about“RoboTaxi”autonomous vehicles were provided.The proportion of erroneous information within these reports(10%,30%,and 50%)and their presentation order were systematically altered,and the models’support for each report was assessed.The findings demonstrate that both Gemini 1.5 Pro and DeepSeek are susceptible to framing effects.In the genetic testing scenario,their decision-making was primarily influenced by the proportion of positive and negative information presented.When the proportion of positive information was higher,both models showed a greater inclination to recommend or proceed with genetic testing.Conversely,a higher proportion of negative information led to greater caution or a tendency not to recommend the testing.Importantly,the order in which this information was presented did not significantly influence their decisions in the framing effect scenarios.Regarding confirmation bias,the two models exhibited distinct behaviors.Gemini 1.5 Pro did not show an overall preference for either positive or negative reports.However,its judgments were significantly influenced by the order of information presentation,demonstrating a“recency effect,”meaning it tended to support the report presented later.The proportion of erroneous information within the reports had no significant impact on Gemini 1.5 Pro’s decisions.In contrast,DeepSeek exhibited an overall confirmation bias,showing a clear preference for positive reports.Similar to Gemini 1.5 Pro,DeepSeek’s decisions were also significantly affected by the order of information presentation,while the proportion of misinformation had no significant effect.These results reveal human-like cognitive vulnerabilities in advanced LLMs,highlighting critical challenges to their reliability and objectivity in decision-making processes.Gemini 1.5 Pro’s sensitivity to presentation order and DeepSeek’s general preference for positive information,coupled with its sensitivity to order,underscore the need for careful evaluation of potential cognitive biases during the development and application of AI.The study suggests that effective measures are necessary to mitigate these biases and prevent potential negative societal impacts.Future research should include a broader range of models for comparative analysis and explore more complex interactive scenarios to further understand and address these phenomena.The findings contribute significantly to understanding the limitations and capabilities of current AI systems,guiding their responsible development,and anticipating their potential societal implications. 展开更多
关键词 artificial intelligence large language models cognitive bias confirmation bias framing effect
原文传递
Robust Detection and Analysis of Smart Contract Vulnerabilities with Large Language Model Agents
10
作者 Nishank P. Kuppa Vijay K. Madisetti 《Journal of Information Security》 2025年第1期197-226,共30页
Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart cont... Smart contracts on the Ethereum blockchain continue to revolutionize decentralized applications (dApps) by allowing for self-executing agreements. However, bad actors have continuously found ways to exploit smart contracts for personal financial gain, which undermines the integrity of the Ethereum blockchain. This paper proposes a computer program called SADA (Static and Dynamic Analyzer), a novel approach to smart contract vulnerability detection using multiple Large Language Model (LLM) agents to analyze and flag suspicious Solidity code for Ethereum smart contracts. SADA not only improves upon existing vulnerability detection methods but also paves the way for more secure smart contract development practices in the rapidly evolving blockchain ecosystem. 展开更多
关键词 Blockchain Ethereum Smart Contracts Security Decentralized Applications WEB3 Cryptocurrency large language models
在线阅读 下载PDF
Large language models in neuro-ophthalmology diseases:ChatGPT vs Bard vs Bing
11
作者 Dong Hee Ha Ungsoo Samuel Kim 《International Journal of Ophthalmology(English edition)》 2025年第7期1231-1236,共6页
AIM:To investigate the capabilities of large language models(LLM)for providing information and diagnoses in the field of neuro-ophthalmology by comparing the performances of ChatGPT-3.5 and-4.0,Bard,and Bing.METHODS:E... AIM:To investigate the capabilities of large language models(LLM)for providing information and diagnoses in the field of neuro-ophthalmology by comparing the performances of ChatGPT-3.5 and-4.0,Bard,and Bing.METHODS:Each chatbot was evaluated for four criteria,namely diagnostic success rate for the described case,answer quality,response speed,and critical keywords for diagnosis.The selected topics included optic neuritis,nonarteritic anterior ischemic optic neuropathy,and Leber hereditary optic neuropathy.RESULTS:In terms of diagnostic success rate for the described cases,Bard was unable to provide a diagnosis.The success rates for the described cases increased in the order of Bing,ChatGPT-3.5,and ChatGPT-4.0.Further,ChatGPT-4.0 and-3.5 provided the most satisfactory answer quality for judgment by neuro-ophthalmologists,with their sets of answers resembling the sample set most.Bard was only able to provide ten differential diagnoses in three trials.Bing scored the lowest for the satisfactory standard.A Mann-Whitney test indicated that Bard was significantly faster than ChatGPT-4.0(Z=-3.576,P=0.000),ChatGPT-3.5(Z=-3.576,P=0.000)and Bing(Z=-2.517,P=0.011).ChatGPT-3.5 and-4.0 far exceeded the other two interfaces at providing diagnoses and were thus used to find the critical keywords for diagnosis.CONCLUSION:ChatGPT-3.5 and-4.0 are better than Bard and Bing in terms of answer success rate,answer quality,and critical keywords for diagnosis in ophthalmology.This study has broad implications for the field of ophthalmology,providing further evidence that artificial intelligence LLM can aid clinical decision-making through free-text explanations. 展开更多
关键词 large language model chatbot ChatGPT BARD BING NEURO-OPHTHALMOLOGY
原文传递
Improving Machine Translation Formality with Large Language Models
12
作者 Murun Yang Fuxue Li 《Computers, Materials & Continua》 2025年第2期2061-2075,共15页
Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lac... Preserving formal style in neural machine translation (NMT) is essential, yet often overlooked as an optimization objective of the training processes. This oversight can lead to translations that, though accurate, lack formality. In this paper, we propose how to improve NMT formality with large language models (LLMs), which combines the style transfer and evaluation capabilities of an LLM and the high-quality translation generation ability of NMT models to improve NMT formality. The proposed method (namely INMTF) encompasses two approaches. The first involves a revision approach using an LLM to revise the NMT-generated translation, ensuring a formal translation style. The second approach employs an LLM as a reward model for scoring translation formality, and then uses reinforcement learning algorithms to fine-tune the NMT model to maximize the reward score, thereby enhancing the formality of the generated translations. Considering the substantial parameter size of LLMs, we also explore methods to reduce the computational cost of INMTF. Experimental results demonstrate that INMTF significantly outperforms baselines in terms of translation formality and translation quality, with an improvement of +9.19 style accuracy points in the German-to-English task and +2.16 COMET score in the Russian-to-English task. Furthermore, our work demonstrates the potential of integrating LLMs within NMT frameworks to bridge the gap between NMT outputs and the formality required in various real-world translation scenarios. 展开更多
关键词 Neural machine translation FORMALITY large language model text style transfer style evaluation reinforcement learning
在线阅读 下载PDF
Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models
13
作者 Yudong Yan Yinqi Yang +9 位作者 Zhuohao Tong Yu Wang Fan Yang Zupeng Pan Chuan Liu Mingze Bai Yongfang Xie Yuefei Li Kunxian Shu Yinghong Li 《Journal of Pharmaceutical Analysis》 2025年第6期1354-1369,共16页
Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches ofte... Drug repurposing offers a promising alternative to traditional drug development and significantly re-duces costs and timelines by identifying new therapeutic uses for existing drugs.However,the current approaches often rely on limited data sources and simplistic hypotheses,which restrict their ability to capture the multi-faceted nature of biological systems.This study introduces adaptive multi-view learning(AMVL),a novel methodology that integrates chemical-induced transcriptional profiles(CTPs),knowledge graph(KG)embeddings,and large language model(LLM)representations,to enhance drug repurposing predictions.AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning(MVL),matrix factorization,and ensemble optimization techniques to integrate heterogeneous multi-source data.Comprehensive evaluations on benchmark datasets(Fdata-set,Cdataset,and Ydataset)and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art(SOTA)methods,achieving superior accuracy in predicting drug-disease associations across multiple metrics.Literature-based validation further confirmed the model's predictive capabilities,with seven out of the top ten predictions corroborated by post-2011 evidence.To promote transparency and reproducibility,all data and codes used in this study were open-sourced,providing resources for pro-cessing CTPs,KG,and LLM-based similarity calculations,along with the complete AMVL algorithm and benchmarking procedures.By unifying diverse data modalities,AMVL offers a robust and scalable so-lution for accelerating drug discovery,fostering advancements in translational medicine and integrating multi-omics data.We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine. 展开更多
关键词 Drug repurposing Multi-view learning Chemical-induced transcriptional profile Knowledge graph large language model Heterogeneous network
在线阅读 下载PDF
Large language model-based multi-objective modeling framework for vacuum gas oil hydrotreating
14
作者 Zheyuan Pang Siying Liu +4 位作者 Yiting Lin Xiangchen Fang Honglai Liu Chong Peng Cheng Lian 《Chinese Journal of Chemical Engineering》 2025年第8期133-145,共13页
Data-driven approaches are extensively employed to model complex chemical engineering processes, such as hydrotreating, to address the challenges of mechanism-based methods demanding deep process understanding. Howeve... Data-driven approaches are extensively employed to model complex chemical engineering processes, such as hydrotreating, to address the challenges of mechanism-based methods demanding deep process understanding. However, the development of such models requires specialized expertise in data science, limiting their broader application. Large language models (LLMs), such as GPT-4, have demonstrated potential in supporting and guiding research efforts. This work presents a novel AI-assisted framework where GPT-4, through well-engineered prompts, facilitates the construction and explanation of multi-objective neural networks. These models predict hydrotreating products properties (such as distillation range), including refined diesel and refined gas oil, using feedstock properties, operating conditions, and recycle hydrogen composition. Gradient-weighted class activation mapping was employed to identify key features influencing the output variables. This work illustrates an innovative AI-guided paradigm for chemical engineering applications, and the designed prompts hold promise for adaptation to other complex processes. 展开更多
关键词 HYDROGENATION Prompt engineering large language model Neural networks Prediction
在线阅读 下载PDF
Developing a Predictive Platform for Salmonella Antimicrobial Resistance Based on a Large Language Model and Quantum Computing
15
作者 Yujie You Kan Tan +1 位作者 Zekun Jiang Le Zhang 《Engineering》 2025年第5期174-184,共11页
As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large lang... As a common foodborne pathogen,Salmonella poses risks to public health safety,common given the emergence of antimicrobial-resistant strains.However,there is currently a lack of systematic platforms based on large language models(LLMs)for Salmonella resistance prediction,data presentation,and data sharing.To overcome this issue,we firstly propose a two-step feature-selection process based on the chi-square test and conditional mutual information maximization to find the key Salmonella resistance genes in a pan-genomics analysis and develop an LLM-based Salmonella antimicrobial-resistance predictive(SARPLLM)algorithm to achieve accurate antimicrobial-resistance prediction,based on Qwen2 LLM and low-rank adaptation.Secondly,we optimize the time complexity to compute the sample distance from the linear to logarithmic level by constructing a quantum data augmentation algorithm denoted as QSMOTEN.Thirdly,we build up a user-friendly Salmonella antimicrobial-resistance predictive online platform based on knowledge graphs,which not only facilitates online resistance prediction for users but also visualizes the pan-genomics analysis results of the Salmonella datasets. 展开更多
关键词 Salmonella resistance prediction Pan-genomics large language model Quantum computing BIOINFORMATICS
在线阅读 下载PDF
Fine-tuning a large language model for automating computational fluid dynamics simulations
16
作者 Zhehao Dong Zhen Lu Yue Yang 《Theoretical & Applied Mechanics Letters》 2025年第3期219-225,共7页
Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automat... Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD. 展开更多
关键词 large language models Fine-tuning Computational fluid dynamics Automated CFD Multi-agent system
在线阅读 下载PDF
Research on the Construction of an Accounting Knowledge Graph Based on Large Language Model
17
作者 Yunfeng Wang 《Journal of Electronic Research and Application》 2025年第4期248-253,共6页
The article is based on language model,through the cue word engineering and agent thinking method,automatic knowledge extraction,with China accounting standards support to complete the corresponding knowledge map cons... The article is based on language model,through the cue word engineering and agent thinking method,automatic knowledge extraction,with China accounting standards support to complete the corresponding knowledge map construction.Through the way of extracting the accounting entities and their connections in the pattern layer,the data layer is provided for the fine-tuning and optimization of the large model.Studies found that,through the reasonable application of language model,knowledge can be realized in massive financial data neural five effective extracted tuples,and complete accounting knowledge map construction. 展开更多
关键词 ACCOUNTING large language model Knowledge graph Knowledge extraction Knowledge optimization
在线阅读 下载PDF
From lab to fab:A large language model for chemical engineering
18
作者 Jibin Zhou Feiyang Xu +10 位作者 Zhijun Chang Duiping Liu Lulu Li Jian Cui Yi Li Xin Li Li Qian Zhixiong Zhang Guoping Hu Mao Ye Zhongmin Liu 《Chinese Journal of Catalysis》 2025年第6期159-173,共15页
The development of chemical technologies,which involves a multistage process covering laboratory research,scale‐up to industrial deployment,and necessitates interdisciplinary collaboration,is often accompanied by sub... The development of chemical technologies,which involves a multistage process covering laboratory research,scale‐up to industrial deployment,and necessitates interdisciplinary collaboration,is often accompanied by substantial time and economic costs.To address these challenges,in this work,we report ChemELLM,a domain‐specific large language model(LLM)with 70 billion parameters for chemical engineering.ChemELLM demonstrates state‐of‐the‐art performance across critical tasks ranging from foundational understanding to professional problem‐solving.It outperforms mainstream LLMs(e.g.,O1‐Preview,GPT‐4o,and DeepSeek‐R1)on ChemEBench,the first multidimensional benchmark for chemical engineering,which encompasses 15 dimensions across 101 distinct essential tasks.To support robust model development,we curated ChemEData,a purpose‐built dataset containing 19 billion tokens for pre‐training and 1 billion tokens for fine‐tuning.This work establishes a new paradigm for artificial intelligence‐driven innovation,bridging the gap between laboratory‐scale innovation and industrial‐scale implementation,thus accelerating technological advancement in chemical engineering.ChemELLM is publicly available at https://chemindustry.iflytek.com/chat. 展开更多
关键词 large language model Chemical engineering Process development Multidimensional benchmark Domain adaptation
在线阅读 下载PDF
Potential role of large language models and personalized medicine to innovate cardiac rehabilitation
19
作者 Rishith Mishra Hersh Patel +1 位作者 Aleena Jamal Som Singh 《World Journal of Clinical Cases》 2025年第19期1-4,共4页
Cardiac rehabilitation is a crucial multidisciplinary approach to improve patient outcomes.There is a growing body of evidence that suggests that these programs contribute towards reducing cardiovascular mortality and... Cardiac rehabilitation is a crucial multidisciplinary approach to improve patient outcomes.There is a growing body of evidence that suggests that these programs contribute towards reducing cardiovascular mortality and recurrence.Despite this,cardiac rehabilitation is underutilized and adherence to these programs has been a demonstrated barrier in achieving these outcomes.As a result,there is a growing focus on innovating these programs,especially from the standpoint of digital health and personalized medicine.This editorial discusses the possible roles of large language models,such as their role in ChatGPT,in further personalizing cardiac rehabilitation programs through simplifying medical jargon and employing motivational interviewing techniques,thus boosting patient engagement and adherence.However,these possibilities must be further investigated in the clinical literature.Likewise,the integration of large language models in cardiac rehabilitation will be challenging in its nascent stages to ensure accurate and ethical information delivery. 展开更多
关键词 Cardiac rehabilitation large language models Patient education Motivational interviewing Artificial intelligence
暂未订购
Correlation Analysis Between Investor Sentiment and Stock Price Fluctuations Based on Large Language Models
20
作者 Guohua Ren Ziyu Luo +1 位作者 Naiwen Zhang Yichen Yang 《Journal of Electronic Research and Application》 2025年第5期30-37,共8页
The efficient market hypothesis in traditional financial theory struggles to explain the short-term irrational fluctuations in the A-share market,where investor sentiment fluctuations often serve as the core driver of... The efficient market hypothesis in traditional financial theory struggles to explain the short-term irrational fluctuations in the A-share market,where investor sentiment fluctuations often serve as the core driver of abnormal stock price movements.Traditional sentiment measurement methods suffer from limitations such as lag,high misjudgment rates,and the inability to distinguish confounding factors.To more accurately explore the dynamic correlation between investor sentiment and stock price fluctuations,this paper proposes a sentiment analysis framework based on large language models(LLMs).By constructing continuous sentiment scoring factors and integrating them with a long short-term memory(LSTM)deep learning model,we analyze the correlation between investor sentiment and stock price fluctuations.Empirical results indicate that sentiment factors based on large language models can generate an annualized excess return of 9.3%in the CSI 500 index domain.The LSTM stock price prediction model incorporating sentiment features achieves a mean absolute percentage error(MAPE)as low as 2.72%,significantly outperforming traditional models.Through this analysis,we aim to provide quantitative references for optimizing investment decisions and preventing market risks. 展开更多
关键词 large language model Investor sentiment Stock return prediction Sentiment analysis LSTM
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部